T		
Lxercise	#	1

Q.1	AgCl dissolves in NH₄	0H due to the formation o	f:						
	[1] [Ag(NH ₄)CI]	[2] [Ag(NH ₄) ₃]CI	[3] [Ag(NH ₃) ₂]Cl	[4] [Ag(NH ₃) ₂ OH]					
Q.2	Atomic number of the element having ns^1 configuration belong to 3d transition series would be :								
	[1] Only 24	[2] Only 25	[3] Only 29	[4] 24 & 29					
Q.3	In Lanthanide series la	ast electron enter in							
	[1] 5d orbital	[2] 4d orbital	[3] 5f orbital	[4] 4f orbital					
Q.4	Which one is the acid	ic oxide of chromium							
	[1] CrO ₃	[2] Cr ₂ O ₃	[3] CrO	[4] None					
Q.5	-	$i(CN)_4]^{-2}$ and $[Ni(CO)_4]$							
	[1] All have identical g	-							
	[2] All are paramagnet	ĨC.							
	[3] All are dimagnetic.								
		agnetic but [Ni(CN) ₄] ⁻² ar	id [NI(CO) ₄] are paramag	netic					
Q.6	$\mu = \sqrt{15}$ is true for the			S					
		[2] Fe ⁺² , Cr ⁺³		[4] Fe ⁺² , Mn ⁺²					
Q.7	-	n penultimate orbit of coir							
	[1] 8	[2] 18	[3] 2	[4] 32					
Q.8	The element with high	-							
• •	[1] Hg	[2] Cu	[3] Au	[4] Ag					
Q.9	-	ch both the ions have zer							
Q.10	[1] Sc ³⁺ and Zn ²⁺ FeCl ₃ . 4H ₂ O is actual	[2] Cu ⁺ and Y ³⁺	[3] Ag ⁺ and Zn ²⁺	[4] All of the above					
Q.10	[1] [Fe(H ₂ O) ₄]Cl ₃	iy	[2] [Fe(H ₂ O) ₃ Cl]Cl ₂ . H						
	[3] [Fe(H ₂ O) ₄ Cl ₂]Cl		[4] [Fe(H ₂ O) ₃ Cl ₂]Cl . H	-					
Q.11		mole of AgCl, when reac		20					
	[1] PtCl ₂ . 4NH ₃		[2] PtCl ₄ . 5NH ₃						
	[3] PtCl ₄ . 4NH ₃		[4] $PtCl_4$. $3NH_3$						
Q.12		does not shows paramag	0						
	[1] [Cu(NH ₃) ₄]Cl ₂	[2] Fe(CO) ₅	[3] NO	[4] NO ₂					
Q.13		compound is paramagne	tic :						
	[1] Tetracyanonickelat	e (II) ion	[2] Tetraamminezinc (II) ion					
	[3] Hexaamine chromi	um (III) ion	[4] Diammine silver (I) i	on					
Q.14	What is Incorrect for K								
	[1] O.N of Iron is +2	4. ()0.	[2] It exhibit dimagnetion	c character					
	[3] It exhibit paramagr	netic character	[4] It involved d ² sp ³ hyl						
Q.15		in hypo solution is due to							
	$[1] \operatorname{Ag}_2 \operatorname{S}_2 \operatorname{O}_3$		[2] [Ag (S ₂ O ₃)] ⁻						
	$[3] [Ag (S_2O_3)_2]^{-3}$		[4] All						
	[0] [79 (0203)2]		ניזן <i>ר</i> יוו						

T		
Lxercise	#	1

Q.1	AgCl dissolves in NH ₄	0H due to the formation o	f:						
	[1] [Ag(NH ₄)CI]	[2] [Ag(NH ₄) ₃]CI	[3] [Ag(NH ₃) ₂]Cl	[4] [Ag(NH ₃) ₂ OH]					
Q.2	Atomic number of the element having ns^1 configuration belong to 3d transition series would be :								
	[1] Only 24	[2] Only 25	[3] Only 29	[4] 24 & 29					
Q.3	In Lanthanide series la	ast electron enter in							
	[1] 5d orbital	[2] 4d orbital	[3] 5f orbital	[4] 4f orbital					
Q.4	Which one is the acid	ic oxide of chromium							
	[1] CrO ₃	[2] Cr ₂ O ₃	[3] CrO	[4] None					
Q.5	-	$i(CN)_4]^{-2}$ and $[Ni(CO)_4]$							
	[1] All have identical g	-							
	[2] All are paramagnet	ĨC.							
	[3] All are dimagnetic.								
		agnetic but [Ni(CN) ₄] ⁻² ar	id [NI(CO) ₄] are paramag	netic					
Q.6	$\mu = \sqrt{15}$ is true for the			S					
		[2] Fe ⁺² , Cr ⁺³		[4] Fe ⁺² , Mn ⁺²					
Q.7	-	n penultimate orbit of coir							
	[1] 8	[2] 18	[3] 2	[4] 32					
Q.8	The element with high	-							
• •	[1] Hg	[2] Cu	[3] Au	[4] Ag					
Q.9	-	ch both the ions have zer							
Q.10	[1] Sc ³⁺ and Zn ²⁺ FeCl ₃ . 4H ₂ O is actual	[2] Cu ⁺ and Y ³⁺	[3] Ag ⁺ and Zn ²⁺	[4] All of the above					
Q.10	[1] [Fe(H ₂ O) ₄]Cl ₃	iy	[2] [Fe(H ₂ O) ₃ Cl]Cl ₂ . H						
	[3] [Fe(H ₂ O) ₄ Cl ₂]Cl		[4] [Fe(H ₂ O) ₃ Cl ₂]Cl . H	-					
Q.11		mole of AgCl, when reac		20					
	[1] PtCl ₂ . 4NH ₃		[2] PtCl ₄ . 5NH ₃						
	[3] PtCl ₄ . 4NH ₃		[4] $PtCl_4$. $3NH_3$						
Q.12		does not shows paramag	0						
	[1] [Cu(NH ₃) ₄]Cl ₂	[2] Fe(CO) ₅	[3] NO	[4] NO ₂					
Q.13		compound is paramagne	tic :						
	[1] Tetracyanonickelat	e (II) ion	[2] Tetraamminezinc (II) ion					
	[3] Hexaamine chromi	um (III) ion	[4] Diammine silver (I) i	on					
Q.14	What is Incorrect for K								
	[1] O.N of Iron is +2	4. ()0.	[2] It exhibit dimagnetion	c character					
	[3] It exhibit paramagr	netic character	[4] It involved d ² sp ³ hyl						
Q.15		in hypo solution is due to							
	$[1] \operatorname{Ag}_2 \operatorname{S}_2 \operatorname{O}_3$		[2] [Ag (S ₂ O ₃)] ⁻						
	$[3] [Ag (S_2O_3)_2]^{-3}$		[4] All						
	[0] [79 (0203)2]		ניזן <i>ר</i> יוו						

Q.29	The complex [Mn(CN	J) ₆] ^{4−} is :		
	[1] High spin complex	x	[2] Diamagnetic ion	
	[3] Having magnetic	moment 1.73 BM	[4] Outer orbital com	plex
Q.30	Which of the followin	g statement is true		
	[1] FeCO ₃ and Fe ₃ C	are organometallic compo	ound.	
	[2] U, Np and Pu exh	ibits + 6 oxidation states		
	[3] Pb $(C_2H_5)_4$ is π -bo	onded OMC	[4] IP of La > Lu	
Q.31	The chloro-bis (ethyle	enediamine) nitro cobalt ((III) ion is :	
	[1] Co [(NO ₂) ₂ (en) ₂ (Cl ₂]+	[2] [CoCl (NO ₂) ₂ (en)	2] ⁺
	[3] [Co (NO ₂) Cl (en)	,]+	[4] [Co (en) Cl ₂ (NO ₂	-
Q.32		 nts in the ions [Fe(CN) ₆] [_]		
	[1] 5.92 and 5.92	[2] 1.73 and 5.92	[3] 1.73 and 1.73	[4] 2.83 and 4.90
Q.33	Which mixed metal is			
	[1] Bronze	[2] Brass	[3] German silver	[4] Solder
Q.34	••	series from Ti ⁺² to which		
	[1] Fe ⁺²	[2] Mn ⁺²	[3] Cr ⁺²	[4] Ni ⁺²
Q.35		series the melting point o		O
		e strong due to d ¹⁰ config		
		e weak due to d ⁵ configur		
		e weak due to d ⁷ configura		
	[4] d-orbitals have les	-		
Q.36		condition is not essential		
	[1] Variable valency		[2] High ionisation er	nergy
	[3] Empty orbitals.		[4] Free valency on th	
Q.37		o nickel number of metal		
	[1] Decreases contin		[2] Increases continu	iously
	[3] Do not change		[4] Increases alterna	•
Q.38		ons the most stable oxida		•
	[1] Mn ⁺² , Cr ⁺³	[2] Mn ⁺⁶ , Cr ⁺⁶	[3] Mn ⁺² , Cr ⁺²	[4] Mn ⁺⁴ , Cr ⁺⁶
Q.39	K ₃ [Fe(CN) ₆] is :			
	[a] Potassium hexa c		[b] Potassium hexa c	cyno ferrate (III)
	[c] Potassium ferri-cy	anide	[d] Hexa cyno ferrate	e (III) potassium
	Correct answer is :			
	[1] Only [a] and [b]		[2] Only [b] and [c]	
_	[3] Only [a] and [c]		[4] Only [b] and [d]	
Q.40	Which one of these is			
	[1] [Cu(NH ₃) ₄] ⁺	•	[3] [Zn(H ₂ O) ₆] ⁺²	
Q.41	•	mon yellow in colour. It be w when it is alkaline. The	•	like methyl orange when it is acidic and
	[1] Copper nitrate		[2] Ferric chloride	
		ate	[4] Potassium ferri cy	/anide
	[3] Potassium chrom			
Q.42	In the complex ion [F	$e(EDTA)_2]^{-3}$ the coordina	ation number and oxidation	on state of central metal ion is:
Q.42	In the complex ion [F [1] C. N. = 6		ation number and oxidation [2] C. N. = 1	on state of central metal ion is: O. N. = -1

Q.43	The IUPAC name of the	e complex [CrCl ₂ (H ₂ O) ₂	₄]NO ₃ is :	
	[1] Dichlorotetra aqua c	hromium (III) nitrate	[2] Tetra aqua dichloro	chromium (III) nitrate
	[3] Chromium tetra aqu	a dichloro nitrate	[4] Dichlorotetra aqua d	chromium nitrate
Q.44	Which of the following o	complexes exhibits coo	ordination isomerism :	
	[1] [Co(en) ₂ Cl ₂] ⁺	[2] [Cr(NH ₃) ₆]Cl ₃	[3] [Cr(NH ₃) ₆] [Co(CN) ₆] [4] [Pt(NH ₃) ₂ Cl ₂]
Q.45		000	u ⁺ having 3d ¹⁰ configuratio	0 = =
	[1] Is more stable	0 0 /	[2] Is equally stable	
	[3] Is less stable			oon nature of copper salt
Q.46	Lw is the member of :			
	[1] 4f series element	[2] 5d series element	[3] 4d series element	[4] 5f series element
Q.47	V_2O_5 is red or orange in			
Q.+1	[1] Acidic	[2] Basic	[3] Amphoteric	[4] Neutral
0.40	Which element is havin			
Q.48				
0.40	[1] Ti	[2] Cu	[3] Zn	[4] Mn
Q.49		ring is not a condition fo	or complex salt formation :	
	[1] Small size		[2] Higher nuclear char	
	[3] Availability of vacant		[4] Variable oxidation s	states
Q.50	Among Sc(III), Ti(IV), N	i (II) and Cu(II) ions :		
	[1] All paramagnetic		[2] All diamagnetic	
	[3] Sc(III), Ti(IV), param	agnetic and Ni(II), Cu(II) diamagnetic	
	[4] Ni (II), Cu(II) parama	gnetic and Sc(III), Ti(IV) diamagnetic	
Q.51	d- block elements form	colours ions because t	these elements :	
	[1] Cannot absorb the ra	adiation in the visible re	gion	
	[2] Involve d-d transitior	ns which fall in the visibl	e region	
	[3] Allows d-s transition	ı t		
	[4] Absorb other colours	s except those required	for d-d transition	
Q.52	Amongst TiF ₆ ^{2–} ,CoF ₆ ³	$^{3-}$, Cu ₂ Cl ₂ and NiCl ₄ ²⁻		
	The colourless species			
	[1] CoF_6^{3-} and NiCl_4^{2-}	X	[2] Ti F_6^{2-} and Co F_6^{3-}	
	[3] Cu_2Cl_2 and $NiCl_4^2$		[4] TiF $_6^{2-}$ and Cu $_2$ Cl $_2$	
Q.53	Which of the following		0 22	
• • •	[1] Li, Be ²⁺	[2] Na, Mg ²⁺	[3] H, He ⁺	[4] None
Q.54	The correct order of siz			[.]
	[1] I ⁺ >I>I ⁺	$[2] I^- > I^+ > I$	$[3] I^+ > I^- > I$	$[4] I^- > I = I^+$
Q.55			t geometrical isomerism :-	
Q.00	[1] [Pt(NH ₃) ₂ Cl NO ₂]	[2] [Pt(gly) ₂]	[3] [Cu(en) ₂] ⁺²	[4] [Pt(H ₂ O)(NH ₃)BrCl]
0 56				f X is 28. The number of monodente
Q.56	ligands present in com		IS 54 and alomic number o	i x is zo. The number of monodenite
	[1] 3	[2] 4	[3] 6	[4] 2
0 57				ing α -particle (alfa particle) :
Q.57				
	[a] ₅₈ Ce	[b] ₇₀ Lu	[c] ₉₀ Th	[d] ₉₂ U
	Correct answer is :			
	[1] Only a and c	[2] Only band d	[3] All	[4] None

Which of the following s	statement is/are wrong:									
[a] Al ₄ C ₃ is an organom	etallic compound									
[b] Metal carbonyls are organometallic compounds										
[c] TEL is π bonded orga	anometallic compound									
[d] Frankland reagent is	σ - bonded organometall	lic compound								
The answer is:										
[1] c and d	[2] a and c	[3] a and b	[4] All are correct							
Wrong statment for f - b	block elements is :									
[1] Common oxidation	state is + 3									
[2] Actinides are more re	eactive than lanthanides									
[3] In actinides there are	e only three natural eleme	ents								
[4] In lanthanides electr	ons enters in 5 f orbitals									
When diamagnetic com	pounds are placed in ma	gnetic field what happens	s:							
[1] Increase in weight		[2] Decrease in weight								
[3] Weight reduced to ha	alf	[4] There is no change i	n weight							
Which of the catalyst is	used in contact process	:								
[1] V ₂ O ₅	[2] Fe and Mo	[3] Pd	[4] Cu							
In the brass, which elen	nent is mixed with coppe	r:								
[1] Zn	[2] Sb	[3] Bi	[4] Pb							
Density of which of the	following element is high	est:								
[1] Pt	[2] Hg	[3] Mn	[4] Cu							
On oxidation of acidic s	olution of Cr ⁺³ , we get:									
[1] CrO ₂ ⁻	[2] CrO ₄ ⁻	[3] Cr ⁺²	[4] Cr ₂ O ₇ ⁻²							
By which of the followin	ig ion, a transitional meta	I can brought in to its hig	hest oxidation state							
[1] F	[2] CI	[3] Br	[4] I							
[Cu(H ₂ O) ₄] ²⁺ absorbs y	ellow light and the transm	nitted complementary co	lour will be :							
[1] Green	[2] Yellow	[3] Blue	[4] Violet							
For a transition metal io	n having seven electrons	in its d-orbital the effective	ve magnetic moment will be :							
[1] 7.982 B. M.	[2] 4.90 B. M.	[3] 3.87 B. M.	[4] 2.83 B. M.							
Which of two have almo	ost similar size :									
[1] Ti $_{22}$ and Zr_{40}	[2] Nb $_{ m 41}$ and Ta $_{ m 73}$	[3] Y ₃₉ and La ₅₇	[4] Ca_{20} and Ir_{31}							
The series of elements	in which last electron ent	ers in 5f orbitals are calle	ed :							
[1] Actenones	[2] Man made elements	s [3] Actinides	[4] All							
The actinides showing -	+7 oxidation states are:									
[1] Mn and Os	[2] Pu and Am	[3] Np and Pu	[4] U and Np							
AgCI precipitate dissolv	ves in NH ₃ due to the form	nation of :								
[1] [Ag(NH ₄) ₂]OH	[2] [Ag(NH ₄) ₂]CI	[3] [Ag(NH ₃) ₂]Cl	[4] [Ag(NH ₃) ₂]OH							
Which can displace H_2	from its compound :									
[1] Hg	[2] Zn	[3] Cu	[4] None							
The edge wation of budge	and by plating models is	colled								

[3] Be < Mg < Na < Li [4] N < P < O < S

Q.58

Q.59

Q.60

Q.61

Q.62

Q.63

Q.64

Q.65

Q.66

Q.67

Q.68

Q.69

Q.70

Q.71

Q.72

Q.73

[1] C < Si < B < Al

Which of the increasing order of electron affinity is correct:

[2] I < Br < CI < F

Q.74The adsorption of hydrogen by platinum black is called :
[1] Hydrogenation[2] Reduction[3] Occlusion[4] Hydration

				a & I
Q.75	The coordination num	ber and oxidation number	r of the central metal ion i	in the complex [Pt(en) ₂] ⁺² is :
	[1] C. N. = 2,	O. N. = +2	[2] C. N. = 6,	O. N. = +4
	[3] C. N. = 4,	O. N. = +4	[4] C. N. = 4,	O. N. = +2
Q.76	Which one of the follow	ving compounds will exhi	bit linkage isomerism :	
	[1] [Pt (NH ₃) ₂ Cl ₂]	[2] [Co(NH ₃) ₂ NO ₂]Cl ₂	[3] [Co(NH ₃) ₄ Cl ₂]Cl	[4] [Co(en) ₂ Cl ₂]Cl
Q.77	Transuranic elements	are :		
	[1] Elements upto Urar	nium	[2] Heavier than Uraniu	Im
	[3] Having less atomic	weight than Uranium	[4] Having properties s	imilar to Uranium
Q.78	Correct increasing ord	er of IP of F, CI, F^- and B	r⊤is	
	[1] Cl < F < Br ⁻ < F ⁻	[2] Br ⁻ < F ⁻ < Cl < F	[3] F [−] < Br [−] < Cl< F	[4] Br ⁻ < Cl < F ⁻ < F
Q.79	The EAN of cobalt in the	he complex ion [Co(en) ₂ 0	Cl ₂]+ is :	
	[1] 27	[2] 36	[3] 33	[4] 35
Q.80	Mercury is transported	l in the container's madeu	ıp of :	
	[1] AI	[2] Fe	[3] Ag	[4] Pb
Q.81	Pairs of acidic oxides	are :		6
	[1] Cr ₂ O _{3'} MnO ₂	[2] Li ₂ O. Al ₂ O ₃	[3] Al ₂ O ₃ , MnO	[4] CrO ₃ , Mn ₂ O ₇
Q.82	Magnetic moment $\sqrt{3!}$	$\frac{1}{5}$ is true for which of the f	ollowing pair :	5
	[1] Co ⁺² , Fe ⁺²	[2] Fe ⁺³ , Mn ⁺²	[3] Co ⁺³ , Cr ⁺²	[4] Fe ⁺² , Mn ⁺²
Q.83		sets of elements exhibits		
	[a] Sc, Y, La	[b] Ti, V, Cr	[c] Ni, Cu, Zn	[d] K, Ca, Sc
	Correct answer is :	[2] 11, 1, 0	[0] , 0.0, 2	
	[1] Only b	[2] b and c	[3] b and d	[4] All
Q.84		configuration belongs to f		[.],
	[1] ns ² (n-1)d ³ , (n - 2) f		[2] ns ² np ⁶ (n - 1)d ¹ (n	- 2)f ¹⁴
	[3] (n - 2) f^{14} (n - 1) d^0		[4] (n - 2) f ³ (n - 1)d ¹⁰	,
Q.85		an Fe ⁺² , the reason is ar		
		erence is less than 11.0 e		
	[b] Core of Fe ⁺³ is mor			
		rence is less than 11.0 e	/	
	[d] IP of Fe ⁺³ is high	•		
	The correct answer is			
	[1] Only a	[2] Only b	[3] a, b and d	[4] c and d
Q.86	Magnetic moment of C			
	[1] \[3]	[2] \[\sqrt{8}]	[3] √15	[4] \sqrt{35}
0.07			[0] 10	[٦] √35
Q.87	Name of Na ₃ [AIF ₆] is :			
	[a] Cryolite		[b] Tri sodium hexa fluo	
	[c] Sodium hexafluoro		[d] Sodium hexa fluoro	aluminate (III)
	The correct answer is			
	[1] Only a	[2] a and d both	[3] Only d	[4] a and c both
Q.88	-	set of metals can form al	•	
	[1] Pb - Zn	[2] Cu - Au	[3] Li - Na	[4] Fe - Hg

				d & f Bloc
Q.89	Which of the followi	ng pair of elements belong	to second transition ser	ies:
	[1] Fe & Pd	[2] V & Y	[3] Cu & Au	[4] Ag & Zr
Q.90	Among the followin	g outermost configurations	of transition metals, whi	ch shows the highest oxidation
	state:			
	[1] 3d ³ 4s ²	[2] 3d ⁵ 4s ¹	[3] 3d ⁵ 4s ²	[4] 3d ⁶ 4s ²
Q.91	The number of d-el	ectrons in Fe ²⁺ (At. no. of ir	on = 26) is not equal to t	hat of:
	[1] p - electrons in I	Neon (At no = 10)	[2] s - electrons in M	lg (At no. = 12)
	[3] d-electrons in Fe	9	[4] p - electron in Cr	(At no = 17)
Q.92	Which of the follow	ng compounds is expected	d to be coloured:	
	[1] AgCI	[2] CuCl	[3] MgF ₂	[4] CuF ₂
ຊ.93	The highest magne	tic moment is shown by the	e transition metal ion with	h outermost electronic configuration is
	[1] 3d ⁶	[2] 3d ²	[3] 3d ⁷	[4] 3d ⁹
ຊ.94	Nb and Ta have alm	nost equal atomic and ionic	radii because:	
	(I) Of diagonal relati	onship	[2] Of lanthanide con	ntraction
	[3] Of actinide conti	raction	[4] Both belong to sa	ame transition series
Q.95	Transition metals :			$\Delta \cdot$
	[a] Exhibits inert pa	ir effect	[b] Exhibits variable	oxidation state
	[c] Do not show cat	alyticactivity	[d] Are paramagnetic	
	The correct answer	is		>
	[1] a, b, d	[2] a, c	[3] Only b	[4] b, d
2.96	An alloy which doe	s not contain copper is :		
	[1] Bronze	[2] Brass	[3] Magnelium	[4] Bell metal
Q.97	Transition metals for	orm complexes in their zero	o oxidation state. The exa	ample is
	[1] [Mn ₂ (CO] ₁₀]	[2] [Cu(NH ₃) ₄]Cl ₃	[3] Zn ₂ [Fe(CN) ₆]	[4] Ag(NH ₃) ₂]OH
ຊ.98	Which of the followi	ng is ferromagnetic		
	[1] Cu, Ag, Au	[2] Fe, Co, Ni	[3] Zn, Cd, Hg	[4] Ca, Sr, Ba
Q.99	Which of the followi	ng contains the maximum i	number of unpaired elect	rons
	[1] TiCl ₃	[2] MnCl ₂	[3] FeSO ₄	[4] CuSO ₄
ຊ.100	Scandium in +3 oxi	dation state acquires the c	onfiguration of which ine	rt gas?
	[1] Neon	[2] Argon	[3] Krypton	[4] Xenon
		2		
			er Key - 1	

Answer Key - 1

				~																			
			7	7	-			A	ns	5W (er	Ke)	- :	1								
Qus	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
Ans	3	4	4	1	3	1	2	3	4	3	4	2	3	3	3	1	3	1	3	3	3	3	4
Qus	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48
Ans	1	2	4	3	2	3	2	4	2	2	2	1	1	2	2	3	1	2	3	3	4	1	3
Qus	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	72	73
Ans	2	4	3	1	3	2	1	4	2	4	2	1	1	1	4	1	3	3	2	4	3	3	2
Qus	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	9 6	97	98
Ans	2	2	2	2	2	4	2	3	3	4	3	2	2	4	3	4	4	1	2	4	3	1	2

Exercise # 2

Q.1	All transition metals ex	hibit a general electronic	configuration of					
	[1] (n - 1) s ² p ⁶ ns ¹	[2] (n-1)s ² p ⁶ d ⁵ ns ¹	[3] (n-1)s ² p ⁶ ns ² np ¹	[4] (n-1)s ² p ⁶ d ^{1–10} ns ⁰⁻²				
Q.2	Which of the following atoms does not form interstitial compounds with transition elements?							
	[1] C	[2] Pb	[3] H	[4] N				
Q.3	To which of the followi	ng series the transition ele	ements from Z = 39 to Z =	48 belong?				
	[1] 3d series	[2] 4d series	[3] 5d series	[4] 6d series				
Q.4	Which oxide of manga	nese is acidic in nature.						
	[1] MnO	[2] Mn ₂ O ₇	[3] Mn ₂ O ₃	[4] MnO ₂				
Q.5	Which of the following	shows maximum +8 oxid	ation state?					
	[1] Re	[2] Os	[3] W	[4] lr				
Q.6	Which has the lowest	melting point?		\mathbf{O}				
	[1] Cs	[2] Na	[3] Hg	[4] Sn				
Q.7	A magnetic moment o	f 1.73 BM will be shown b	y one among of the follow	ving compounds.				
	[1] [Cu(NH ₃) ₄] ²⁺	[2] [Ni(CN) ₄] ^{2–}	[3] TiCl ₄	[4] [CoCl ₆] ⁻				
Q.8	Transition elements a	e frequently used as cata	lyst because.					
	[1] Of paired d-electror	IS	[2] Of high ionic charge					
	[3] Free valency on the	surface	[4] Of their specific nat	ure				
Q.9	Which of the following	is not a property of transit	tion elements?					
	[1] Colour	[2] Paramagnetic	[3] Fixed valency	[4] Catalytic				
Q.10	Coinage metals show	the properties of)					
	[1] Typical elements	[2] Normal elements	[3] Transitional elemen	ts [4] Inert elements				
Q.11	What is wrong about to	ansition metals?						
	[1] Diamagnetic		[2] Paramagnetic					
	[3] Form complexes	1.50	[4] Show variable oxidation states					
Q.12	For the same transition	n metal ion, the colour of i	ts compound will depend	upon the				
	[1] Temperature of the	•	[2] Pressure of the reaction					
		Lewis bases attached to	the metal ion.					
	[4] Concentration of th	-						
Q.13	Which is the first man							
	[1] Sc	[2] Os	[3] Tc	[4] Zr				
Q.14		ving is not a complex com						
	[1] [Cu(NH ₃) ₄]SO ₄ H ₂ C		[2] [K ₂ PtCl ₆]					
	[3] [K ₂ SO ₄ .Al ₂ (SO ₄) ₃ .	-	[4] [Co(NH ₃) ₆]Cl ₃					
Q.15	-	ds which retain their inde	-					
	[1] Double salts		[2] Complex compound	ls				
	[3] Coordination comp		[4] [2] and [3] both					
Q.16	-		_	rdination (sigma) bond is called.				
	[1] Valency of the met		[2] Oxidation state of th	ne metal ion				
	[3] Coordination numb	er of metal ion	[4] None of the above					

Q.17	Select bidentate or didentate ligand from the foll	lowing.	
	[1] CO [2] SCN ⁻	[3] CH ₃ COO ⁻	[4] C ₂ O ₄ ²⁻
Q.18	In the nomenclatures of coordination compound	ds the ligand H ₂ O is name	ed according to new rules as.
	[1] aquo [2] aqua	[3] Aqueous	[4] None of the above
Q.19	In the nomenclature of coordination compounds	s the ligand NO ⁺ is named	las.
	[1] Nitrosonium [2] Nitronium	[3] Nitrosylium	[4] Nitrosyl
Q.20	Give the name of the complex compound K_3 [Fe	$e(C_2O_4)_3$] according to IU	PAC system.
	[1] Potassium Ferric oxalate	[2] Potassium trioxalate	
	[3] Potassium trioxalatoferate (III)	[4] None of the above	
Q.21	Give the IUPAC name of the complex compound	l [Co(NH ₃) ₄ (H ₂ O)Br](NO ₃	$)_2$
	[1] Bromoaquotetraamine Cobalt (III) nitrate	[2] Bromoauqotetraam	inocobalt (III) nitrate
	[3] Bromoaquatetraammine cobalt (III) nitrate	[4] Tetraammine aquab	promo cobalt (III) nitrate
Q.22	Which of the following compounds will exhibit lin	nkage isomerism?	
	[1] [Pt(NH ₃) ₂ Cl ₂]	[2] [Co(NH ₃) ₅ NO ₂]Cl ₂	
	[3] [Co(NH ₃) ₄ Cl ₂]Cl	[4] [Co(en) ₂ Cl ₂]Cl	\mathbf{G}
Q.23	Which of the following complexes exhibits coord	dination isomerism?	A .
	[1][Co(en) ₂ Cl ₂] ⁺	[2] [Cr(NH ₃) ₆]Cl ₃	N
	[3] [Cr(NH ₃) ₆][Co(CN) ₆]	[4] [Pt(NH ₃) ₂ Cl ₂]	
Q.24	Out of the following which complex will show ge	ometrical isomerism?	
	[1] [Pt(NH ₃) ₂ Cl ₂] [2] Ni(CO) ₄	[3] Na ₃ [Ni(CN) ₄]	[4] K[Ag(CN) ₂]
Q.25	Which of the following complexes will show opti	ical isomerism?	
	[1] [Cr(NH ₃) ₂]Cl ₂] [2] [Ni(H ₂ O) ₆] ²⁺	[3] [Pt(NH ₃) ₃ Br]NO ₃	[4] [Cr(en) ₃]Cl ₃
Q.26	The oxidation state of Ag in Tollen's reagent is	O	
	[1] 0 [2] +1	[3] +1.5	[4] +2
Q.27	The magnetic property and the shape of [Cr(NH	$[_3)]^+$ complex ions are:	
	[1] Paramagnetic, Octahedral	[2] Diamagnetic, squar	e planer
	[3] Paramagnetic, tetrahedral	[4] None of the above	
Q.28	Compounds which contain one or more metal ca	arbon bonds are called:	
	[1] Organic compounds	[2] Complex compound	ds
	[3] Metal carbides	[4] Organometallic com	npounds
Q.29	Which one of the following is used as a heterog	eneous catalyst?	
	[1] Wilkinson's catalyst	[2] Tetraethyllead	
	[3] Zeigler Natta catalyst	[4] Grignard's reagent	
Q.30	The compound $[Cr(H_2O)]_6 Cl_3$ and $[Cr(H_2O)_4 Cl_2]_6 Cl_3$]CI. H ₂ O respresent	
	[1] Linkage isomerism	[2] Hydration isomerisr	n
	[3] Ligand isomerism.	[4] None of these	
Q.31	Amongest the following ions which one has the	highest paramagnetism	
	[1] $[Cr(H_2O)_6]^{2+}$ [2] $[Fe(H_2O)_6]^{3+}$	[3] [Cu(H ₂ O) ₆] ²⁺	[4] [Zn(H ₂ O) ₆] ²⁺
Q.32	The effective atomic number of Cr (atomic no. 2	4) in [Cr(NH ₃) ₆]Cl ₃ is	
	[1] 35 [2] 27	[3] 33	[4] 36
Q.33	Which one of the following will give a white prec	ipitate with AgNO ₃ in aqu	eous medium?
	$[1] \text{ Co}[(\text{NH}_3)_5 \text{CI}] (\text{NO}_3)_2 $ $[2] [\text{Pt}(\text{NH}_3)_2 \text{ Cl}_2]$	[3] [Pt(en)Cl ₂]	[4] [Pt(NH ₃) ₄]Cl ₂

Q.34	The co-ordination	number of a metal in co-c	ordination compound is	
	[1] Same as prima	iry valency	[2] Sum of primary a	and secondary valencies
	[3] Same as secor	ndary valency	[4] None of the abov	e
Q.35	Oxidation number	of Ni in Ni(CO) ₄ is		
	[1] 2	[2] 3	[3] 1	[4] 0
Q.36	Metal present in b	lood is		
	[1] AI	[2] Mg	[3] Cu	[4] Fe
Q.37	Which of the follow	ving is an organometallic	compound?	
	[1] Lithium metho	kide	[2] Lithium acetate	
	[3] Lithium dimeth	ylamide	[4] Methyl lithium	
Q.38	Inner orbital comp	lexes are formed when lig	gand is	
	[1] Weak	[2] Strong	[3] F ⁻	[4] H ₂ O
Q.39	Which of the follow	wing complexes is an inne	er orbital complex?	
	[1] [CoF ₆] ^{3–}	[2] [FeF ₆] ³⁺	[3] [Cr(NH ₃) ₆] ³⁺	[4] [Fe(H ₂ O) ₆] ²⁺
Q.40	The maximum ma	gnetic moment is shown	by the ion with electronic c	onfiguration of
	[1] 3d ⁸	[2] 3d ⁵	[3] 3d ⁷	[4] 3d ⁹
Q.41	The most stable of	xidation state of iron is :		<u>O</u>
	[1] –2	[2] –3	[3] +2	[4] +3
Q.42	Copper showing +	-2 oxidation state uses:		
	[1] One electron fr	om 4s and one from 3d o	orbitals	
	[2] Both the electr	ons from 4s orbitals		
	[3] Both the electr	ons from 3d-orbitals	~0	
	[4] None of these			
ຊ.43	Chemical formula	of pyrolusite is	6	
	[1] Mn ₂ O ₃	[2] MnO ₃	[3] MnO ₂	[4] Mn ₂ O ₇
Q.44	Which one of the	following ions is coloured	1?	
	[1] Sc ³⁺ .	[2] Ti ⁴⁺	[3] Zn ²⁺	[4] V ²⁺
Q.45	The most abunda	nt transition metal is :		
	[1] Cr	[2] Fe	[3] W	[4] Zn
Q.46	Iron (III)			
	[1] Has a d ⁶ config	guration	[2] Has a d ⁷ configu	ration
	[3] Is isoelectronic	with Co(II)	[4] Is isoelectronic w	vith Mn(II)
Q.47	In the hydrogenat	ion of oils, the c.atalyst u	sed is :	
	[1] Co	[2] Ni	[3] Pd	[4] Pt
Q.48	Permanent magne	ets are generally made of	alloys of	
	[1] Co	[2] Zn	[3] Mn	[4] Pb
Q.49	Which of the follow	ving oxide of chromium is	amphoteric in nature	
	[1] CrO	[2] Cr ₂ O ₃	[3] CrO ₃	[4] CrO ₅
Q.50	Which metal has	2 0	5	5
	[1] Pt	[2] Hg	[3] Os	[4] Fe
Q.51		f 'Turn bull's blue" is :		
	[1] Ferrous ferricy		[2] Potassium ferroo	zyanide
	[3] Potassium cya		[4] Potassium ferric	-
				,

Q.52	Hexafluoro cobaltate (I [1] dsp ²	II) ion is found to be high [2] d ² sp ³	spin complex, the probal [3] sp ³ d ²	ble hybrid state of cobalt in it, is: [4] sp ³ d			
Q.53	In the complex [Ni(H ₂ C	$(NH_3)_4]^{+2}$ the magnetic	c moment (μ) of Ni is :				
	[1] Zero	[2] 2.83 BM	[3] 1.73 BM	[4] 3.87 BM			
Q.54			values) given below, predict which is strongest ligand:				
4.01	$[1] Cu^{+2} + 2C_2O_4^{-2}$		$K = 4.5 \times 10^{11}$				
	2 1						
	[2] Cu + 4CN [Cu(0	CN) ₄] ⁻²	$K = 2.0 \times 10^{27}$				
	[3] Cu ²⁺ + 2en [Cu	-	$K = 3.0 \times 10^{15}$				
	[4] Cu ²⁺ + 4F [CuF	-4] ⁻²	K = 9.5 X 10 ⁶				
Q.55	The brown ring test for	nitrites and hitrates is du	e to the formation of a co	mplex ion with formula :			
	[1] [Fe(H ₂ O) ₅ NO] ²⁺	[2] [Fe(H ₂ O) ₆] ²⁺	[3] [Fe(H ₂ O)(NO) ₅] ^{2–}	[4] [Fe(NO)(CN) ₅] ²⁺			
Q.56		g KCN a prussian blue is					
	[1] K ₃ [Fe(CN) ₆]	[2] KFe[Fe(CN) ₆]		[4] Fe ₄ [Fe(CN) ₆] ₃			
Q.57	The formula of sodium	0-	41 ()()				
_		•	[3] NaFe[Fe(CN) ₆]	[4] Na-[Fe(CN)-NO-]			
Q.58			mber of unpaired electron				
	[1] d ⁵ (Oetahedral, low	-	[2] d ⁸ (Tetrahedral)				
	[3] d ⁶ (Octahedral, low		[4] d ³ (Octahedral)				
Q.59	、	• •	$Pt(C_2H_4)Cl_3]^{-}$ is respecti				
Q.55	[1] + 1, 3	[2] + 2, 4	[3] + 3, 6	[4] + 2, 5			
Q.60	••		[3] + 3, 0	[4] + 2, 5			
Q.00	Which of the following	-	[2] Trievelete ferrete (III	N N N N N N N N N N N N N N N N N N N			
	[1] Fluoro pentaammine		[2] Trioxalato ferrate (III) [4] Dichloro diammine				
0.64	[3] Penta Carbonyl iron			Jaunum			
Q.61	Oxidation state of Fe in	-	101 0				
	[1] 0	[2] + 1	[3] + 2	[4] + 3			
Q.62			high spin complexes are				
	[1] d ⁹	[2] d ³	[3] d ⁵	[4] d ²			
Q.63	A		SO_4 , the oxidation state				
-	[1] + 2	[2] + 3	[3] + 4	[4] + 1			
Q.64	The wrong statement is						
	[1] Halide ligands form		[2] Strong ligands from				
	[3] [FeF ₆] ⁻³ is inner orb	bital complex	[4] [NiCl ₄] ⁻² is outer or	bital complex			
Q.65	Tollen's reagent is :						
	[1] [Ag(NH ₃) ₂]+	[2] Ag ₂ O	[3] AI (OH) ₂	[4] [Au(CN) ₂] ⁻			
Q.66	Nessler's reagent is :						
	[1] K ₂ Hgl ₄	[2] K ₂ Hgl ₄ + KOH	[3] K ₂ Hgl ₂ + KOH	[4] K ₂ Hgl ₄ + Hg			
Q.67	A blue colouration is no	ot obtained when :					
	[1] NH ₄ OH is added to	CuSO ₄	[2] CuSO ₄ solution rea	cts with K ₄ [Fe(CN) ₆]			
	[3] FeCl ₃ reacts with K	₄ [Fe(CN) ₆]	[4] Anhydrous white Cu	uSO ₄ is dissolved in water			
Q.68	Which of the following	will be able to show Cis-t	rans isomerism :				
	[1] Ma ₃ b	[2] M _{(AA)2}	[3] M _{a2b2}	[4] M _{(AB)2}			
	The Correct answer is	` 'Z	<i>L L</i>	· · / ∠			
	[1] All	[2] None	[3] a and c	[4] c and d			

Q.69	One among the fo	llowing complex ions will n	ot show optical activity	
	[1][Ph(Br) (Cl) (I) ((NO ₂) (C ₂ H ₅ N)(NH ₃)]	[2] Cis-[CO(en) ₂ Cl ₂]]+
	[3] [Co(en)(NH ₃) ₂ (Cl ₂] ⁺	[4] Cr(NH ₃) ₄ Cl ₂	
Q.70	A Planar Complex	(Mabcd) gives :	012	
	[1] Two Optical iso	omer	[2] Two geometrical	isomer
	[3] Three optical is	somer	[4] Three geometric	al isomers
Q.71	Out of the followin	g which will not show geon	netrical isomerism :	
	[1] [Pt (NH ₃) ₂ (H ₂ 0	O) ₂]+2	[2] [Cr (NH ₃) ₅ Cl] Cl ₂	2
	[3] [Co (en) ₂ Cl ₂]C		[4] [Co (NH ₃) ₄ Cl ₂] C	
Q.72	$[Co(NH_3)_4Cl_2]NO_2$	$_2$ and [Co(NH $_3$) $_4$ Cl NO $_2$]Cl a	re	
	[1] Geometrical is		[2] Optical isomers	
	[3] Linkage isome		[4] Ionisation isome	
Q.73	-	lo. of geometrical isomers e	-	
0 = 1	[1] Zero	[2] 30	[3] 15	[4] 9
Q.74		wing has two geometrical is		
0.75	[1] Pt $(NH_3)_2Cl_4$	[2] Pt $(NH_3)_3Cl_4$	[3] Pt(NH ₃) ₄ Cl ₄	[4] Pt(NH ₃) ₆ Cl ₄
Q.75		notography because it is :	[2] A strong ovidiair	
	[1] A strong reduc		[2] A strong oxidisin	
Q.76	[3] A strong Comp		[4] Photo sensitive (sompound
Q.70		exposed and developed photon 131 ($A \propto (S \cap X)$) 13^{+}		
Q.77	[1] AgBr	$[2] [Ag(S_2O_3)_2]^{3+}$	[3] Ag	[4] Ag ₂ O
Q.77	-	gBr in hypo solution is due		$[4] \land \alpha(S \land A) = 13 - 13$
Q.78	[1] Ag ₂ SO ₃	[2] Ag ₂ S ₂ O ₃ h is used in photography is	[3] [Ag(S ₂ O ₃)] ⁻	[4] Ag(S ₂ O ₃) ₂] ³⁻
Q.10	[1] AgCl	[2] AgBr	[3] AgNO ₃	
Q.79		used in photography to :	[5] Agivo ₃	[4] Ag ₂ CO ₃
Q.13	[1] Reduce AgBr 1		[2] Remove reduced	Ad
		composed AgBr as a solubl		лд
		llic Ag to silver salt	ecomplex	
Q.80	Photo graphic film		as an essential ingr	odiant :
Q.00	[1] Silver oxide	s of plates have	[2] Silver bromide	edient.
	[3] Silver thio sulp	hate	[4] Silver nitrate	
Q.81		Ag in Na ₃ [Ag(S ₂ O ₃) ₂] is :		
Q.01	[1] + 2	[2] -2	[3] 0	[4] +1
Q.82	Hypo is the aqueo		[0] 0	ן ד [ד]
Q.02	[1] Sodium sulpha		[2] Sodium argentat	
	[3] Sodium thiosul		[4] Silver bromide	
Q.83		used in photography becau		
Q.00	[1] Photosensetive		[2] Soluble in hypos	solution
	[3] Soluble in NH_4		[4] Insoluble in acid	
Q.84		ving ion in aqueous mediur		0
Q.07	[1] $Cr_2O_7^{-2}$	[2] Cr ⁺³	[3] MnO_4^-	[4] MnO ₄ ^{2–}
			T	
Q.85	$K_2 Cr_2 O_7 \xrightarrow{\text{Heat}}$	$4K_2Cr_2O_4 + 3O_2 + X$ In the	above reaction X is :	
	[1] Cr ₂ O ₃	[2] CrO ₃	[3] Cr ₂ O ₇	[4] CrO ₅ .

Q.86	When a mixture of $K_2 Cr_2 O_7$ and KCI is heated	with conc. H_2SO_4 , which of the following is produced
	in the form of red vapours :-	
	[1] CrO ₃ [2] CrO ₂ Cl ₂	[3] CrCl ₃ [4] Cr ₂ O ₃
Q.87	When acidified solution of K ₂ Cr ₂ O ₇ is shaken	-
	[1] Cr ₂ O ₇ ^{2–} ion reduced to Cr ⁺³ ions	[2] $\operatorname{Cr}_2 \operatorname{O_7}^{2-}$ ion reduced to $\operatorname{CrO_7}^{2-}$ ions
	[3] Cr ₂ O ₇ ^{2–} ion oxidised to Cr	[4] $\text{Cr}_2\text{O}_7^{2-}$ ion is oxidised to CrO_3
Q.88	The equilibrium $\operatorname{Cr}_2 \operatorname{O_7}^{2-1}$ $2\operatorname{Cr}\operatorname{O_4}^{2-1}$	
	[1] Exists in acidic medium	[2] Exists in basic medium
	[3] Exists in neutral medium	[4] It does not exists.
Q.89	Which of the following compound is used as the	e starting material for the preparation of potassium dichromates:
	$[1] K_2 SO_4 Cr_2 (SO_4)_3.24 H_2 O (Chrome alum)$	[2] PbCrO ₄ (Chrome yellow)
	[3] FeCr ₂ O ₄ (Chromite)	[4] PbCrO ₄ PbO(Chrome red)
Q.90	The blue colour produced on adding H_2O_2 to a	cidified $K_2 Cr_2 O_7$ is due to the formation of ;
	[1] CrO ₅ [2] Cr ₂ O ₃	$[3] \operatorname{CrO}_7^{2-}$ [4] CrO_3
Q.91	Which of the following oxide of chromium is an	nphoteric in nature :
	[1] CrO ₃ [2] Cr ₂ O ₃	[3] CrO ₃ [4] CrO ₅
Q.92	The yellow colour of chromates changes to ora	
	[1] Cr ⁺³ [2] Cr ₂ O ₃	$[3] \operatorname{Cr}_2 \operatorname{O}_7^{2-} [4] \operatorname{Cr}_4^{-}$
Q.93	CrO_3 dissolves in aqueous NaOH to give :	
	[1] CrO_4^{2-} [2] $Cr(OH)_2$	[3] $\operatorname{Cr}_2 \operatorname{O}_7^{2-}$ [4] $\operatorname{Cr}(OH)_3$
Q.94	The equilibrium $Cr_2O_7^{2-1}$ $2CrO_4^{2-1}$ is shifte	d to back is :
	[1] An acidic medium [2] A basic medium	[3] A neutral medium [4] It does not exists.
Q.95	Which of the following statement is wrong :	
	[1] An acidified solution of $K_2 Cr_2 O_7$ liberates in	dine from iodides.
	[2] In acidic solution dichromates ions are conv	verted to Chromate ions.
	[3] Ammonium dichromate on heating undergo	
	[4] Potassium dichromate is used as a titrant f	or Fe ⁺² ions.
Q.96	Chromium has most stable oxidation state is :	
	[1] + 5 [2] + 3	[3] + 4 [4] + 2
Q.97	Acidified $K_2Cr_2O_7$ is treated with H_2S . In the re-	
	[1] Increases from + 3 to + 6	[2] Decreases from + 6 to + 3
	[3] Remains unchanged	[4] Decreased from + 6 to + 2
Q.98	Acidified solution of chromic acid on treatment	
	[1] $CrO_3 + H_2O + O_2$	$[2] \operatorname{Cr}_2 \operatorname{O}_3 + \operatorname{H}_2 \operatorname{O} + \operatorname{O}_2$
0.00	[3] CrOs + H_2O The formula of blue perchamate is :	$[4] H_2 Cr_2 O_7 + H_2 O + O_2$
Q.99	The formula of blue perchromate is : [1] CrO ₃ [2] Cr ₂ O ₃	[3] CrO ₅ [4] None
Q.100		rencium (At No. 103) in which 5f energy levels are filled up are
Q.100	called	choldin (Active: 100) in which of chorgy levels are fined up are
	[1] lanthanides [2] rare earths	[3] actinides [4] transuranics
Q.101	Which of the two have almost similar size:	
		[3] ₃₉ Y, ₅₇ La [4] ₂₀ Ca, ₃₈ Sr
Q.102	Select the element in the following which does	
	[1] Ti [2] Zr	[3] La [4] Pt

Q.103	With increase in ato	mic number the ionic rad	ii or actinides:	
	[1] contract slightly	[2] increase graduall	y [3] show no change	[4] change irregularly
Q.104	The general electror	nic confuguration of lathar	nide is :	
	[1] [Xe] 4f ¹⁻¹⁴ 5d ^{0–1}		[2] [Xe] 4f ^{0–14} 5d ^{1–2} 6s	s ¹
	[3] [Xe] 4f ⁰⁻¹⁴ 5d ⁰⁻¹	6s ^{1–2}	[4] None of these	
Q.105	Cerium can show th	e oxidation state of +4 be	cause:	
	[1] it resemble alkali	metals		
	[2] it has very low va	lue of I.E.		
	[3] of its tendency to	attain noble gas configui	ration of xenon	
	[4] of its tendency to	attain 4f ⁷ configuration		
Q.106	The elements from a	cerium (At No. 58) to lutet	ium (At No. 71) in which 4f	energy levels are filled up are called:
	[1] lanthanides	[2] rare earths	[3] lanthanones	[4] all the above
Q.107	The actinides showi	ng + 7 oxidation state are	9:	
	[1] U, Np	[2] Pu, Am	[3] Np, Pu	[4] None of these
Q.108	In aqueus solution E	Eu ⁺² acts as :		
	[1] an oxidising ager	nt	[2] reducing agent	\mathbf{G}
	[3] can act either ot	these	[4] can act as redox ac	gent
Q.109	Give the ions having	4f ¹⁴ 5d ^o 6s ^o outer electror	nic configuration:	N
	[1] Yb ²⁺	[2] Lu ³⁺	[3] Yb ³⁺	[4] Both [1] and [2]
Q.110	The maximum oxida	ation state shown by actir	nides is :	
	[1] +6	[2] +7	[3] +5	[4] +4
Q.111	Which of the followir	ng is a lanthanide:		
	[1] Ta	[2] Rh	[3] Th	[4] Gd
Q.112	The outer electronic	configuration of gadolinit	um (At. No. 64) is :	
	[1] 4f ⁷ 5d ¹ 6s ²	[2] 4f ⁸ 5d ⁰ 6s ²	[3] 4f ⁸ 5d ¹ 6s ¹	[4] 4f ⁷ 5d ⁰ 6s ²
Q.113	The outer electronic	configuration of the elem	ent No (Nobelium. At. No. 1	102) is
	[1] 5f ¹⁴ 6d ⁰ 7s ²	[2] 5f ¹³ 6d ¹ 7s ²	[3] 5f ¹⁴ 6d ¹ 7s ¹	[4] none of the above
Q.114	The element with the	e electronic configura ion	[Xe] ⁵⁴ 4f ¹⁴ 5d ¹ 6s ² is a	
	[1] representative ele	ement	[2] transition element	
	[3] lanthanide	6.50	[4] actinide	
Q.115	The most characteri	stic oxidation state of lan	thanides is :	
	[1] +2	[2] +3	[3] +4	[4] None of these
	~			

Answer Key - 2

Q.B.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
Ans.	4	2	2	2	2	3	1	3	3	3	1	3	3	3	4	3	4	2	1	3	4	2	3	1	4
Qus.	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50
Ans.	2	1	4	3	2	2	3	4	3	4	4	4	2	3	2	4	1	3	4	2	4	2	1	2	3
Qus.	51	52	53	54	55	56	57	58	59	60	61	62	ស	64	65	66	67	68	69	70	71	72	73	74	75
Ans.	1	3	2	2	1	4	2	4	2	2	3	3	2	3	1	2	2	4	4	4	2	4	3	1	3
Qus.	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100
Ans.	3	4	2	3	2	4	3	1	1	1	2	1	2	3	1	2	3	1	1	2	2	2	3	3	3
Qus.	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115										
Ans.	2	3	1	1	3	4	3	2	4	2	4	1	1	3	2	•									

Q.1	Which of the following	statements is not correct	about the electronic configu	uration of gaseous chromium atom [MP PET 1994]
	[1] It has 5 electrons ir	n 3d and one electron in 4	s orbitals	
	[2] The principal quant	um numbers of its valence	e electrons are 3 and 4	
	[3] It has 6 electrons in			
		s have azimuthal quantur	n number 0 and 2	
Q.2			ut equivalent weight of KMr	ID [MP PET 1994]
		molecular weight in alkali		4
		nolecular weight in alkalin		
		lecular weight in acidic m		
		nolecularweightin acidic n		
Q.3		D_7 with NaCl and conc. H_2		[MP PET 1994]
Q.0	[1] CrCl_3	[2] $CrOCl_2$	$[3] \operatorname{CrO}_2\operatorname{Cl}_2$	[4] Cr ₂ O ₃
Q.4	0	hromium is undertaken be	<u> </u>	[MP PMT 1994]
Q.7	[1] Electrolysis of chro		cause	
				2
		n alloys with other metals		
		otective and decorative co	balling to the base metal	
0.5		ty of metallic chromium	finite and a state based	
Q.5	-	metals make the most ef		[BHU 1995]
• •	[1] Transition	[2] Alkali	[3] Alkaline earth	[4] Coloured metals
Q.6	Which oxide of manga			[AFMC 1995]
	[1] MnO ₂	[2] Mn ₂ O ₃	[3] Mn ₂ O ₇	[4] MnO
Q.7	Which one of the follow	-		[IIT 1995]
_	[1] MnO	[2] Mn ₂ O ₇	[3] CrO ₃	[4] P ₂ O ₅
Q.8	Correct formula of calo			[CPMT 1994; AFMC 1998]
	[1] Hg ₂ Cl ₂	[2] HgCl ₂	[3] HgCl ₂ . H ₂ O	[4] HgSO ₄
Q.9		etal which is liquid at 0°C.		[CBSE 1995]
			ic bond [2] Low ionisation	potential
	[3] High atomic weight		[4] High vapour pre	
Q.10	Which of the following	imparts green colour to th	ne glass	[CPMT 1993]
	[1] Cu ₂ O	[2] CdS	[3] MnO ₂	[4] Cr ₂ O ₃
Q.11	Which of the following	oxides is white but becon	nes yellow on heating	[MP PET 1995]
	[1] AgO	[2] Ag ₂ O	[3] FeO	[4] ZnO
Q.12	On heating Mn(OH) ₂ v	vith PbO ₂ and conc.HNO ₃	pink colour is obtained due	e to the formation of
				[MP PET 1995]
	[1] KMnO ₄	[2] HMnO ₄	[3] Pb(MnO ₄) ₂	[4] PbMnO ₄
Q.13		elements does not belong	- · · · + 2	[MP PMT 1995]
	[1] Fe	[2] V	[3] Ag	[4] Cu
Q.14	Number of unpaired el	ectrons in $Fe^{+++}(Z = 26)$ i		MT 1995; Rajasthan PET 2003]
	[1] 4	[2] 5	[3] 6	[4] 3

Of the ions Zn^{2+} , Ni^{2+} and Cr^{3+} [atomic number of Zn = 30, Ni = 28, Cr = 24] Q.15 [MP PET 1996] [1] Only Zn²⁺ is colourless and Ni²⁺ and Cr³⁺ are coloured [2] All three are colourless [3] All three are coloured [4] Only Ni²⁺ is coloured and Zn²⁺ and Cr³⁺ are colourless Q.16 Common oxidation state of scandium, a transition element is/are [atomic number of Sc = 21] [MP PET 1996] [1] + 4 [2] + 1 [3] + 2 and + 3 [4] + 4 and + 1Q.17 Which of the following is not correct about transition metals [MP PET 1996] [1] Their melting and boiling points are high [2] Their compounds are generally coloured [3] They can form ionic or covalent compounds [4] They do not exhibit variable valency Q.18 When KMnO₄ reacts with acidified FeSO₄ [MP PET 1996] [1] Only FeSO₄ is oxidised [2] Only KMnO₄ is oxidised [3] FeSO₄ is oxidised and KMnO₄ is reduced [4] None of the above Q.19 The atomic number of an element is 22. The highest oxidation state exhibited by it in its compounds is **[MP PMT 1996]** [1] 1 [2] 2 [3] 3 [4] 4 Q.20 By passing H₂S gas in acidified KMnO₄ solution, we get [MP PET 1997] [1] K₂S [2] S [3] K₂SC [4] MnO₂ When calomal reacts with NH₄OH. we get Q.21 [CBSE 1996] [2] NH₂-Hg-Hg-Cl [1] HgNH₂Cl [4] HgO [3] Hg₂O Q.22 The 3d-elements show variable oxidation states. What is the maximum oxidation state shown by the element Mn [MP PMT 1997; JIPMER 2002] [1] + 4 [2] + 5 [3] + 6 [4] + 7Q.23 The 3d-metal ions are paramagnetic in nature because [MP PMT 1997] [1] They are reducing agents [2] They form coloured salts [3] They have one or more paired s-electrons [4] They have one or more unpaired d-electrons Q.24 The correct formula of permanganic acid is [MP PET 1999] [2] HMnO₅ [1] HMnO₄ $[3] H_2 MnO_4$ [4] H₂MnO₃ Q.25 Which one of the following properties is not of transition elements [MP PET 1999; CPMT 2002] [1] Colour [2] Paramagnetism [3] Fixed valency [4] None of the above Q.26 In which of the following, tendency towards for mation of coloured ions is maximum [MP PET 1999] [4] f-block elements [1] s-block elements [2] d-block elements [3] p-block elements [MP PET 1999; Rajasthan PET/PMT 1999] Q.27 Which one of the following ions is colourless [2] Co²⁺ [3] Ni²⁺ [4] Fe³⁺ [1] Cu⁺ Acidified solution of chromic acid on treatment with hydrogen peroxide yields Q.28 [MP PET 1999; AFMC 2000] $[4] H_2 Cr_2 O_7 + H_2 O + O_2$ $[1] CrO_3 + H_2O + O_2$ $[2] Cr_2O_3 + H_2O + O_2$ $[3] CrO_5 + H_2O$ Chloride of which of the following elements will be coloured Q.29 [MP PMT 1999] [1] Silver [3] Zinc [2] Mercury [4] Cobalt Q.30 Which one of the following is not a transition metal [MP PMT 1999] [1] Chromium [2] Titanium [3] Lead [4] Tungsten Q.31 Which of the following ions has the highest magnetic moment [JIPMER 1997; AIEEE 2002] [1] Ti³⁺ [2] Sc³⁺ [3] Mn²⁺ [4] Zn²⁺

d & f Block

			d & f Block
Which of the following	ons is coloured		[BHU 1997]
[1] Cu ⁺	[2] Cu ²⁺	[3] Ti ⁴⁺	[4] V ⁵⁺
In nitroprusside ion. th differentiated by	e iron and NO exist as F	e ^{ll} and NO ⁺ rather than	Fe ^{III} and NO. These forms can be [IIT 1998]
[1] Estimating the conc	entration of iron	[2] Measuring the co	oncentration of CN ⁻
[3] Measuring the solid	state magnetic moment	[4] Thermally decon	nposing the compound
Which of the following i	s/are insoluble in ethanol		[Roorkee Qualifying 1998]
[1] HgF ₂	[2] HgCl ₂	[3] HgBr ₂	[4] Hgl ₂
Which one of the follow	ing compounds is not cold	bured	[AIIMS 1997]
[1] Na ₂ CuCl ₄	[2] Na ₂ CdCl ₄	[3] K ₄ Fe(CN) ₆	[4] K ₃ Fe(CN) ₆
			[CPMT 1997; Pb. PET/PMT 1999]
	••	[3] 4	
			[CPMT 1997]
[1] HgCl ₂	[2] Hg ₂ Cl ₂	[3] Hg ₂ O	[4] Hg
$vMnO = + vH^+ + C O$	$- \rightarrow v M n^{++} + 2 C O + - K$	- O x and y are	[CPMT 1997]
ymno ₄ + xi + o ₂ o ₄	200 ₂ 2		
[1] 2 and 16	[2] 16 and 2	[3] 8 and 16	♦ [4] 5 and 2
			[CBSE 1997]
+	Ũ		[4] Cr(OH) ₂
•			
	[2] V ³⁺	[3] Ti ³⁺	[4] Cr ³⁺
			[Rajasthan PET 2000]
			[4] None of these
Zinc and mercury do no	ot show variable valency lil		
		[Ra]	jasthan PMT 2000; MP PMT 2000]
		t subshell	
Railway wagon axles a	re made by heating iron ro	ods embeded in charcol p	
			[UPSEAT 2001]
		[3] Tempering	[4] Case hardening
	•		[CPMT 2001]
[1] Ag	[2] Au	[3] Cu	[4] All of these
Which of the following	transition metal is used as	s a catalyst	[CPMT 2001]
Which of the following [1] Nickel	[2] Cobalt		[CPMT 2001] [4] Both [1] and [2]
Which of the following [1] Nickel Oxidation number of A	[2] Cobalt s in H ₂ AsO ₄ ⁻ is	s a catalyst [3] Gold	[CPMT 2001] [4] Both [1] and [2] [CPMT 2001]
Which of the following [1] Nickel Oxidation number of A [1] 6	[2] Cobalt s in H ₂ AsO ₄ ⁻ is [2] 7	s a catalyst [3] Gold [3] 5	[CPMT 2001] [4] Both [1] and [2] [CPMT 2001] [4] 9
Which of the following [1] Nickel Oxidation number of A [1] 6 Most common oxidatio	[2] Cobalt s in H ₂ AsO ₄ ⁻ is [2] 7 n states of Cs (cesium) ar	a catalyst [3] Gold [3] 5 e	[CPMT 2001] [4] Both [1] and [2] [CPMT 2001] [4] 9 [AIEEE 2002]
Which of the following [1] Nickel Oxidation number of A [1] 6 Most common oxidatio [1] + 2. + 3	[2] Cobalt s in $H_2AsO_4^-$ is [2] 7 n states of Cs (cesium) ar [2] + 2. + 4	s a catalyst [3] Gold [3] 5 e [3] + 3. + 4	[CPMT 2001] [4] Both [1] and [2] [CPMT 2001] [4] 9 [AIEEE 2002] [4] + 3 + 5
Which of the following [1] Nickel Oxidation number of A [1] 6 Most common oxidatio [1] + 2. + 3 Assertion [1]: cuprous	[2] Cobalt s in $H_2AsO_4^-$ is [2] 7 n states of Cs (cesium) ar [2] + 2. + 4 s ion (Cu ⁺) has unpaired el	s a catalyst [3] Gold [3] 5 e [3] + 3. + 4 ectrons while cupric ion ([CPMT 2001] [4] Both [1] and [2] [CPMT 2001] [4] 9 [AIEEE 2002] [4] + 3 + 5 Cu ⁺⁺) does not
Which of the following [1] Nickel Oxidation number of A [1] 6 Most common oxidatio [1] + 2. + 3 Assertion [1]: cuprous Reason (R): Cuprous	[2] Cobalt s in $H_2AsO_4^-$ is [2] 7 n states of Cs (cesium) ar [2] + 2. + 4 s ion (Cu ⁺) has unpaired el on (Cu ⁺) is colourless whe	s a catalyst [3] Gold [3] 5 e [3] + 3. + 4 ectrons while cupric ion (ere as cupric ion (Cu ⁺⁺) is	[CPMT 2001] [4] Both [1] and [2] [CPMT 2001] [4] 9 [AIEEE 2002] [4] + 3 + 5
Which of the following [1] Nickel Oxidation number of A [1] 6 Most common oxidation [1] + 2. + 3 Assertion [1]: cuprous Reason (R): Cuprous [1] Both A and R are training	[2] Cobalt s in $H_2AsO_4^-$ is [2] 7 n states of Cs (cesium) ar [2] + 2. + 4 s ion (Cu ⁺) has unpaired el on (Cu ⁺) is colourless whe	s a catalyst [3] Gold [3] 5 (3] + 3. + 4 ectrons while cupric ion (ere as cupric ion (Cu ⁺⁺) is anation of A	[CPMT 2001] [4] Both [1] and [2] [CPMT 2001] [4] 9 [AIEEE 2002] [4] + 3 + 5 Cu ⁺⁺) does not
Which of the following [1] Nickel Oxidation number of A [1] 6 Most common oxidatio [1] + 2. + 3 Assertion [1]: cuprous Reason (R): Cuprous [1] Both A and R are tri [2] Both A and R are tri	 [2] Cobalt s in H₂AsO₄⁻ is [2] 7 n states of Cs (cesium) ar [2] + 2. + 4 s ion (Cu⁺) has unpaired el ion (Cu⁺) is colourless where ue and R is a correct explanate ue but R is not a correct e 	s a catalyst [3] Gold [3] 5 (3] + 3. + 4 ectrons while cupric ion (ere as cupric ion (Cu ⁺⁺) is anation of A	[CPMT 2001] [4] Both [1] and [2] [CPMT 2001] [4] 9 [AIEEE 2002] [4] + 3 + 5 Cu ⁺⁺) does not
Which of the following [1] Nickel Oxidation number of A [1] 6 Most common oxidation [1] + 2. + 3 Assertion [1]: cuprous Reason (R): Cuprous [1] Both A and R are training	[2] Cobalt s in $H_2AsO_4^-$ is [2] 7 n states of Cs (cesium) ar [2] + 2. + 4 s ion (Cu ⁺) has unpaired el ion (Cu ⁺) is colourless whe ue and R is a correct expla- ue but R is not a correct el lse	s a catalyst [3] Gold [3] 5 (3] + 3. + 4 ectrons while cupric ion (ere as cupric ion (Cu ⁺⁺) is anation of A	[CPMT 2001] [4] Both [1] and [2] [CPMT 2001] [4] 9 [AIEEE 2002] [4] + 3 + 5 Cu ⁺⁺) does not
	differentiated by [1] Estimating the cond [3] Measuring the solid Which of the following i [1] HgF ₂ Which one of the follow [1] Na ₂ CuCl ₄ Number of unpaired ele [1] 3 The formula of corrosiv [1] HgCl ₂ $yMnO_4^- + xH^+ + C_2O_4$ [1] 2 and 16 $K_2Cr_2O_7$ on heating wit [1] CrO ₄ ²⁻ Which of thefollowing for [1] Sc ⁺³ Fe ²⁺ shows [1] Ferromagnetism Zinc and mercury do no [1] They are soft [2] Their d-subshells are [3] They have only two [4] Their d-shells are im Railway wagon axles a [1] Sherardizing	differentiated by [1] Estimating the concentration of iron [3] Measuring the solid state magnetic moment Which of the following is/are insoluble in ethanol [1] HgF ₂ [2] HgCl ₂ Which one of the following compounds is not cold [1] Na ₂ CuCl ₄ [2] Na ₂ CdCl ₄ Number of unpaired electrons in Mn ²⁺ is [1] 3 [2] 5 The formula of corrosive sublimate is [1] HgCl ₂ [2] Hg ₂ Cl ₂ yMnO ₄ ⁻ + xH ⁺ + C ₂ O ₄ ⁻ \rightarrow yMn ⁺⁺ + 2CO ₂ + $\frac{x}{2}$ H [1] 2 and 16 [2] 16 and 2 K ₂ Cr ₂ O ₇ on heating with aqueous NaOH gives [1] CrO ₄ ²⁻ [2] Cr(OH) ₃ Which of thefollowing forms colourless compound [1] Sc ⁺³ [2] V ³⁺ Fe ²⁺ shows [1] Ferromagnetism [2] Paramagnetism Zinc and mercury do not show variable valency lift [1] They are soft [2] Their d-subshells are complete [3] They have only two electrons in the outermoss [4] Their d-shells are incomplete Railway wagon axles are made by heating iron reference	[1] Estimating the concentration of iron[2] Measuring the concentration of iron[3] Measuring the solid state magnetic moment[4] Thermally decondWhich of the following is/are insoluble in ethanol[1] HgF2[3] HgBr2[1] HgF2[2] HgCl2[3] HgBr2Which one of the following compounds is not coloured[1] Na2CuCl4[3] K4Fe(CN)6Number of unpaired electrons in Mn ²⁺ is[3] 4[1] 3[2] 5[3] 4The formula of corrosive sublimate is[1] HgCl2[2] Hg2Cl2[1] HgCl2[2] Hg2Cl2[3] Hg2OyMnO4 ⁻⁺ + xH ⁺ + C2O4 ⁻ \rightarrow yMn ⁺⁺ + 2CO2 + $\frac{x}{2}$ H2O x and y are[1] 2 and 16[1] 2 and 16[2] 16 and 2[3] 8 and 16K2Cr2O7 on heating with aqueous NaOH gives[3] Cr2O7 ²⁺ [1] CrO4 ²⁻ [2] Cr(OH)3[3] Cr2O7 ²⁺ Which of thefollowing forms colourless compound[1] Sc ⁺³ [2] V ³⁺ [3] Diamagnetism[3] DiamagnetismZinc and mercury do not show variable valency like d-block elements becc[3] They have only two electrons in the outermost subshell[4] Their d-shells are incomplete[3] They have only two electrons in the outermost subshell[4] Their d-shells are incomplete[3] They have only two electrons in the outermost subshell[4] Their d-shells are incomplete[3] They have only two electrons in the outermost subshell[4] Their d-shells are incomplete[3] They have only two electrons in the outermost subshell[4] Their d-shells are incomplete[3] Tempering[3] Semering<

					U & I BIOCK
Q.49	Atomic number of Cr an electron	nd Fe are 24 and 26 respe	ctively. Which of the followir	ng is paramagne	etic with the spin of [CBSE 2002]
	[1] [Cr(NH ₃) ₆] ⁺³	[2] [Fe(CO) ₅]	[3] [Fe(CN) ₆] ⁻⁴	[4] [Cr(CO)	6]
Q.50	Which of the following	does not have electron in 3	3d-subshell		[AIIMS 2002]
	[1] Fe (III)	[2] Mn (II)	[3] Cr (I)	[4] P (0)	
Q.51	Collin's reagent is			[Rajast	han PMT 2002]
	[1] MNO ₂ /HCI	[2] MNO ₄ /C ₅ H ₅ N	[3] K ₂ Cr ₂ O ₇ /H ₂ SO ₄	[4] Cr ₂ O ₃ /2	C ₅ H ₅ N
Q.52	Which compound has	coloured aqueous solution		[Rajast	han PMT 2002]
	[1] Zn (NO ₃) ₂	[2] LiNO ₃	[3] Co(NO ₃) ₂	[4] Ba(NO ₃	$_{3})_{2}$
Q.53	Arrange Ce ⁺³ , La ⁺³ , Pi	m ⁺³ and Yb ⁺³ in increasing	g order of their ionic radii		[AIEEE 2002]
	[1] Yb ⁺³ < Pm ⁺³ < Ce ⁺	³ < La ⁺³	[2] Ce ⁺³ < Yb ⁺³ < Pm	⁺³ < La ⁺³	
	[3] Yb ⁺³ < Pm ⁺³ < La ⁺	³ < Ce ⁺³	[4] Pm ⁺³ < La ⁺³ < Ce ⁻	⁺³ < Yb ⁺³	
Q.54	The type of isomerism	present in nitropentamine	chromium (III) chloride is	5	[AIEEE 2002]
	[1] Optical		[2] Linkage		7
	[3] Ionization		[4] Polymerisation	\sim	
Q.55	The most stable ion is			O	[AIEEE 2002]
	[1] [Fe(OH)] ³⁻	[2] [Fe(Cl) ₆] ³⁻	[3] [Fe(CN) ₆] ^{3–}	• [4] [Fe(H ₂ C)) ₆] ³⁺
Q.56	The complex chlorocor		cobalt (III) chloride is repres		[CBSE 2002]
	[1] [Co(NH ₃) ₃ (H ₂ O) ₃]C	1 ₂	[2] [Co(NH ₂) ₃ (H ₂ O) ₂](CI ₂	
	[3] [CoCl(NH ₃) ₃ (H ₂ O) ₂]Cl ₃	[4] [CoCl(NH ₃) ₃ (H ₂ O)	₂]Cl ₂	
Q.57	Lanthanide for which +	II and + III oxidation state	s are common is		[AIIMS 2003]
	[1] La	[2] Nd	[3] Ce	[4] Eu	
Q.58	The method of zone re	fining of metals is based o	n the principle of		[CBSE 2003]
	[1] Greater solubility of	the impurity in the molter	state than in the solid		
	[2] Greater mobility of	he pure metal than that of	the impurity		
	[3] Higher melting poin	t of the impurity than that o	of the pure metal		
	[4] Greater noble chara	acter of the solid metal tha	n that of the impurity		
Q.59		the transition metal mono	xides follows the order		[CBSE 2003]
	[1] TiO > VO > CrO > I	ēO	[2] VO > CrO > TiO >	FeO	
	[3] CrO > VO > FeO >	TiO	[4] TiO > FeO > VO >	CrO	
	(Atomic no. Ti = 22, V	= 23, Cr = 24, Fe = 26)			
Q.60	Which one of the follow	ing characteristics of the	transition metals is associa	ated with their ca	atalytic activity
					[CBSE 2003]
	[1] Variable oxidation s	tates	[2] High enthalpy of at	omization	
	[3] Paramagnetic behav	<i>v</i> iour	[4] Colour of hydrated	ions	
Q.61	The correct order of ic	nic radii of Y ^{3–} , La ³⁺ . Eu	³⁺ and Lu ³⁺ is		[CBSE 2003]
	[1] La ³⁺ < Eu ³⁺ < Lu ³⁺	< Y ³⁺	[2] Y ^{3–} < La ³⁺ < Eu ³⁺	< Lu ³⁺	
	[3] $Lu^{3+} < Y^{3+} < Eu^{3+}$	< La ³⁺	[4] Lu ³⁺ < Eu ³⁺ < La ³⁻	+ < Y ³⁺	
Q.62	The atomic number of	anadium (V), chromium (0	Cr), manganese (Mn) and ir	on (Fe) are resp	ectively 23, 24, 25
			ave the highest second ion		[AIEEE 2003]
	[1] V	[2] Cr	[3] Mn	[4] Fe	
Q.63	A reduction in atomic s	ize with increase in atomi	c number is a characteristic	c of elemenl of	[AIEEE 2003]
	[1] High atomic masse	S	[2] d-block		
	[3] f -block		[4] Radioactive series		

Q.64	Which one of the fol	lowing statements is correc	t	[AIEEE 2003]				
	[1] Manganese salts	give violet borax bead test	in the reducing flame					
	[2] From a mixed precipitate of AgCI and AgI ammonia solution dissolves only AgCI							
	[3] Ferric ions give a	deep green precipitate on a	adding potassium ferrocya	inide solution				
	[4] On boiling a solut	ion having K ⁺ .Ca ²⁺ and HC	CO_3^{-} ions we get a precipi	tateof $K_2Ca(CO_3)_2$				
Q.65		ed to which block of periodic	-	[MP PMT 2003]				
	[1] s-block	[2] p-block	[3] d-block	[4] f -block				
Q.66	Calamine is a miner	al, which is		[MP PMT 2003]				
	[1] ZnCO ₃	[2] ZnS	[3] ZnSO₄	[4] ZnO				
Q.67	0	e related to which block	••• 4	[MP PMT 2003]				
	[1] s-block	[2] p-block	[3] d-block	[4] None of these				
Q.68		al reduces steam to evolve						
	[1] Mg	[2] Fe	[3] Sc	[4] Pt				
Q.69		ig element does not show va		[MP PMT 2003]				
	[1] Ni	[2] Zn	[3] Cu	[4] Mn				
Q.70		ng transition metals can hav		[Rajasthan PET 2003]				
L	[1] Cr	[2] Co	[3] Ni	[4] Cu				
Q.71	Formula of ferric sul		[0]	[AFMC 2003]				
Q.17 1	[1] FeSO₄	[2] Fe (SO ₄) ₂	[3] Fe ₂ SO ₄	[4] $Fe_2(SO_4)_3$				
Q.72		rated, then it becomes	[0] 1 02004	[4]1 0 ₂ (00 ₄) ₃ [AFMC 2003]				
Q. 1 Z	[1] Acidic	[2] basic	[3] Neutral	[4] Amphoteric				
Q.73	Silvering of mirror is			[4] Amphotene [AFMC 2003]				
Q.75	[1] AgNO ₃	-	[3] Fe ₂ O ₃	[4] Al ₂ O ₃				
Q.74	0	[2] Ag ₂ O ₃ chromium has + 6 oxidatior	2 0	[⁴] $\land_2 \circ_3$ [CPMT 2003]				
Q. / 4	[1] $K_2 Cr_2 O_7$	[2] CrCl ₃	[3] Cr(SO ₄) ₂	[4] None of these				
Q.75	Cryolite helps in	[2] 01013	$[5] O(3O_4)_2$	[4] None of these [BHU 2003]				
Q.75	[1] Lowering the mel	ting point	[2] Increasing the m					
			[2] Increasing the m					
Q.76	[3] Increasing the ele Lanthanide contract		[4] Decreasing the e	electrical conductivity				
Q.70			[2] f orbital an incon	[AMU 2000; BHU 2003]				
	[1] f-orbital electrons	an poor shielders of nuclear	[2] f-orbital an incon	npietery mied				
			0					
0 77		me out on the surface of at		a colutiona but not in coidin colution				
Q.77	What is the reason f		with copper ions in aikalin	e solutions but not in acidic solution. [AIEEE 2003]				
		s hydration protects copper	ions					
				NH_4^+ ions and NH_3 molecules are not				
	available	protons coordinate with an	intonia molecules forming	14 Ions and 14 1 ₃ molecules are not				
		ons insoluble Cu(OH) ₂ is pr	ecipitated which is soluble	e in excess of any alkali				
		e is an amphoteric substand						
Q.78	,	·		on dissolution in water. One mole of				
				noles of AgCl(s). The structure of the [AIEEE 2003]				
	[1] [Co(NH ₃) ₅ Cl]Cl ₂		[2] [Co(NH ₃) ₃ Cl ₃]. 2	NH ₃				

d & f Block

				d & f Block
Q.79	In the coordination compound, K ₄ [Ni(CN)	I oxidation state of nickel is		[AIEEE 2003]
	[1]-1 [2] 0	[3] + 1	[4] +2	
Q.80	The complex used as an anticancer agen	t is		[AIIMS 2003]
	[1] trans -[Co(NH ₃) ₃ Cl ₃]	[2] cis -[PtCl ₂ (NH ₃) ₂]		
	[3] cis-K ₂ [PtCl ₂ Br ₂]	[4] Na ₂ CO ₃		
Q.81	Among the following, which is not the π -bo	nded organometallic compound		[CBSE 2003]
	[1] (CH ₃) ₄ Sn	[2] Κ[PtCl ₃ (η ² -C ₂ H ₄)]		
	[3] Fe[η ⁵ -C ₅ H ₅] ₂	[4] $Cr(\eta^6 - C_6 H_6)_2$		
Q.82	According to IUPAC nomenclature sodium	n nitroprussied is named is		[CBSE 2003]
	[1] Sodium pentacyanonitrosyl ferrate (III)	[2] Sodium nitroferricya	nide	
	[3] Sodium nitroferrocyanide	[4] Sodium pentacyano	nitrosyl ferrate	e (II)
Q.83	Which one of the following octahedral com	plexes will not show geometric isom	erism (A and E	
	ligands)			[CBSE 2003]
0.04	[1] [MA ₅ B] [2] [MA ₂ B ₄]	[3] $[MA_3B_3]$	[4] [MA ₄ B	-
Q.84	The number of unpaired electrons in the c	-		[CBSE 2003]
	[1] Zero [2] 2	[3] 3	[4] 4	
Q.85	In the process of extraction of gold. Roast	- <u>-</u> , .	[X] + OH⁻	
	$[X] + Zn \rightarrow [Y] + Au$ Identify the complexe		*	[IIT JEE 2003]
	$[1] X = [Au(CN)_2]^-, Y = [Zn(CN)_4]^{2-}$	[2] X = [Au(CN) ₄] ³⁻ ,Y =	- · · · · · · · · · · · · · · · · · · ·	
	$[3] X = [Au(CN)_2]^-, Y = Zn(CN)_6]^{4-}$	$[4] X = [Au(CN)_4]^{-}, Y =$	[Zn(CN) ₄] ^{2–}	
Q.86	(Me) ₂ SiCl ₂ on hydrolysis will produce			[IIT JEE 2003]
	[1] $(Me)_2 Si(OH)_2$ [2] $(Me)_2 Si = 0$		-	
Q.87	Mixture X = 0.02 mol of $[Co(NH_3)_5SO_4]Br$		vas prepared	in 2 litre of solution
	1 litre of mixture X + excess $AgNO_3 \rightarrow Y$.			
	1 litre of mixture X + excess $BaCl_2 \rightarrow Z$	\sim		
	Number of moles of Y and Z are		[4] 0 00 0	[IIT JEE 2003]
~ •••	[1] 0.01,0.01 [2] 0.02.0.01	[3] 0.01, 0.02	[4] 0.02. 0	
Q.88	Magnetic moment of $[Cu(NH_3)_4]^{2+}$ ion is [1] 1.414 [2] 1.73	[3] 2.23		sthan PET 2003]
Q.89	[1] 1.414 [2] 1.73 The possible number of optical isomers in		[4] 2.38	[MP PET 2003]
Q.09	[1] 2 [2] 3	[3] 4	[4] 6	
Q.90				[MP PMT 2003]
Q.90	The correct order of hybridisations of central dep 2 dep 3 ep 2 and 2^3	[2] sp ³ , sp ³ , sp ³ d and s	-	
	[1] dsp ² , dsp ³ , sp ² and sp ³			
	[3] dsp ² , sp ² , sp ³ and dsp ³	[4] dsp^2 , sp^3 , sp^2 and dsp^2	lsp ³	
Q.91	What is the structural formula of lithium ter			[MP PMT 2003]
	[1] $AI[LiH_4]$ [2] $AI_2 [LiH_4]_3$	•	[4] Li[AlH]	4] ₂
Q.92	The oxidation state of Fe in the complex [Fe(CO) ₅] is		[MP PMT 2003]
	[1] -1 [2] +2	[3] +4	[4] Zero	
Q.93	Ligands. in complex compounds			[MP PMT 2003]
	[1] Accept e ⁻ -pair	[2] Donate e ⁻ -pair		
	[3] Neither accept e ⁻ -pair nor donate	[4] All of these happen		
Q.94	The correct name of $[Pt(NH_3)_4Cl_2]$ [PtCl ₄]	is		[MP PET 2003]
	[1] Tetra ammine dichloro platinum (iv) tetr			
	[2] Dichloro tetra ammine platinium (iv) tet			
	[3] Tetrachloro platinum (ii) tetra ammine p	,		
	[4] Tetra chloro platinum (ii) dichloro tetra a			
0.05				
Q.95	Which one of the following has largest nur	_		[AIEEE 2004]
	$[1][Co(en)_2Cl_2]^+$ [2][Co(NH ₃) ₅ C	CI] ²⁺ [3] [Ir(PR ₃) ₂] [(H(CO)]	[4] [Ru(NH	¹ 3 ¹ 4 ¹ 2 ¹ 2 ¹

Q.96	The correct order of m	agnetic moments (spin only	values in B.M.) among	is :	
	[1] [Fe(CN) ₆] ⁴⁻ > [CoC	;I ₄] ^{2–} > [MnCI ₄] ^{2–}	[2] [MnCl ₄] ^{2–} > [Fe($(CN)_6]^{4-} > [CoCl_4]^2$!
	[3] [Fe(CN) ₆] ^{4–} > [Mn0	$[Cl_4]^{2-} > [CoCl_4]^{2-}$	[4] [MnCl ₄] ^{2–} > [Co0	$[CI_4]^{2-} > [Fe(CN)_6]^{2-}$	4—
Q.97	Which one of the follow	wing complexes is an outer	orbital complex ?		[AIEEE 2004]
	[1] [Ni(NH ₃) ₆] ²⁺	[2] [Mn(CN) ₆] ^{4–}	[3] [Co(NH ₃) ₆] ³⁺	[4] [Fe(CN) ₆] ^{4–}
Q.98	Cerium (Z = 58) is an i incorrect ?	mportant member of the la	nthanoids. Which of the	following statmen	its about cerium is [AIEEE 2004]
	[1] Cerium (IV) acts as	an oxidizing agent			
		ate of cerium is more stable	e than the +4 oxidation	state	
		ate of cerium is not known			
		tion states of cerium are +3			
Q.99		(a) reducing (b) oxidising (c)		properties shown b	y CN ⁻ ion towards [AIEEE 2004]
	[1] a, b, c	[2] b, c	[3] c, a	[4] a, b	
Q.100		ber of central metal atom in	• •		[AIEEE 2004]
		anionic lignads bonded to		\mathbf{C}	
		nds around a metal ion bond			
	[3] The number of ligar	nds around a metal ion bond	ded by sigma and pi-bor	nds both	
		nds around a metal ion bond			
Q.101		an army while at Alps during forms. White metallic tin bu	-		-
	[1] An interaction with	water vapour contained in th	he humid air		
	[2] A change in the cy	rstalline structure of tin	7		
	[3] A change in the par	rtial pressure of oxygen in t	he air		
	[4] An interaction with	nitrogen of the air at very lov	w temperature		
Q.102	The valence shell elec	tronic configuration of Cr ²⁺ i		-	rissa JEE 2005]
	[1] 4sº3d ⁴	[2] 4s ² 3d ²	[3] 4s ² 3dº	[4] 3p ⁶ 4s ²	
Q.103	The main reason for larg	ger number of oxidation state	s exhibited by the actinoid		onding lanthanoids BSE PMT 2005]
	[1] Lesser energy diffe	rence between 5f and 6d or	bitals than between 4f a	nd 5d orbitals	
	[2] Larger atomic size	of actinoids than the lantha	noids		
	[3] More energy differe	ence between 5f and 6d orbi	tals than between 4f and	5d orbitals	
	[4] Greater reactive na	ture of the actinoids than the	e lanthanoids		
Q.104		pers of the first row transitior ad to have the highest third i			c numbers. Which BSE PMT 2005]
	[1] Vanadium (Z = 23)	[2] Chromium (Z = 24)	[3] Iron (Z = 26)	[4] Mangar	nese (Z + 25)
Q.105	Among the following pa	airs of ions. the lower oxidat	tion state in aqueous sol	ution is more stabl	le than the other in
					[AIIMS 2005]
	[1] TI ⁺ , TI ³⁺	[2] Cu ⁺ , Cu ²⁺	[3] Cr ²⁺ , Cr ³⁺	[4] V ²⁺ , VC) ²⁺
Q.106	The lanthnide contract	tion is responsible for the fac	ct that		[AIEEE 2005]
	[1] Zr and Y have abou	it the same radius			
	[2] Zr and Nb have sim	ilar oxidation state			
	[3] Zr and HF have abo	out the same radius			
	[4] Zr and Zn have the	same oxidation sate			

d & f Block

					d & f Block
Q.107	Which of the following factors may be regarded as the main cause of lanthanide contraction [AIEEE 2005]				
	[1] Poor shielding of one of 4f electron by another in the subshell				
	[2] Effective shielding of one of 4f electrons by another in the subshell				
	[3] poorer shielding of 5d electrons by 4f electrons				
	[4] Greater shielding of	5d electron by 4f electron			
Q.108	•	nave maximum number of unp	aired electrons		[BHU 2005]
	[1] Fe ³⁺	[2] Fe ²⁺	[3] Co ²⁺	[4] Co ³⁺	
	. ,	with a uninegative monodenta tron(s) in the nickel and geom	•	-	
	[1] two, tetrahedral	[2] one, square, planar	[3] two, square, pla	inar [4] d	one, tetrahedral
Q.110	Lanthanoid contraction is	s caused due to -			[AIEEE 2006]
[1] The appreciable shielding on outer electrons by 5d electrons from the nuclear charge					
	[2] The same effective nuclear charge from Ce to Lu				
	[3] The imperfect shielding on outer electrons by 4f electrons from the nuclear charge				
	[4] The appreciable shielding on outer electrons by 4f electrons from the nuclear charge				
Q.111 Identify the incorrect statement among the following: [AIEEE 2007]					
[1] The chemistry of various lanthanoids is very similar					
[2	2] 4f and 5f orbitals are e	qually shielded			
[3] d-Block elements show irregular and erratic chemical properties among themselves					
[4] La and Lu have partially filled d orbitals and no other partially filled orbitals.					
Q.112		' ing has a square planar geor			[AIEEE 2007]
	2-		2-		
	[1] $\left[\operatorname{NiCl}_{4}\right]^{2}$	[2] $[PtCl_4]^{2-}$ [3]	$[CoCl_4]^2$	[4] $[\text{FeCl}_4]^{2-}$	
	(At. nos. Co = 27, Ni = 28, Fe = 26, Pt = 78)				
Q.113	The actinoides exhibit more number of oxidation states in general than the lanthanoids. This is because				
	 [1] the actinoids are more reactive than the lanthanoids [2] the 5f orbitals extend further from the nucleus than the 4f orbitals [3] the 4forbitalsare more buried than the 5f orbitals [4] there is a similarity between 4f and 5f orbitals in their angular part of the wave function 				
	~	Answer I	(ey - 3		

Qus. Ans. Qus. Ans. Qus. Ans. 2,3 Qus. Ans. Qus. Ans.

Answer Key - 3