		F				
		Laxer	cise # 1			
Q.1	Calomel is :					
	[1] Hg ₂ Cl ₂ + Hg	[2] HgCl ₂	[3] Hg + HgCl ₂	[4] Hg ₂ Cl ₂		
Q.2	Mixture used of the tips	of match stick is				
	[1] S + K		$[2] Sb_2S_3$			
	[3] $K_2 Cr_2 O_7 + S + red + F$	0	[4] $K_2 Cr_2 O_7 + K + S$			
Q.3	White phosphorus reacts	with caustic soda. The p	products are PH ₃ and Na	H_2PO_2 . This reaction is an example of		
	[1] Oxidation		[2] Reduction			
	[3] Oxidation and reduction	on	[4] Neutralization			
Q.4	Phosphine is not obtaine	d by the reaction				
	[1] White P is heated with	h NaOH	[2] Red P is heated	with NaOH		
	[3] Ca ₃ P ₂ reacts with wa	ter	[4] Phosphorus triox	tide is boiled with water		
Q.5	One of the acid listed be phosphorus (III) oxide is	elow is formed from P ₂	O ₃ and rest are formed	d from P_2O_5 . The acid formed from		
	[1] HPO ₃	[2] H ₄ P ₂ O ₇	[3] H ₃ PO ₄	[4] H ₃ PO ₃		
Q.6	Hypophosphorus acid is			ON I		
	[1] A tribasic acid	[2] A dibasic acid	[3] A monobasic aci	d [4] Not acidic at all		
Q.7	When orthophosphoric a	cid is heated to 600°C. t	he product formed is			
	[1] Phosphine, PH ₃		[2] Phosphorus pent	toxide, P ₂ O ₅		
	[3] Phosphorus acid, H ₃ F	PO ₃	[4] Metaphosphoric	acid, HPO ₃		
Q.8	Thomas slag is					
	[1] Ca ₃ (PO ₄) ₂	[2] MnSiO ₃	[3] CaSiO ₃	[4] FeSiO ₃		
Q.9	Blasting of TNT is done b	oy mixing				
	[1] NH ₄ Cl	[2] NH ₄ NO ₃	[3] NH ₄ NO ₂	$[4] (NH_4)_2 SO_4$		
Q.10	Which element is found i	n free state				
	[1] lodine	[2] Sulphur	[3] Phosphorus	[4] Magnesium		
Q.11	The element which libera	ites oxygen gas from wa	ter is			
	[1] P	[2] Na	[3] F	[4] I		
Q.12	Ozone belongs to which	group of the periodic tab	le			
	[1] V group	[2] VI group	[3] VII group	[4] None of the above		
Q.13	Which would quickly abs	orbs oxygen				
	[1] Alkaline solution of py	rogallol	[2] Conc. H ₂ SO ₄	[2] Conc. H ₂ SO ₄		
	[3] Lime water		[4] Alkaline solution	of CuSO ₄		
Q.14	The formula of ozone is (O ₃ , it is				
	[1] An allotrope of oxyger	า	[2] Compound of oxy	/gen		
	[3] Isotope of oxygen		[4] None of the above	e		
Q.15	When SO ₂ is passed thro	ough acidified solution o	f H ₂ S			
	[1] H ₂ SO ₄ is formed		[2] H ₂ SO ₃ is formed	l		
	[3] Sulphur is precipitated	b	[4] None of these			
Q.16	Bleaching action of SO ₂	is due to				
	[1] Reduction	[2] Oxidation	[3] Hydrolysis	[4] Its acidic nature		
Q.17	Which one of the gas dis	solves in H ₂ SO ₄ to give	oleum			
	[1] SO ₂	[2] H ₂ S	[3] S ₂ O	[4] SO ₃		

Q.18	Hypo is used in photogra	phy to		
	[1] Reduce AgBr grains t	o metallic silver		
	[2] Convert the metallic s	ilver to silver salt		
	[3] Remove undecompos	ed silver bromide as a solu	uble complex	
	[4] Remove reduced silve	r		
Q.19	Hypo is used in photogra	phy because of its		
	[1] Reducing behaviour		[2] Oxidising behaviou	
	[3] Complex forming beha	viour	[4] Reaction with light	
Q.20	Bromine is liberated whe	n an aqueous solution of p	ootassium bromide is trea	ated with
	[1] Cl ₂	[2] I ₂	[3] Dilute H ₂ SO ₄	[4] SO ₂
Q.21	Chlorine was discovered	by		
	[1] Davy	[2] Priestley	[3] Rutherford	[4] Sheele
Q.22	Which of the following wi	ll not occur		
	[1] Fe + $H_2SO_4 \rightarrow FeSC$	$H_4 + H_2$	$[2] \operatorname{Cu} + 2\operatorname{AgNO}_3 \rightarrow \operatorname{C}$	u(NO ₃) ₂ + 2Ag
	[3] 2KBr + $I_2 \rightarrow 2KI + Br_2$	2	[2] Cu + 2AgNO ₃ \rightarrow C [4] CuO + H ₂ \rightarrow Cu +	H ₂ O
Q.23	Which one of the haloge	n acids is a liquid		
	[1] HF	[2] HCI	[3] HBr	[4] HI
Q.24	Br ₂ gas turns starch iodic	le paper		
	[1] Blue	[2] Red	[3] Colorless	[4] Yellow
Q.25	When Cl ₂ gas is passed	through hot and conc. solu	ution of KOH, following c	ompound is formed
	[1] KCI	[2] KCIO ₃	[2] KCIO ₂	[4] KCIO ₄
Q.26	Deacon's process is use	d in the manufacture of	-0-	
	[1] Bleaching powder	[2] Sulphuric acid	[3] Nitric acid	[4] Chlorine
Q.27	A quick supply of Cl ₂ gas	may be made by reacting	g crystals of KMnO ₄ with	a concentrated solution of
	[1] Potassium chloride	[2] Sodium chloride	[3] Bleaching powder	[4] Hydrochloric acid
Q.28	Chlorine can remove			
	[1] Br from NaBr solution			on [4] F from CaF ₂ solution
Q.29		e following does not occur		
	[1] VCl ₄	[2] TiCl ₄	[3] SiCl ₄	[4] CCl ₄
Q.30	In KI solution I ₂ readily di			
	[1] -	[2] KI ₂	[3] KI ₂ -	[4] KI ₃
Q.31		e used for the production o	•	
	$[1] 2KBr + H_2SO_4 \rightarrow K_2SO_4 \rightarrow K_2$	•	[2] NaHSO ₄ + NaCl \rightarrow	
0 22	[3] NaCl + $H_2SO_4 \rightarrow Nal$	1	[4] $CaF_2 + H_2SO_4 \rightarrow$	•
Q.32	chemical processes, bec		opposite to other halog	ens which are prepared by simple
	[1] F is very active		[2] F is very strong oxid	dizing agent
	[3] F is very poisonous		[4] The electrolysis of t	
Q.33	Which of the following aft	er reacting with KI do not r	emove iodine	
	[1] CuSO ₄	[2] K ₂ Cr ₂ O ₇	[3] HNO ₃	[4] HCI
Q.34	Which of the following pa	irs is not correctly matche	ed	
		uid at room temperature -	Bromine	
	[2] The most electronega			
	[3] The most reactive hale	•		
	[4] The strongest oxidizin	g halogen – lodine		

Q.35	lodine is formed when po	otassium iodide reacts wit	h a solution of	
	[1] ZnSO₄	[2] CuSO ₄	[3] (NH ₄) ₂ SO ₄	[4] Na ₂ SO ₄
Q.36		·	• = •	s is attributed to many factors except
	[1] Heat of dissociation	[2] Electron affinity	[3] Heat of hydration	[4] Ionisation potential
Q.37	Chlorine gas is dried ove			
	[1] CaO	[2] NaOH	[3] KOH	[4] Conc. H ₂ SO ₄
Q.38		out not with NaHCO ₃ . The		[1]2 4
	[1] CO ₂	[2] Cl ₂	[3] N ₂	[4] O ₂
Q.39	-	pmine from sea water, the	-	-
4.00	[1] CO ₂	[2] Cl ₂	[3] I ₂	[4] SO ₂
Q.40	L	CCI_4 , the colour that result	-	[1] 002
QTU	[1] Brown	[2] Violet	[3] Colourless	[4] Bluish green
Q.41	Which of the following so		[0] 0010011033	
Q.41	[1] KNO ₃		[2] KCN	
	[3] Potassium succinate		[4] Potassium carbona	
Q.42	Nitrolim is			
Q.4Z			[3] CaCN ₂ + C	[4] CaCN₄
0 42	[1] Ca(NO ₃) ₂	[2] Ca(CN) ₂	-	
Q.43		ained by the interaction of		
	[1] Conc. solution of Ca(JH) ₂	[2] Dilute solution of C	a(OH) ₂
~ ~ ~	[3] Dry calcium oxide		[4] Dry slaked lime	
Q.44	For bleaching powder, w			
	[1] Reacts with dilute aci		[2] Oxidising agent	
	[3] Light yellow coloured		[4] Highly soluble in w	ater
Q.45	Which one of the following			
	[1] SO ₂	[2] BaO ₂	[3] MnO ₂	[4] NO ₂
Q.46	Bone ash contains			
	[1] CaO	[2] CaSO ₄	[3] Ca ₃ (PO ₄) ₂	$[4] \operatorname{Ca}(\mathrm{H}_{2}\mathrm{PO}_{4})_{2}$
Q.47		ements does not form sta		
	[1] lodine	[2] Phosphorus	[3] Nitrogen	[4] Oxygen
Q.48	Producer gas is a mixtur			
	[1] CO and N ₂	[2] CO_2 and H_2	[3] CO and H ₂	[4] CO_2 and N_2
Q.49	Which one of the following	ng combines with Fe (II) io	ns to form a brown comp	blex
	[1] N ₂ O	[2] NO	[3] N ₂ O ₃	[4] N ₂ O ₅
Q.50		the most suitable drying a	agent for ammonia gas	
	[1] Calcium oxide		[2] Anhydrous calcium	n chloride
	[3] Phosporus pentoxide		[4] Conc. sulphuric ac	id
Q.51	Each of the following is t	rue for white and red phos	phorus except that they	
	[1] Are both soluble in C	S ₂	[2] Can be oxidised b	y heating in air
	[3] Consists of same kin	d of atoms	[4] Can be converted i	nto one another
Q.52	Which of the following is	a tetrabasic acid		
	[1] Orthophosphorus aci	b	[2] Orthophosphoric a	cid
	[3] Metaphosphoric acid		[4] Pyrophosphoric ac	id
Q.53	Of the different allotrope	s of phosphorus, the one v	which is most reactive is	
	[1] Violet phosphorus	[2] Scarlet phosphorus		[4] White phosphorus
	- • •			

Q.54	Phosphine is generally	prepared in the laboratory					
	[1] By heating phospho	orus in a current of hydroger	ı				
	[2] By heating white phosphorus with aqueous solution of caustic potash						
	[3] By decomposition of P ₂ H ₄ at 110°C						
	[4] By heating red phos	sphorus with an aqueous sc	olution of caustic soda				
Q.55	Nitrogen dioxide canno	ot be obtained by heating					
	[1] KNO ₃	[2] Pb(NO ₃) ₂	[3] Cu(NO ₃) ₂	[4] AgNO ₃			
Q.56	Non-combustible hydri	de is					
	[1] NH ₃	[2] PH ₃	[3] AsH ₃	[4] SbH ₃			
Q.57	A certain element form	ns a solid oxide which when	dissolved in water for	ms an a acidic solution, the element is			
	[1] Argon	[2] Potassium	[3] Phosphorus	[4] Sulphur			
Q.58	Which of the following splinter	nitrates when heated gives o	off a gas or a mixture o	f gases which cannot relight a glowing			
	[1] Sodium nitrate	[2] Ammonium nitrate	[3] Lead nitrate	[4] Potassium nitrate			
Q.59	When concentrated ni	tric acid is heated, it decom	poses to give	C			
	$[1] O_2$ and N_2	[2] NO	[3] N ₂ O ₅	[4] NO ₂ and O ₂			
Q.60		tches fire in air at 30°C and i	20				
	[1] Calcium	[2] Sodium	[3] Phosphorus	[4] Zinc			
Q.61	Among the member of	V A group (N, P, As, Sb and	Bi), which of the follo	wing properties shows an increase as			
	we go down from nitrog						
	[1] Stability of 3 oxidat	ion sate	[2] Oxidising charac	cter of hydrides			
	[3] Electronegativity		[4] Acidic nature of	the pentoxide			
Q.62	The important method	for the fixation of nitrogen is					
	[1] Haber	[2] Solvay	[3] Deacon	[4] Fisher method			
Q.63	Which of the following	is oxidised in air					
	[1] White phosphorus	[2] CH ₄	[3] H ₂ O	[4] NaCl			
Q.64	A pure sample of nitrog	gen is prepared by heating					
	[1] Calcium cyanamide		[2] Barium azide				
	[3] Ammonium hydroix	de	[4] Ammonium nitrit	te			
Q.65		lowed to react with sufficien	t quantity of NaOH, the	e product obtained is			
	[1] NaHPO ₃	[2] Na ₂ HPO ₄	[3] NaH ₂ PO ₄	[4] Na ₃ PO ₄			
Q.66	In the catalytic oxidatic	n of ammonia an oxide is fo	rmed which is used in	the preparation of HNO_3 . This oxide is			
	[1] N ₂ O ₅	[2] N ₂ O ₄	[3] NO ₂	[4] NO			
Q.67	Which acid is formed b	by P ₂ O ₃					
	[1] H ₃ PO ₄	[2] H ₃ PO ₃	[3] HPO ₃	[4] H ₄ P ₂ O ₇			
Q.68	Dehydrated phosphoru	is trichloride in water gives					
	[1] HPO ₃	[2] H ₃ PO ₄	[3] H ₃ PO ₂	[4] H ₃ PO ₃			
Q.69	Which oxide of nitroge	n is coloured gas					
	[1] N ₂ O	[2] NO	[3] N ₂ O ₅	[4] N ₂ O ₅			
Q.70	Phosphorus is kept in						
	[1] Water	[2] Kerosene oil	[3] Alcohol	[4] Ammonia			
Q.71	In vapour state, white p	phosphorus is mainly in the	form				
	[1] P ₃	[2] P ₄	[3] P ₁₆	[4] P ₅			
	~	r		<u> </u>			

Q.72	Of the following, non-	-existent compound is		
	[1] PH₄I	[2] As ₂ O ₃	[3] SbCl ₂	[4] As ₂ H ₃
Q.73		assed over heated CuO, it is o	-	
	[1] N ₂	[2] NO ₂	[3] N ₂ O	[4] HNO ₂
Q.74	-	I^- and N_2 are isoelectronic. B	But in contrast to CN ⁻ , N	, is chemically inert because of
	[1] Low band energy	2	[2] Absence of bond p	
	[3] Unsymmetrical el	ectron distribution		
	[4] Presence of more	number of electrons in bondi	ng orbitals	
Q.75	Which statement is r	not correct for nitrogen		
	[1] It has a small size	e	[2] It does not readily	react with O ₂
	[3] It is a typical non-	metal	[4] d-orbitals are avail	able for bonding
Q.76	Laughing gas is prep	ared by heating		
	[1] NH₄CI	[2] (NH ₄) ₂ SO ₄	[3] NH ₄ Cl+ NaNO ₃	[4] NH ₄ NO ₃
Q.77	Nitrogen (I) oxide is p		0	
	[1] Thermal decompo	osition of ammonium nitrate	[2] Disproportionation	of N ₂ O ₄
	[3] Thermal decompo	osition of ammonium nitrite	[4] Interaction of hydr	oxyl amine and nitrous acid
Q.78	Which of the followin	g is not correct for N ₂ O		
	[1] It is called laughir	ng gas	[2] It is nitrous oxide	
	[3] It is not a linear m	nolecule	[4] It is least reactive	in all oxides of nitrogen
Q.79	When lightning flash	is produced, which gas may	form	
	[1] Nitrous oxide	[2] Nitrogen dioxide	[3] Dinitrogen pentoxi	de [4] Nitric oxide
Q.80	Red phosphorus can	be obtained from white phos	phorus by	
	[1] Heating it with a c	atalyst in an inert atmospher	e	
	[2] Distilling it in an ir	nert atmosphere		
	[3] Dissovling it in ca	rbon disulphide and crystalliz	ing	
	[4] Melting it and pou	iring the liquid into water		
Q.81	Bones glow in the da	rk because		
	[1] They contain shin	ing material		
	[2] They contain red	phosphorus		
	[3] White phosphoru	s undergoes slow combustion	n in contact with air	
	[4] White phosphoru	s changes into red from		
Q.82	Which one of the follo	owing is the true covalent oxid	de of iodine	
	[1] I ₂ O ₄	[2] I ₂ O ₅	[3] I ₂ O ₇	[4] I ₂ O ₉
Q.83	KI when heated with	conc. H ₂ SO ₄ gives		
	[1] HI	[2] I ₂	[3] HIO ₃	[4] KIO ₃
Q.84	-	is a low boiling liquid. This is	s because	
	[1] H–F bond is stror	-		
	[2] H–F bond is weal			
		gregate because of hydroger	bonding in HF	
	[4] HF is weak acid			
Q.85	Concentrated HNO ₃	-		
	[1] HI	[2] HOI	[3] HOIO ₂	[4] HOIO ₃
Q.86		fluorides are give below. Whi		urther with fluorine
	[1] IF ₅	[2] NaF	[3] CaF ₂	[4] SF ₅

Q.87	Every inert gas atom					
	[1] Has a saturated o	utermost shell	[2] Has one electron in outermost shell			
	[3] Has eight electror	ns in outermost shell	[4] Has two electrons in outermost shell			
Q.88	Deep sea divers use	d to respirate in mixture of				
	[1] Oxygen and argor	ne	[2] Oxygen and heli	[2] Oxygen and helium		
	[3] Oxygen and nitrog	gen	[4] Oxygen and hydi	rogen		
Q.89	Which of the followin	g gases exist more abundant	ly in nature than the ot	her		
	[1] Helium	[2] Neon	[3] Argon	[4] Krypton		
2.90	Noble gases do not r	eact with other elements beca	ause			
	[1] They have comple	etely paired up and stable ele	ctron shells			
	[2] The sizes of their	atoms are very small				
	[3] Are not found in al	oundance	[4] Are monoatomic			
ຊ.91	Which of the followin	g is not obtained by direct rea	action of constituent ele	ements		
	[1] XeF ₂	[2] XeF4	[3] XeO ₃	[4] XeF ₆		
Q.92	Bromine water reacts					
	[1] H_2O and HBr	$[2]$ H_2 SO ₄ and HBr	[3] HBr and S	[4] S and H_2O		
2.93	-		en mixed, produce chlo	orine gas at room temperature		
	[1] NaCl and MnO ₂		[2] NaCl and HNO3			
	[3] NaCl and H_2SO_4	(conc.)	[4] HCI (conc.) and I			
2.94			nate, sodium potassiur	m tarterate and sodium hydroxide is		
	[1] Fenton's reagent	[2] Schiff's reagent	[3] Fehling's solution	n [4] Nessler's reagent		
2.95	The most dangerous	method of preparing hydroge	n would be by the actio	on of HCl and		
	[1] AI	[2] K	[3] Fe	[4] Zn		
2.96	Phosphine is prepare	ed by the reaction of	~ 0			
	[1] P and H ₂ SO ₄	[2] P and NaOH	[3] P and H ₂ S	[4] P and HNO ₃		
2.97		the phosphorus molecule is				
	[1] P	[2] P ₄	[3] P ₂	[4] P ₅		
2.98		ecomposes on heating into	[0] Nitrovo ovido op	duveter		
	[1] Ammonia and nitr		[2] Nitrous oxide and			
	[3] Nitrogen, hydroge			ogen dioxide and hydrogen		
2.99	without leaving any s		nitrate and Ammoniu	um nitrate; the one that decomposes		
	[1] Lead nitrate	[2] Ammonim nitrate	[3] Siliver nitrate	[4] Sodium nitrate		
Q.100	Which of the followin	g elements is most metallic				
	[1] Phosphorus	[2] Aresenic	[3] Antimony	[4] Bismuth		

Answer Key - 1

				7					A	ns	We	ər	K	Эy	-	1									
аØ	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
Ans.	4	3	3	2	4	3	4	1	2	2	3	4	1	1	3	1	4	3	3	1	1	3	1	1	2
аØ	26	27	28	8	30	31	32	Я	34	35	36	37	88	39	40	41	42	43	44	45	4 6	47	48	49	50
Ans.	4	4	1	4	4	1	2	4	4	2	2	4	2	2	2	1	3	4	4	2	3	2	1	2	1
аØ	51	52	53	54	55	56	57	58	59	60	61	62	ស	64	65	66	67	68	69	70	71	72	73	74	75
Ans.	1	4	4	2	1	1	3	2	4	3	1	1	1	2	4	4	2	4	4	1	2	3	1	4	4
аØ	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91	92	9 3	94	9 5	9 6	97	98	99	100
Ans.	4	4	3	4	1	3	2	2	3	3	1	1	2	3	1	3	2	4	3	2	2	3	2	2	4

		Exer	cise # 2	
	For forme deriver	_		
Q.1	FeSO ₄ forms dark brov			
• •	[1] NO ₂	[2] N ₂ O ₃	[3] NO	[4] N ₂ O
Q.2	When HNO ₃ is heated			
• •	[1] N ₂ O	[2] NO	[3] NO ₃	[4] N ₂ O ₅
Q.3	-	oxide of nitrogen is the anh	0	
	[1] NO	[2] N ₂ O ₃	[3] N ₃ O ₄	[4] N ₂ O ₅
Q.4	-	ctured by heating in a elect		
	[1] Bone ash and coke		[2] Bone ash and silic	а
	[3] Bone ash, silica and		[4] None of the above	
Q.5	•	nitrates, the one which give	-	
	[1] Pb(NO ₃) ₂	[2] AgNO ₃	[3] KNO ₃	[4] NH ₄ NO ₃
Q.6	Nitrous oxide			
	[1] is a mixed oxide		[2] is an acidic oxide	G
	[3] is highly soluble in h	not water	[4] supports the comb	ustion of sulphur
Q.7	NO ₂ is a mixed oxide is	s proved by the first that wi	th NaOH, it forms	S
	[1] Nitrites salt		[2] Nitrates salt	
	[3] Mixture of nitrate ar	id nitrite	[4] Ammonia	
Q.8	Superphosphate of lime	e is		
	[1] A mixture of normal	calcium phosphate and gy	rpsum	
	[2] A mixture of primary	/ calcium phosphate and g	ypsum	
	[3] Normal calcium pho	sphate	\cap	
	[4] Soluble calcium pho	osphate		
Q.9	White phosphorus cont	ains		
	[1] P ₅ molecules	[2] P ₄ molecules	[3] P ₆ molecules	[4] P ₂ molecules
Q.10	V–A group precipitate w	vas dissolved in HNO ₃ and t	reated with excess of NH_2	OH. It gives a white ppt. because of
	[1] Cu(OH) ₂	[2] Cd(OH) ₂	[3] Bi(OH) ₂	[4] H ₂ (OH) ₂
Q.11	-	elements of group VA does	-	
	[1] N	[2] Bi	[3] P	[4] As
Q.12	Which is the most expl			
_	[1] NCl ₃	[2] PCl ₃	[3] AsCl ₃	[4] All the above
Q.13	Pure N_2 gas is obtained	0	[0] 3	
	$[1] NH_3 + NaNO_2$	[2] NH ₄ Cl + NaNO ₂	[3] N ₂ O + Cu	[4] (NH ₄) ₂ CrO ₇
Q.14	Which is not a ionic pe		[0] 1120 1 00	[+] (1114)20107
	[1] K_2O_2	[2] Na ₂ O ₂	[3] PbO ₂	[4] BaO ₂
Q.15				I reduces acidified KMnO ₄ solution.
4.10	Hence the substance i			
	[1] SO ₃	[2] KNO ₃	[3] H ₂ O ₂	[4] All the above
Q.16	•	and air at about 800°C in th		
	[1] N ₂ O	[2] NO	[3] NH ₂ OH	[4] N ₂ O ₃
Q.17	Nitrogen is essential co	onstituent of all	_	-
	[1] Proteins	[2] Fats	[3] Proteins and fats	[4] None of these
Q.18	The chemical used for	cooling in refrigeration is		
	[1] CO ₂	[2] NH ₄ OH	[3] NH ₄ Cl	[4] Liquid NH ₃

Q.19	Phosphide ion has the ele			141 Oblasida ian
0.20	[1] Nitride ion	[2] Fluoride ion	[3] Sodium ion	[4] Chloride ion
Q.20	Red phosphorus is less re [1] Its colour is red	eactive than yellow phospi		and
	[3] It is hard		[2] It is highly polymeris[4] It is insoluble in C₂F	
Q.21	BiCl ₃ on hydrolysis forms	a white precipitate of		1 ₅ 011
Q.2 I	[1] Bismuthio acid		[2] Bismuth oxychloride	د
	Bismuth pentachloride		[4] Bismuth hydroxide	
Q.22	At high temperature nitro	nen combines with calcium		
	[1] Calcium cyanide		[2] Calcium cyanamide	
	[3] Calcium carbonate		[4] Calcium nitride	
Q.23	When equal weights of th	e two fertilizers urea and		taken urea contains
Q.20	[1] Less nitrogen than am			
	[2] As much nitrogen as a	-		
		trogen pressent in ammo	aium aulahata	
		•		\mathbf{G}
0.24		nount of nitrogen present	in ammornum suipriate	
Q.24	In the following reaction			X
	P_4 + 3 NaOH + 3H ₂ O →	0 2 2		
	[1] Phosphorus is oxidise		[2] Phosphorus is oxidi	sed and reduced
0.05	[3] Phosphorus is reduce		[4] Sodium is oxidised	
Q.25	Oxygen was discovered b	-		
	[1] Priestley	[2] Boyle	[3] Scheele	[4] Cavandish
Q.26	When oxygen is passed t		v	
_	[1] Na ₂ SO ₄	[2] Na ₂ S	[3] NaHSO ₄	[4] NaH
Q.27	Ozone is obtained from o			
	[1] By oxidation at high te		[2] By oxidation using a	•
	[3] By silent electric disch		[4] By conversion at hig	h pressure
Q.28	Copper turnings when he			
			[3] H ₂ S	[4] O ₂
Q.29			-	Here sulphur dioxide acts as
	[1] An oxidising agent		[3] An acid	[4] A catalyst
Q.30	When SO ₂ is passed thro	ugh cupric chloride soluti	on	
	[1] A white precipitate is o	bbtained		
	[2] The solution becomes	colourless		
	[3] The solution becomes	colourless and a withe pr	ecipitate of Cu ₂ Cl ₂ is obt	ained
	[4] No visible change take	es place		
Q.31	About H ₂ SO ₄ which is inc	correct		
	[1] Reducing agent	[2] Dehydrating agent	[3] Sulphonating agent	[4] Highly viscous
Q.32	In the reaction			
	$2Ag + 2H_2SO_4 \rightarrow Ag_2SO_4$	$D_4 + 2H_2O + SO_2 H_2SO$	₄ acts as	
	[1] Reducing agent		[3] Catalytic agent	[4] Dehydrating agent
0.22				
Q.33	In the reaction HCOOH _	$12224 \rightarrow 00 + H_20$		
	H ₂ SO ₄ acts as			
	[1] Dehydrating agent	[2] Oxidising agent	[3] Reducing agent	[4] All the above

Q.34	Oxalic acid when heated	with conc. H ₂ SO ₄ . gives o	out	
	[1] H ₂ O and CO ₂	[2] CO and CO ₂	[3] Oxalic sulphate	[4] CO_2 and H_2S
Q.35	The acid used in lead stro	orage cells is		
	[1] Phosphoric acid	[2] Nitric acid	[3] Sulphuric acid	[4] Hydrochloric acid
Q.36	The products of the chem	ical reaction between Na ₂	$_{2}S_{2}O_{3}$, Cl ₂ and H ₂ O are	
	[1] S + HCl + Na ₂ S	[2] S + HCl + Na ₂ SO ₄	[3] S + HCl + Na ₂ SO ₃	[4] S + NaClO ₃ + H ₂ O
Q.37	Glass is soluble in			
	[1] HF	[2] H ₂ SO ₄	[3] HCl ₄	[4] Aqua-regia
Q.38	Chlorine reacts with sodiu	m hydroxide under variou	s condition to give	
	[1] Sodium chloride	[2] Sodium hypochlorite	[3] Sodium chlorate	[4] All of the above
Q.39	On boiling an aqueous so	lution of KCIO3 with iodine	e, the following product is	sobtained
	[1] KIO ₃	[2] KCIO ₄	[3] KIO ₄	[4] KCI
Q.40	Colour of iodine solution is	s disappeared by shaking	it with aqueous solution	of
	[1] H ₂ SO ₄	[2] Na ₂ S	[3] Na ₂ S ₂ O ₃	[4] Na ₂ SO ₄
Q.41	Which of the following is c	correct		\mathbf{G}
	[1] lodine is a solid		[2] Chlorine is insoluble	e in water
	[3] lodine is more reactive	than bromine	[4] Bromine is more rea	active than chlorine
Q.42	Acid employed for etching	g glass is		
	[1] Aquea-regia	[2] HF	[3] HCIO ₄	[4] H ₂ SO ₄
Q.43	Sea weed is employed as	a source of munufacture	of	
	[1] F	[2] I	[3] Br	[4] CI
Q.44	In dark, which of the follow	ving reacts with hydrogen		
	[1] Br ₂	[2] F ₂	[3] I ₂	[4] Cl ₂
Q.45	In the isolation of fluorine,	a number of difficulties w	ere encountered. Which	statement is correct
	[1] The potential required	for the discharge of the flu	uoride ions is the lowest	
	[2] Fluorine reacts with m	ost glass vessels		
	[3] Fluorine has great affin	nity for hydrogen		
	[4] Electrolysis of aqueous	s HF gives ozonised oxyg	len	
Q.46	When chlorine water is ex	rposed to sunlight, O ₂ is li		
	[1] Hydrogen has little affi		[2] Hydrogen has more	—
	[3] Hydrogen has more af	-	[4] It is a reducing age	nt
Q.47	Chlorine is used in water f	or		
	[1] Killing germs		[2] Prevention of polluti	on
	[3] Cleasing		[4] Removing dirt	
Q.48	Chlorine cannot be used			
	[1] As bleaching agent		[2] In sterilisation	
	[3] In preparation of antise		[4] For extraction of silv	ver and copper
Q.49	Chlorine acts as a bleach	· ·		
0.50	[1] Dry air	[2] Moisture	[3] Sunlight	[4] Pure oxygen
Q.50	Euchlorine is a mixture of		[2] Cl and CO	[4] None of these
Q.51	[1] Cl ₂ and SO ₂ When chlorine is passed of	[2] Cl ₂ and ClO ₂	[3] Cl ₂ and CO	[4] None of these
U (101	[1] Ca(ClO ₂) ₂	[2] CaCl ₂	[3] CaOCl ₂	$[4] Ca(OCl_2)_2$
Q.52	Bromine is obtained comr			2/2
	[1] AgNO ₃ solution	[2] Crystals of NaBr	[3] Cl ₂	[4] C ₂ H ₄

Q.53	A solution of HCI in water is good conductor while gaseous hydrogen chloride is not. This is due to the reason that						
	[1] Water is a good cor	nductor of electricity	[2] HCI in water ionise	S			
	[3] Gas can not conduc	ct electricity but water can	[4] None of these				
Q.54	Which one below is a p	seudohalide					
	[1] CN ⁻	[2] ICI	[3] IF ₅	[4] I ₃ ⁻			
Q.55	Helium was discovered	by					
	[1] Crooks		[2] Rutherford				
	[3] Frankland and Lock	yer	[4] Dorn				
Q.56	Which of the following h	nas zero valency					
	[1] Sodium	[2] Beryllium	[3] Aluminium	[4] Krypton			
Q.57	Precentage of Ar in air	is about					
	[1] 1%	[2] 2%	[3] 3%	[4] 4%			
Q.58	In which of the following oxidation	g pairs does the first gas ble	eaches flowers by reduction	on while the second gas does so by			
	[1] CO and Cl ₂	[2] SO $_2$ and Cl $_2$	[3] H ₂ and Br ₂	[4] NH_3 and SO_2			
Q.59	Which element from V	group, gives most basic cor	mpound with hydrogen	N *			
	[1] Nitrogen	[2] Bismuth	[3] Arsenic	[4] Phosphorus			
Q.60		o form KHF ₂ . The compour					
	[1] K ⁺ , F [–] and H ⁺	[2] K ⁺ , F [–] and HF	[3] K ⁺ and [HF ₂] ^{2_}	[4] [KHF] ⁺ and F^-			
Q.61			$(Cl_3, X_2O_5 and Ca_3X_2, b)$	ut does not form XCI ₅ , which of the			
	following is the elemen						
	[1] B	[2] Al	[3] N	[4] P			
Q.62	Which of the following			oup VII–A of the periodic table ?			
	[1] Electronegativity	[2] Volatile nature	[3] Ionic radius	[4] Oxising power			
Q.63			the hydrides MH ₃ gradua	ally becomes closer to 90° on going			
	from N to Sb. This show that gradually						
	[1] The basic strength o						
		als are used for M – H bond	ing				
	[3] The bond energies of						
0.04		ectrons become nearer to t					
Q.64	J. J	ng first prepared a stable co					
0.05	[1] Rutherford	[2] Rayleigh	[3] Ramsay	[4] Neil bartlett			
Q.65		ollowing non-metals liquid					
0.00	[1] Bromine	[2] Carbon	[3] Phosphorus	[4] Sulphur			
Q.66	-	naximum deviation from ide		[4] NI			
0.67	[1] CO ₂	[2] O ₂	[3] He	[4] N ₂			
Q.67	White enamel of our te		[4] 0-0	[4] O-D-			
0.00	[1] $Ca_3(PO_4)_2$	[2] CaF ₂	[4] CaCl ₂	[4] CaBr ₂			
Q.68		ind the ash on moistening s	e e				
0.00	[1] Na	[2] Fe	[3] Mg	[4] Al			
Q.69	Which of the following						
0 ==	[1] H ₅ P ₃ O ₁₀	[2] H ₆ P ₄ O ₁₃	[3] H ₅ P ₅ O ₁₅	[4] H ₇ P ₅ O ₁₆			
Q.70	Sulphuric acid reacts w	•					
	[1] Thionyl chloride	[2] Sulphur monochlori	de [3] Sulphuryl chloride	[4] Sulphur tetrachloride			

Q.71	Which of the following	ng is called sulphuric an hyd	Iride				
	[1] H ₂ S ₂ O ₇	[2] H ₂ S ₂ O ₃	[3] SO ₂	[4] SO ₃			
Q.72	HCI is added to the f	ollowing oxides which one v	vould give H ₂ O ₂				
	[1] MnO ₂	[2] PbO ₂	[3] BaO ₂	[4] None of these			
Q.73	The most efficient ag	gent for the absorption of SC	D ₃ is				
	[1] 98% H ₂ SO ₄	[2] 80% H ₂ SO ₄	[3] 20% oleum	[4] 90% H ₂ SO ₄			
Q.74	Which one of the fol	lowing can be used as an ai	naesthetic				
	[1] N ₂ O	[2] NO	[3] NCI ₃	[4] NO ₂			
Q.75	The compound whic	h does not possess a pero	kide linkage is :				
	[1] Na ₂ O ₂	[2] CrO ₅	[3] H ₂ SO ₅	[4] PbO ₂			
Q.76	The type of glass us	sed in making lenses and pr	risms is :				
	[1] A flint glass	[2] Jena glass	[3] Pyrex glass	[4] Quartz glass			
Q.77	Plumbosolvancy imp	plies dissolution of lead in :		0			
	[1] Bases	[2] Acids	[3] Ordinary water	[4] CuSO ₄ sol			
Q.78	sodium thisoulphate	is used in photography :	(
	[1] To convert metall	ic silver into silver salt	[2] AgBr grain is redu	ced to non-metallic silver			
	[3] To remove reduce	ed silver	[4] To remove undeco	[4] To remove undecomposed AgBr in the from of			
Q.79	In laboratory silicon	can be prepared by the read					
	[1] By heating carbo	n in electric furnace	[2] By heating potass	ium with potassium dichromate			
	[3] silica with magne		[4] None of these				
Q.80	Silicon chloroform is	prepared by :	-0				
	[1] Si + HCI	[2] SiCl ₄ + H ₂ O	[3] SiF ₄ + NaF	[4] H ₂ SiF ₆ + Cl ₂			
Q.81	Glass reacts with HI						
	[1] SiF ₄	[2] H ₂ SiF ₆	[3] H ₂ SiO ₃	[4] Na ₃ AlF ₆			
Q.82	Quartz is a crystallir						
	[1] Silicon	[2] Silica	[3] Sodium silicate	[4] Silicon carbide			
Q.83	In the reaction B_2O_2	$_3 + C + Cl_2 \rightarrow A + CO.$ The	A is :				
	[1] BCl ₃	[2] BCl ₂	[3] B ₂ Cl ₂	[4] CCl ₄			
Q.84	In which of the follow	ving the inert pair effect is m					
	[1] C	[2] Si	[3] Ge	[4] Pb			
Q.85	Soft heavy metal me	elts at 30°C and is used in m	naking heat sensitvie therr	nometers the metal is :			
	[1] Galium	[2] Sodium	[3] Potassium	[4] Caesium			
Q.86	Lead pipes are not s	uitable for drinking water be	ecause :				
	[1] A layer of lead did	oxide is depositied over pipe	es				
	[2] Lead reacts with	air to form litharge					
	[3] Lead reacts with	water containing air to from	Pb(OH) ₂				
	[4] Lead forms basic	-	· L				
Q.87	A substance X is a c	ompound of an element of g	group IA the substance X g	ives a violet colour in flame test, X is			
	[1] LiCl	[2] NaCl	[3] KCI	[4] None			

				1
Q.88	Which shows polymorp	hism		
	[1] O	[2] S	[3] Se	[4] All
Q.89	Boron form covalent co	mpound due to		
	[1] Higher ionization en	ergy	[2] Lower ionization	energy
	[3] Small size		[4] Both (a) and (c)	
Q.90	Aqua regia is a mixture	of		
	[1] 3HCl + 1HNO ₃	[2] H ₃ PO ₄ + H ₂ SO ₄	[3] 3HNO ₃ + HCI	[4] HCI + CH ₃ COOH
Q.91	Which metal burn in air	at high temperature with t	he evolution of much he	at
	[1] Cu	[2] Hg	[3] Pb	[4] AI
Q.92	Tincal is			
	[1] Na ₂ CO ₃ . 10H ₂ O	[2] NaNO ₃	[3] NaCl	[4] Na ₂ B ₄ O ₇ . 10H ₂ O
				~0`
				O .
				\mathbf{S}
				*
			O'	
			20	
		C	0	
)	
		~~~		
	2			

## Answer Key - 2

			~	7					A	ns	Wē	<b>)</b> r	Ke	<b>)y</b>	-	2									
а.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
Ans.	3	4	4	3	4	4	3	2	2	3	2	1	2	3	3	2	1	4	4	2	2	2	4	2	1
Q.Б.	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50
Ans.	1	3	1	1	3	1	2	1	2	3	2	3	4	1	3	1	2	2	2	1	3	1	4	2	2
Qus.	51	3	53	54	53	56	57	58	59	60	61	62	ន	64	65	66	67	68	69	70	71	72	73	74	75
Ans.	3	3	2	1	3	4	1	2	1	3	3	3	4	4	1	1	2	3	3	3	4	3	1	1	4
Q.Б.	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91	92								
Ans.	1	3	1	3	1	1	2	1	4	1	3	3	4	4	1	4	4								

Ľ		
Lxercise	#	3

		-			
Q.1	A compound of nitrogen	which is explosive, is			(AIIMS 1996)
	[1] NCI ₃	[2] N ₂ O ₅	[3] NH ₃	[4] NF ₃	
Q.2	Which of the following is	not suitable for use in a c	lesicator to dry substanc	es	(AIIMS 1996)
	[1] Conc. H ₂ SO ₄	[2] Na ₂ SO ₄	[3] CaCl ₂	[4] P ₄ O ₁₀	
Q.3	Metal halide which is ins	oluble in water is			(AIIMS 1996)
	[1] Agl	[2] KBr	[3] CaCl ₂	[4] AgF	
Q.4	Which gas is obtained w	hen urea is heated with H	NO ₂		(CPMT 1996)
	[1] N ₂	[2] H ₂	[3] O ₂	[4] NH ₃	
Q.5	Atomic number of N is 7.	The atomic number of III	d member of nitrogen fai	mily is	(CPMT 1996)
	[1] 23	[2] 15	[3] 33	[4] 43	
Q.6	Which of the following ha	ave least covalent P – H b	ond		(CPMT 1996)
	[1] PH ₃	[2] P ₂ H ₆	[3] P ₂ H ₅	[4] PH ₆ +	
Q.7	Which of the following co	ondition is used to find ato	mic Cl ₂ from molecular C		(CPMT 1996)
	[1] High temperature, hig	gh pressure	[2] Low temperature, h	iigh pressure	
	[3] High temperature, lov	v pressure	[4] Low temperature, le	ow pressure	
Q.8		$P_2$ and NO $_2^+$ unpaired elec			(IIT 1997)
	[1] $NO_2^+$ and $BaO_2$	[2] $KO_2$ and $BaO_2$	[3] KO ₂ only	[4] BaO ₂ only	
Q.9	Bleaching powder is cor				(RPMT 1997)
Q.10	$[1] CaOCl_2$	[2] CaO	[3] CaO (Cl)	[4] CaCl(OCl)	(CPMT 1997)
Q.10	$KO_2 + CO_2 \to ? \text{ (gas)}$	[2] N	[3] O ₂	[4] CO	(CPMI 1997)
Q.11	[1] H ₂ When HNO is drapped	[2] N ₂			o proconco of
Q.11	when hivo ₃ is dropped	into the palm and washed	i with water, it turns into y		(CPMT 1997)
	[1] NO ₂	[2] N ₂ O	[3] NO	[4] N ₂ O ₅	(01 11 1337)
Q.12	When iodine reacts with		[5] 10	[4] 1205	(CPMT 1997)
Q. 12	[1] It gives mixture of $F_2$		[2] It gives chlorine		(01 11 1337)
	[3] It gives bromine	$10^{\circ}$	[4] None of these		
Q.13		ment when following com		Br H So H To H	
Q.10	[1] HF (strong acid	ment when to lowing com	[2] $H_2$ Te (strong alkalir		
	[3] HBr (strong acid)		[4] $H_3P$ (strong alkalin		
Q.14		as the highest dipole mom	- 0	0)	(CBSE 1997)
Q. 1 T	[1] NH ₃	[2] PH ₃	[3] SbH ₃	[4] AsH ₃	
Q.15	U U	th cold and dilute solution	0	0	dare
Q.10	when diadante reduce wi				(CBSE 1997)
	[1] CI ⁻ + CIO ⁻	[2] CI= + CIO_=	[3] CI ⁻ + CIO ₃ ⁻	[4] C = + C = -	
Q.16		of the following fertilizers v	•	•	(CBSE 1998)
4.10	[1] Urea	[2] Potassium nitrate	[3] Ammonium sulpha		. ,
Q.17		f brown bromine vapour.	The intensity of brown	colour of vapour v	
	appreciably on adding to			F 41 A	(CBSE 1998)
• • •	[1] Pieces of marble	[2] Carbon disulphide	[3] Carbon tetrachlorid	e [4] Animal char	-
Q.18	Nitrogen can be obtained				(CBSE 1998)
	[1] Oxygen	[2] Hydrogen	[3] Carbon dioxide	[4] Both (a) and	(C)

P-BLOCK ELEMENTS

Q.19	White phosphorus (P ₄ )	has		(IIT 1998)
	[1] Six P – P single bor	nds	[2] Four P – P single b	onds
	[3] Four lone pairs of ele	ectrons	[4] PPP angle of 60°	
Q.20	Sodium nitrate (NaNO ₃	) decomposes above ~ 800	°C to give	(IIT 1998)
	[1] N ₂	[2] NaO ₂	[3] NO ₂	[4] Na ₂ O
Q.21	Which of the following i	s the most stable		(Roorkee Qualifying 1998)
	[1] Pb ²⁺	[2] Ge ²⁺	[3] Si ²⁺	[4] Sn ²⁺
Q.22	Which of the following for	orm dimeric halides		(Roorkee Qualifying 1998)
	[1] AI	[2] Mg	[3] In	[4] Ga
Q.23	One mole of calcium ph	osphide on reaction with e	xcess water gives	(IIT 1999)
	[1] One mole of phosph	ine	[2] Two moles of phosp	ohoric acid
	[3] Two moles of phospl	nine	[4] One mole of phosph	norus pentoxide
Q.24	On heating ammonium	dichromate, the gas evolve	ed is	(IIT 1999)
	[1] Oxygen	[2] Ammonia	[3] Nitrous oxide	[4] Nitrogen
ຊ.25	In compounds of type E	ECI ₃ , where E =B, P, As or E	Bi, the angles CI–E–CI fo	r different E are in the order
				(IIT 1999)
	[1] B > P = As > Bi	[2] B > P > As > Bi	[3] B < P = As = Bi	[4] B < P < As < Bi
ຊ.26	Ammonia on reaction w	ith hypochlorite anion, can	form	(IIT 1999)
	[1] NO	[2] NH ₄ CI	[3] NH ₃	[4] HNO ₂
ຊ.27	Which of the following of	oxides is the most acidic		(CBSE 1999)
	[1] N ₂ O ₅	[2] P ₂ O ₅	[3] As ₂ O ₅	[4] Sb ₂ O ₅
ຊ.28	Which of the following is	s used in the preparation of	chlorine	(CBSE 1999)
	[1] Only MnO ₂		[2] Only KMnO ₄	
	[3] Both MnO ₂ and KMı		[4] Either MnO ₂ or KM	nO ₄
Q.29	Among Cl [–] , Br [–] , I [–] , the	correct order for being oxic	lise to dihalogen is	(CBSE 1999)
	[1] I ⁻ > CI ⁻ > Br ⁻	[2] Cl [–] > Br [–] > I [–]	[3] I ⁻ > Br ⁻ > CI ⁻	$[4] Br^- > I^- > CI^-$
Q.30	On heating KCIO ₃ , we g			(CBSE 1999)
	[1] Cl ₂ O	[2] CIO ₂	[3] CIO ₃	[4] Cl ₂ O ₇
ຊ.31	Which of the following s	substances is used in the la	boratory for fast drying o	f neutral gases
		*		(AIIMS 1998, AFMC 1999)
	[1] Sodium phosphate		[2] Phosphorus pentox	ide
	[3] Sodium sulphate		[4] Anhydrous calcium	chloride
ຊ.32	Sulphur on boiling with l	•		(Roorkee 1999)
	[1] Na ₂ S ₂ O ₃ + NaHSO ₃	3	$[2] Na_2S_2O_3 + Na_2S_2O_3O_3 + Na_2S_2O_3O_3O_3O_3O_3O_3O_3O_3O_3O_3O_3O_3O_3O$	
	[3] Na ₂ SO ₃ + H ₂ S		$[4] \operatorname{Na_2SO_3} + \operatorname{SO_2}$	
Q.33	Formation of in-number	able compounds of carbon	is due to its	(RPMT 1999)
	[1] High reactivity		[2] Catenation tendend	SA
	[3] Covalent and ionic te	endency	[4] Different valency	
ຊ.34	Sparingly soluble salt is	3		(RPMT 1999)
	[1] KCI	[2] NaCl	[3] NH ₄ Cl	[4] BaSO ₄
Q.35	The type of hybridisatio	n of boron in diborane is		(CPMT 1999)
	[1] sp-hybridisation	[2] sp ² - hybridisation	[3] sp ³ - hybridistaion	[4] sp ³ d ² – hybridisation

P-BLOCK ELEMENTS

				P-E	LOCK ELEMENIS
Q.36	Which of the following	is nitrogenous fertilizers			(CPMT 1999)
	[1] Bone meal	[2] Thomas meal	[3] Nitro phosphate	[4] Ammoniun	n sulphate
Q.37	Which of the following	inert gas has the highes	t ionisation energy		(CPMT 1999)
	[1] He	[2] Ne	[3] Ar	[4] Kr	
2.38	Which of the following	is not a chalcogen			(CPMT 1999)
	[1] O	[2] S	[3] Se	[4] Na	
2.39	Which oxide of nitroge	en is obtained on heating	ammonium nitrate at 250	С	(AIIMS 1999)
	[1] Nitric oxide	[2] Nitrous oxide	[3] Nitrogen dioxide	[4] Dinitrogen	oxide
Q.40	Which of the following	glass is used in making	wind screen of automobile	es	(AIIMS 1999)
	[1] Crook's	[2] Jena	[3] Safety	[4] Pyrex	
2.41	At room temperature	$H_2O$ is a liquid while $H_2S$	is a gas. The reason is		(RPET 1999)
	[1] Electronegativity o	f O is greater than S			
	[2] Difference in the bo	ond angles of both the mo	blecules		
	[3] Association takes	place in H ₂ O due to H-bo	nding while no H-bonding	in H ₂ S	
	[4] O and S belong to				
2.42	A compound when hea	ated with H ₂ SO ₄ and MnC	0 ₂ gives brown vapours. Th	ne brown vapour is	due to the following
	gas			$\mathbf{O}$	(RPET 1999)
	[1] Br ₂	[2] NO ₂	[3] NO	[4] NH ₃	
.43	Fenton reagent is			(MP PET 20	000; RPET 2000)
	[1] FeSO ₄ + H ₂ O ₂	[2] Zn + HCI	[3] Sn + HCl	[4] None of the	above
.44	Which of the following	gases are called rare ga			(CPMT 2000)
	[1] Neon	[2] Argon	[3] Krypton	[4] All of these	e
.45	Which is formed wher	fluorine react with hot ar	nd concentrated sodium h	ydroxide	(CPMT 2000)
	[1] O ₂	[2] O ₃	[3] NaO	[4] HF	
.46	. ,	ne and sulphur dioxide bo			(AIIMS 2000)
	Reason (R) : The blea	ching action of chlorine ar	nd sulphur dioxide is perfo	rmed through the pi	ocess of oxidation.
		rue and R is a correct ex			
		ure and R is not a correc	t explanation of A		
	[3] A is true but R is fa				
	[4] Both A and R are f				
.47		is the correct statement	for red lead		(AIIMS 2000)
	[1] It is an active form		[2] Its molecular for		
	[3] It decomposes into	-	[4] It decomposes in	-	
.48		halogen does not exhibi	t positive oxidation state i	n its compounds	(AIIMS 2000)
	[1] CI	[2] Br	[3] I	[4] F	
.49		cids of chlorine follows th	e order		(AIIMS 2000)
	[1] HCIO < HCIO ₂ < H	•	$[2] HCIO_4 < HCIO_3$	-	
	[3] HCIO ₄ < HCIO ₃ < I	HCIO < HCIO ₂	[4] None of the abov	e	
0.50	Amongst H ₂ O, H ₂ S, H	$H_2$ Se and $H_2$ Te the one w	ith the highest boiling poi	nt is (IIT S	Screening 2000)
	[1] H ₂ O because of hy	drogen bonding	[2] H ₂ Te because o		
	[3] H ₂ S because of hy	drogen bonding	[4] H ₂ Se because o	f lower molecular w	veight
1.51	The number of P–O–F	P bonds in cyclic metapho	osphoric acid is	(IIT S	Screening 2000)
	[1] Zero	[2] Two	[3] Three	[4] Four	
0.52	Sodium oxalate on he	ating with conc. H ₂ SO ₄ g			(Roorkee 2000)
	[1] CO only	[2] CO ₂ only	[3] CO and CO ₂	[4] SO ₂ and S	60 ₃

					P-BLOCK ELEMENTS
Q.53	Which of the following pro	oducts is formed on boiling	g tin with an alkali solutio	n	(Roorkee 2000)
	[1] Sn(OH) ₂	[2] Sn(OH) ₄	[3] SnO ₃ ^{2–}	[4] SnO ₂	
Q.54	Which of the following ha	s the lowest solubility	0	-	(Roorkee 2000)
	[1] CaF ₂	[2] CaCl ₂	[3] CaBr ₂	[4] Cal ₂	
Q.55	The mixture of conc. HCl	and potassium chlorate or	n heating gives	-	(Roorkee 2000)
	[1] Cl ₂ only	[2] CIO ₂ only	[3] Cl ₂ + ClO ₂	[4] Cl ₂ +	$CIO_2 + CIO_3$
Q.56	Which of the following has	s the highest bond angle		_	(Roorkee 2000)
	[1] H ₂ O	[2] H ₂ S	[3] NH ₃	[4] PH ₃	
Q.57	Which of the following are	formed by Xenon	C C	C C	(Roorkee 2000)
	[1] XeF ₃	[2] XeF4	[3] XeF ₅	[4] XeF ₆	
Q.58	The weakest acid HX (X	= F, Cl, Br, I ) is	,	Ū	(BHU 2000)
	[1] HF	[2] HCI	[3] HBr	[4] HI	
Q.59	Which one of the following	g on heating with nitrogen	gives a nitride		(BHU 2000)
	[1] Na	[2] K	[3] Li	[4] Rb	
Q.60	Which is true with regard	to the properties of PH ₃		6	(BHU 2000)
	[1] PH ₃ is not much stabl	0	[2] PH ₃ is neutral towa	rds litmus	
	[3] PH ₃ has fishy smell		[4] PH ₃ is insoluble in v		
Q.61	Assertion (A) : Covalence	y of oxygen is three.		9	(AIIMS 2001)
		anion of oxygen (O ²⁻ ) is c	juite common. But dineg	ative anior	. ,
	common	, , , , , , , , , , , , , , , , , , , ,			
	[1] Both A and R are true	and R is a correct explanation	ation of A		
	[2] Both A and R are true	and R is a correct explanation	ation of A		
	[3] A is true but R is false	9	70		
	[4] A is false but R is true	,			
Q.62	Which of the following is p	prepared by electrolytic me	ethod		(CBSE 2001)
	[1] Ca	[2] Sn	[3] S	[4] F ₂	
Q.63	In the preparation of sulp	huric acid, $V_2O_5$ is used in	the reaction, which is	_	SE 2001, AFMC 2001)
	$[1] S + O_2 \rightarrow SO_2$		$[2] 2SO_2 + O_2 \rightarrow 2SO_2$	3	-
	$[3] \operatorname{SO}_2 + \operatorname{H}_2 \operatorname{O} \to \operatorname{H}_2 \operatorname{SO}_4$		$[4] N_2 + 3H_2 \rightarrow 2NH_3$	0	
Q.64	Bronze is an alloy of		2 2 0		(AMU 2001)
	[1] Copper and zinc	[2] Copper, zinc and tin	[3] Copper and tin	[4] Coppe	er, zinc and nickel
Q.65	Which noble gas is most				(CPMT 2002)
	[1] He	[2] Ar	[3] Ne	[4] Xe	
Q.66	Nesselr's reagent is				(CPMT 2002)
	[1] Potassium in mercurio	ciodide	[2] TiCl₄		
	[3] Anhydrous AlCl ₃		[4] $Al_2O_3 / Cr_2O_3$		
Q.67	The element having atom	ic number 56 belonas to	[1] 12 37 5 2 3		(AFMC 2002)
4.01	[1] Actinides		[2] Alkaline earth meta	ls	(/
	[3] Transition series		[4] Lanthanides		
Q.68	Which of the following rea	action as not feasible	[.]		(CBSE 2002)
4.00	[1] 2KI + Br ₂ $\rightarrow$ 2KBr + I ₂		[2] $2H_2O + 2F_2 \rightarrow 2HF$	+ 0.	(000020002)
	$[3] 2KBr + I_2 \rightarrow 2KI + Br_2$		$[4] 2KBr + Cl_2 \rightarrow 2KC$	-	
Q.69		2 number of lone pairs on Xe	-		
4.00	[1] 2, 3, 1	[2] 1, 2, 3	[3] 4, 1, 2	[4] 3, 2, 2	1
	[1] 2, 3, 1	[2] 1, 2, 0	[0] 7, 1, 2	נדן 5, 2,	

				I D	DOCK BEEMENID
Q.70	In case of nitrogen, NC possible, It is due to	$Cl_3$ is possible but no	t NCI ₅ while in case of ph	osphorous, PCl ₃ as	s well as PCI ₅ are (AIEEE 2002)
	[1] Availability of vacant	d-orbital in P but not	in N		
	[2] Lower electronegativ	vity of P than N			
	[3] Lower tendency of H	bond formation in P t	han N		
	[4] Occurrence of P in s	olid while N in gaseou	us state at room temperatu	ire	
2.71	The correct order of sol	ubility in water for He,	Ne, Ar, Kr, Xe is		(AIIMS 2002)
	[1] He > Ne > Ar > Kr >	Xe	[2] Ne > Ar > Kr >	He > Xe	
	[3] Xe > Kr > Ar > Ne >	He	[4] Ar > Ne > He >	Kr > Xe	
2.72	Assertion (A) : The fluor	ine has lower reactivit	ty.		(AIIMS 2002)
	Reason (R) : F–F bond	has low bond dissocia	ation energy		
	[1] Both A and R are tru	e and R is a correct e	explanation of A		$\sim$
	[2] Both A and R are tru	e but R is not a corre	ct explanation of A		
	[3] A is true but R is fals	se			>
	[4] A is false but R is tru	le		C Y	
<b>२.</b> 73	Hydrated AICl ₃ is used	as			(RPET 2003)
	[1] Catalyst in cracking	of petroleum	[2] Catalyst in Fried	del Craft reaction	
	[3] Mordant		[4] All of these	$\langle \Theta \rangle$	
2.74	Which has highest cond	entration of N			(RPET 2003)
	[1] Urea		[2] Calcium ammo	nium nitrate	
	[3] Ammonium sulphate	•	[4] Nitrolin		
Q.75	The reagent commonly	used to determine ha	rdness of water titrimetrica	Illy is	(AIIMS 2003)
	[1] Oxalic acid		[2] Disodium salt o	f EDTA	
	[3] Sodium citrate	A	[4] Sodium thiosulp	ohate	
Q.76	The mixture of concentr	ated HCI and HNO $_3$ r	nade in 3 : 1 ratio contains		(AIIMS 2003)
	[1] CIO ₂	[2] NOCI	[3] NCI ₃	[4] N ₂ O ₄	
Q.77	Which of the following s	tatement is not true			(CBSE 2003)
	[1] HF is a stronger acid	than HCI			
	[2] Among halide ions, i	odide is the most pow	erful reducing agent		
	[3] Fluorine is the only h	alogen that does not	show a variable oxidation	sate	
	[4] HOCl is a stronger a	cid than HOBr			
Q.78	What would happen wh	en a solution of potas	sium chromate is treated	with an excess of dil	ute nitric acid
					(AIEEE 2003)
	[1] $Cr^{3+}$ and $Cr_2O_7^{2-}$ are	formed	[2] Cr ₂ O ₇ ^{2–} and H ₂	O are formed	
	[3] $CrO_4^{2-}$ is reduced to	+3 state of Cr	[4] CrO ₄ ^{2–} is oxidiz	zed to +7 state of Ci	-
Q.79	What may be expected	to happen when phos	sphine gas is mixed with ch	nlorine gas	(AIEEE 2003)
	[1] The mixture only coo	ols down			
	[2] PCI ₃ and HCI are for	med and the mixture	warms up		
	[3] PCI ₅ and HCI are for	med and the mixture	cools down		
	[4] PH ₃ . Cl ₂ is formed w	ith warming up			
Q.80	Glass is a			(AIEEE 2	003, RPET 2003)
	[1] Microcrystalline solid	k	[2] Supper cooled I	iquid	
	[3] Gel		[4] Polymeric mixtu	ure	
<b>Q.81</b>	Which show maximum	valency			(CPMT 2003)

Q.82	Which is a noble gas				(CPMT 2003)
	[1] Hydrogen	[2] Neon	[3] Halogen	[4] Oxygen	
Q.83	A metal sulphides form with H ₂ S. Metal is	s white precipitate with N	$\rm NH_4OH$ . In excess of $\rm NH_4$	OH dissolves, aga	in forms white ppt. (CPMT 2003)
	[1] Ba	[2] AI	[3] Sr	[4] Zn	
ຊ.84	On boiling, phosphorus	s with KOH solution produ	uct formed is		(CPMT 2003)
	[1] Potassium phospha	te	[2] Phosphorus pent	oxide	
	[3] Phosphorus hydroxi	de	[4] Phosphine		
.85	On reaction with Mg, ve	ery dilute Nitric acid prod	uces		
	[1] NH ₃	[2] Nitrous oxide	[3] Nitric oxide	[4] Hydrogen	
.86	On hydrolysis PCI ₃ give	es			(CPMT 2003)
	[1] H ₃ PO ₄	[2] POCI ₃	[3] H ₃ PO ₃	[4] PH ₃	$\frown$
.87	Sodium pyrophosphate	eis			(CPMT 2003)
	[1] Na ₂ P ₂ O ₇	[2] Na ₄ P ₂ O ₇	[3] NaPO ₄	[4] Na ₂ PO ₂	
.88	Which is insoluble in w	ater		$\mathbf{C}$	(CPMT 2003)
	[1] H ₂ S	[2] HgCl ₂	[3] Ca(NO ₃ ) ₂	[4] CaF ₂	
.89	The smog is essentially	y caused by the presence	e of	$\mathbf{O}$	(AIEEE 2004)
	[1] $O_3$ and $N_2$		[2] $O_2$ and $N_2$		
	[3] Oxides of sulphur ar	nd nitrogen	[4] $O_2$ and $O_3$		
.90	Excess of KI reacts wit incorrect for this reaction		en $Na_2S_2O_3$ solution is a	dded to it. Which c	of the statements is (AIEEE 2004)
	[1] Evolved I ₂ is reduce	d	[2] Cul ₂ is formed		
	[3] Na ₂ S ₂ O ₃ is oxidise	d	[4] Cu ₂ l ₂ is formed		
.91	Aluminium chloride ex benzene. When dissolv		olid sate as well as in so		r solvents such as (AIEEE 2004)
	[1] Al ₂ O ₃ + 6HCl		[2] [Al(H ₂ O) ₆ ] ³⁺ + 30		
	[3] [AI(OH) ₆ ] ^{3–} + 3HCI		[4] Al ³⁺ + 3Cl ⁻		
.92		ving statements regarding	g helium is incorrect ?		(AIEEE 2004)
	[1] It is used in gas-coc	led nuclear reactors			
			ut experiments at low ten	nperature	
		and sustain powerful su			
	[4] It is used to fill gas b	alloons instead of hydro	gen because it is lighter a	and noninflammab	le
.93	In diborane, the two H–B-	-H angles are nearly			(AIIMS 2005)
	[1] 60°, 120°	[2] 95º, 120º	[3] 95º, 150º	[4]	120º, 180º
	Heating an aqueous solu	tion of aluminium chloride	e to dryness will give		(AIEEE 2005)
	[1] AICI,	[2] Al ₂ Cl ₆	[3] Al ₂ O ₃	[4]	
	5	2 0	$[0] / [0]_{2}$	[],	2
	The structure of diborane	2 0			(AIEEE 2005)
	(1) Four 2c-2e bonds and	l two 3c-2e bonds	[2] Two 2c-2e bo	nds and four 3c-2e	bonds
	[3] Two 2c-2e bonds and	two 3c-3e bonds	[4] Four 2c-2e bo	onds and four 3c-2	e bonds
.96	Which of the following is	the electron deficient mo	lecule	(0	BSE PMT 2005)
	[1] B ₂ H ₆	$[2]C_{2}H_{6}$	[3] PH ₃	[4]	SiH₄
	2 0	2 0	5		7
	In Hall's process, the ma	-			(AFMC 2005)
	[1] NaF	$[2] Na_3AIF_6$	[3] AIF ₃	[4]	None of these

			P-BLOCK ELEMENTS
Q.98 Acedic strength of Boron	trihalide are in order of -		(Kerala CET 2005)
[1] BF ₃ < BCl ₃ < BBr ₃ < B	$I_{3}$ [2] $BI_{3} < BBr_{3} < BCl_{3} < BF_{3}$	$[3] BBr_{_{3}} < BCl_{_{3}} < BF_{_{3}} < BI_{_{3}}$	$[4]BF_{3} < BI_{3} < BCI_{3} < BBr_{3}$
Q.99 Which of the following giv	es propyne on hydrolysis		(AIIMS 2005)
[1] Al ₄ C ₃	[2] Mg ₂ C ₃	[3] B ₄ C	$[4] La_4C_3$
Q.100 Which is used to produce	e smoke screens		(AFMC 2005)
[1] Calcium phosphide	[2] Zinc sulphide	[3] Sodium carbonate	[4] Zinc phosphide
Q.101 Name of the structure of s	silicates in which three oxygen	atoms of $[SiO_4]^{4-}$ are shared is	- (IIT 2005)
[1] Pyrosilicate		[2] Sheet silicate	
[3] Linear chain silicate		[4] Three dimensional silicate	
Q.102 In silicon dioxide			(AIEEE 2005)
[1] Each silicon atom is su	urrounded by four oxygen atom	s and each oxygen atom is bon	ded to two silicon atoms
[2] Each silicon atom is su	irrounded by two oxygen atoms	and each oxygen atom is bour	ided to two silicon atoms
[3] Silicon atom is bonded	d to two oxygen atoms	, U	
[4] There are double bond	is between silicon and oxygen a	atoms	
Q.103 Which gas is liberated wh	hen $AI_4C_3$ is hydrolysed		(AFMC 2005)
[1] CH ₄	$[2]C_{2}H_{2}$	[3] C ₂ H ₆	[4] CO ₂
Q.104 Which of the following att	acks glass	(NCER	T 1976 ; AFMC 2005)
[1] HCI	[2] HF	[3] HI	[4] HBr
<b>Q.105</b> When heated $NH_3$ is pass	ed over CuO gas evolved is -		(BCECE 2005)
[1] N ₂	[2] N ₂ O	[3] HNO ₃	[4] NO ₂
Q.106 Which of the following is I	kept in water ?		(BCECE 2005)
[1] White phosphorous	[2] Sodium	[3] Potassium	[4] Calcium
Q.107 Which statement is wrong	g for NO		(DPMT 2005)
[1] It is anhydride of nitrou	us acid	[2] Its dipole moment in 0.22	D
[3] It forms dimer		[4] It is paramagnetic	
<b>Q.108</b> The number of p–O–p bric	lges in the structure of phosphor	ous pentoxide and phosphorous	s trioxide are respectively
			(AIIMS 2005)
[1] 6, 6	[2] 5, 5	[3] 5, 6	[4] 6, 5
Q.109 Aqua-regia is			(Orissa JEE 2005)
[1] 1 : 3 conc. $HNO_{3}$ and	conc. HCl	[2] 1 : 2 conc. $HNO_3$ and con-	c. HCI
[3] 3 : 1 conc. $HNO_3$ and	conc. HCl	[4] 2 : 1 conc. $HNO_3$ and con-	c. HCI
Q.110 The number of hydrogen	atom(s) attached to phosphorus	s atom in hypophosphrous acid	is <b>(AIEEE 2005)</b>
[1] Zero	[2] Two	[3] One	[4] Three
<b>Q.111</b> Which blue liquid is obtain	ned on reacting equimolar amo	unt of two gasses at –30°C	
		(IIT-JEE	E(Screening)2005)
[1] N ₂ O	[2] N ₂ O ₃	[3] N ₂ O ₄	[4] N ₂ O ₅

			P-BLOCK ELEMENTS
Q.112 Which is the most thermoo	dynamically stable allotropic f	orm of phosphorus	(IIT-JEE(Screening)2005)
[1] Red	[2] White	[3] Black	[4] Yellow
Q.113 When plants and animals of in the form of -	lecay, the organic nitrogen is c	onverted into inorganio	c nitrogen.The inorganic nitrogen is <b>(KCET 2005)</b>
[1] Ammonia	[2] Elements of nitrogen	[3] Nitrates	[4] Nitrides
<b>Q.114</b> When $PbO_2$ reacts with co [1] $NO_2$	nc. $HNO_3$ the gas evolved is [2] $O_2$	[3] N ₂	(IIT-JEE (Screening) 2005) [4] N ₂ O
<b>Q.115</b> SO ₂ + H ₂ S $\rightarrow$ product, the	final product is		(Orissa JEE 2005)
[1] H ₂ O + S	$[2]H_2SO_4$	[3] H ₂ SO ₃	$[4] H_2 S_2 O_3$
Q.116 Ozone deplict due to the fo	ormation of following compour	nd in Antarctica	(Kerala CET 2005)
[1] Acrolein	[2] Peroxy acetyl nitrate	[3] SO $_{\rm 2}$ and SO $_{\rm 3}$	[4] Chlorine nitrate
Q.117 The correct order of the the	ermal stability of hydrogen ha	lides (H – X) is	(AIEEE 2005)
[1] HI > HBr > HCl > HF	[2] HF > HCl > HBr > HI	[3] HCl < HF < HBr	<pre>- &lt; HI [4]HI &gt; HCI<hf< hbr<="" pre=""></hf<></pre>
Q.118 Which one of the following	oxides is expected exhibit pa	ramagnetic behaviour	(CBSE PMT 2005)
[1] CO ₂	[2] SO ₂	[3] CIO ₂	[4] SiO ₂
(3) Ozone reacts with $SO_2$ t	f NH ₃ to give N ₂ and HCl trong NaOH solution to give N		(AIEEE 2007)
1	Answer K	<b>ey - 3</b>	
Qus. 1 2 3 4 5 6	7 8 9 10 11 12 1	3   14   15   16   17   1	8 19 20 21 22 23 24 25

0	4	2	2		5	6	7	0		40	44	40	40	44	45	40	47	40	40	20	24	22	22	04	OF
Qus.	1	2	5	4	5	6	1	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
Ans.	1	1	1	1	3	4	3	3	4	3	1	4	3	1	1	3	1	4	1,3,4	1	1	1,3,4	3	4	2
Qus.	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50
Ans.	2	1	3	3	2	4	2	2	4	3	4	1	4	2	3	3	2	1	4	1	4	4	4	1	1
Qus.	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75
Ans.	3	3	3	1	3	3	2	1	3	4	4	4	2	3	4	1	2	3	4	1	3	4	3	1	2
Qus.	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100
Ans.	2	1	2	2	2	1	2	4	4	4	3	2	4	3	2	2	3	2	3	1	1	2	1	2	1
Qus.	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119						
Ans.	4	1	1	2	1	1	1	1	1	2	2	3	1	2	1	4	2	3	1						

_		P-Block													2 He		
H	4										1	B	6 C	7 N	8 0	9 F	10 Ne
11 11	8e 12								13 Al	14 Si	15 P	16 5	17 Cl	18 Ar			
50 15 K	Mg 30 C	21	22 Ti	23 V	N Cr	25 Mn	26 Fe	27 Co	28 Ni	29	30 Zn	31 Ga	32 Ge	JJ AS	34 Se	35 Br	36 Kr
22 20	38	30 Y	40 27	41 ND	42 M0	4) Tc	44 Ru	43 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
30 CS	36 83	\$7	72 Hf	7) Ta	24 W	75 Re	76 OS	77 Ir	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rn
R	Ra	•	104 R	105 Db	106 5g	307 Bh	108 HS	109 Mt	110 Ds	111 Rg	1000	113 Uut	114 Uuq	115 Uup	116 Uuh	117	118 Uuo
		57 La	38 Ce	39 Pr	60 Nd	61 Pm	42 Sm	63 Eu	Gd Gd	65	66	67	68	69	70	71	000
		10 AL	90 Th	91 Pa	92 U	93 Np	94 PU	95	% Cm	Tb 97 Bk	90 90	H0 99	Er 100	Tm 101	Yb 102	Lu 103	
								_		CA.	q	Es	Fm	Md	No	ſ	