Solved Example

Q.1	The main intermediate fo	rmed in the reaction of pro	ppene with HBr in presenc	e of peroxide, is	
	[1] CH ₃ CH ₂ CH ₂ +	[2] CH ₃ -CH-CH ₂ + Br	[3] CH ₃ -CH-CH ₂ Br	[4] CH ₃ -CH-CH ₂ Br	
					Ans. [3]
Sol.	Reaction of propene with	th HBr in presence of pe	roxide is a free radical a	addition reaction, in t	this reaction
	CH ₃ -CH-CH ₂ Br is a stal	ble secondary free radical	l. So the answer will be [3]		
Q.2	The reaction of 2-chlorop	ropane with alcoholic KOI	His		
	[1] E1	[2] E2	[3] S _N ¹	[4] S _N ²	Ans. [2]
Sol.	The reaction of 2-chlorop	ropane with alcoholic KOI	His		
	CH ₃ -CH-CH ₃ alc. KOH CI	→ CH ₃ -CH=CH ₂ +KCI+H ₂		j	
	This is an elimination rea will be [2].	ction, since 2-chloropropa	ane is less ionised so it is a	an E2 reaction. Hence	e the answer
Q.3	Which of the following is	a true statement			
	[1] RCOOH is more stabl	e than RCOO-	50.		
	[2] RCOO- is more stable	than RCOOH			
	[3] RCOOH and RCOO-	do not show resonating st	ructures		
	[4] All of the above	-6),			Ans. [2]
Sol.	RCOO- is more stable th	an RCOOH due to resona	ance. So answer is [2]		
Q.4	The electron attracting s	pecie in the following is –			
	[1]-CN	[2] –NH ₂	[3]-NHR	[4]-NHCOR	Ans. [1]
Sol.		e or triple bonds are electr lone pair of electrons. So	ron attracting. Hence–CN the answer is [1].	is electron attracting a	and in rest of
Q.5	The possible mechanism	of addition reaction betwe	een ethene and bromine is	nonpolar medium wo	ould be
	[1] Free radical addition		[2] Carbene addition		
	[3] Electrophilic addition		[4] Nucleophilic addition	ſ	Ans [1]
Sol.	In non-polar solvent, the	addition of bromine to ethe	ene is explained by free ra	dical mechanism.	
Q.6	Which carbanion is less	stable than the other three	e -		
	[1] $\overset{\Theta}{CH}_2$ –NO $_2$	[2] $\overset{\Theta}{CH}_2$ –CHO	[3] $\overset{\Theta}{CH}_2$ – CH_3	[4] $\overset{\circ}{C}H_3$	Ans. [3]
Sol.	Due to + I effect of CH ₃ g	roup CH ₂ CH ₃ is less sta	able.		

on removal of proton gives a carbanion. The most stable carbanion should be **Q.7**

Ans. [3]

- In this case negatively charged carbon is present between two electron attracting groups. As such it is a stable Sol. carbanion.
- **Q.8** Most stable carbanion is

[3] R₂C=
$$\overset{\Theta}{C}$$
 H

Ans. [1]

- $HC \equiv \overset{\Theta}{C}$ is the most stable carbanion as it is formed easily [$\equiv C-H$] bond is more polar Sol.
- $\overset{\oplus}{C}H_2 O H \rightarrow CH_2 = \overset{\oplus}{O} H$ **Q.9**

The stability order of above structure is -

$$[3] I = II$$

Ans. [2]

- Sol. In IInd structure carbon completes its octet. Hence it is more stable
- Bond fission (I) $CH_4 \rightarrow CH_2 + H$ and (II) CH_2 →:CH₂ + H about (I) and (II) the false statement is Q.10
 - [1] CH, and :CH, both are free radicals

[2] Bond dissociation energy II > I

[3] CH, and :CH, have similar geometry

[4] Both bond fission are homolytic

[Ans. [3]

- The geometry of CH₂ is trigonal planar while the geometry of :CH₂ is linear and plane triangle. Sol.
- If CH₃-CH -CHO gives up proton the most-stable carbanion would be Q.11

$$CH_2$$
 CH_2 CH_3 CH_3 CH_4 CH_3 CH_4 CH_3 CH_5 CH_6 CH_7 CH_8 CH_8

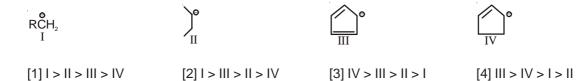
Sol. This carbanion shows resonance:

Q.12 pK₂ valus of HCN, CH₂COOH and HF respectively are 9.2, 4.7 and 3.2. Evaluate pK₂ for CN-, CH₂COO- and F-

[1] 9.2, 4.7, 16.0

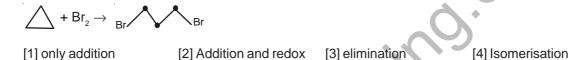
[2] 4.8, 9.3, 10.8

[3] 7.2, 3.7, 3.2

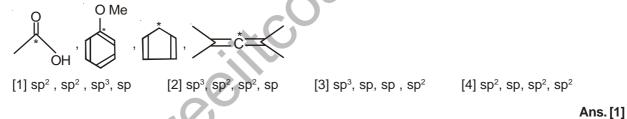

[4] 2.2, 2.3, 3.8

Sol. We know that : $pK_a + pK_b = 14$

$$\therefore pK_b = 14 - pK_a$$


 \therefore CN⁻(14–9.2), CH₃COO⁻(14 – 4.7), F⁻(14–3.2), or CN⁻(4.8), CH₃COO⁻(9.3), F⁻(10.8)

Q.13 The order of stability of the following carbanion is:


Ans. [4]

- **Sol.** I can have maximum 3 hyperconjugative structures, II have maximum 5, III have 2, IV have 1, conjugative structure. So answer is [4]
- Q.14 Classify the reaction:

Ans. [2]

- **Sol.** Br add to two carbon atom of the ring. Here C is oxidised and Br is reduced.
- Q.15 Correct set of hybridisation state of the starred carbon atom respectively is -

Sol. Represent ion of the correct set of hybridisation state of starred carbon atom is. [1]

Exercise # 1

Q.1	According to Kekule			
	[1] carbon is tetravalent			
	[2] Carbon can combine	with two monovalent and c	one bivalent atom	
	[3] Carbon can combine	with two bivalent atoms		[4] All of the above
Q.2	In the formation of proper	ne from propyl carbonium i	ion	
	[1] Addition of proton tak	es place	[2] Addition of hydride i	on takes place
	[3] Proton is eliminated		[4] Hydride ion is elimir	nated
Q.3	Number of free radicals for	ormed on removal of H-ato	om from C ₄ H ₁₀ is	
	[1] 1	[2] 2	[3] 3	[4] 4
Q.4	Specie (CH ₃) ₃ C ⁻ is			~O,
	[1] Carbanion	[2] Carbonium ion	[3] Carbene	[4] Carbocation
Q.5	Specie C ₆ H ₅ -CH=CH ⁺ is	more stable than		*
	[1] CH ₃ CH ₂ +	[2] (CH ₃) ₃ C ⁺	[3] CH ₃ CH ₂ CH ₂ +	[4] All of the above
Q.6	Shape of ethylene molec	cule is		
	[1] Tetrahedral	[2] Pyramidal	[3] Planar	[4] Linear
Q.7	The reason for the high r	eactivity of free radical is		
	[1] its ionic behaviour		[2] odd electrons prese	ent on it
	[3] electron pair present	on it	[4] none of the above	
Q.8	In elimination reaction			
	[1] one σ bond breaks an	d two new π bonds are for	med	
	[2] one π bond breaks an	d two new σ bonds are for	med	
	[3] two σ bonds break an	d a π bond is formed		
	[4] two π bonds break an	d a σ bond is formed		
Q.9	In electromeric effect, when	nen an electrophilic attack	ks on alkene, transference	e of take place
	[1] σ-electrons	[2] π -electrons	[3] σ - and π -electrons b	oth [4] none of the above
Q.10	Reaction of bromine with	an alkene is an example	of	
	[1] Elimination		[2] Electrophilic additio	n
	[3] Nucleophilic substitut	ion	[4] Free radical addition	ı
Q.11	In electromeric effect			
	[1] Heterolytic fission of	electron pair takes place		
	[2] Electron pair is transfe	erred between vicinal aton	ns	
	[3] Both the above			
	[4] None of the above			

Q.12	Which of the following is a true statement												
	[1] The reaction in which	n a π bond breaks and two	new σ bonds are formed	d is an addition reaction.									
	[2] The reaction in which	n two σ bonds break and a	new π bond is formed is	an elimination reaction									
	[3] Conversion of a com	pound in its isomer is a rea	action of intramolecular	change									
	[4] All of the above												
Q.13	In the reaction - R-CO-F	$R+NaHSO_3 \rightarrow R_2C(OH)SO$	₃ Na										
	[1] Electrophilic substitu	ution takes place by Na+	[2] Electrophilic addit	ion takes place by Na+									
	[3] Nucleophilic addition	n takes place by SO₃H⁻	[4] Nucleophilic addition takes place by SO ₃ ²⁻										
Q.14	Halogenation of alkanes	sis											
	[1] Electrophilic substitu	ution	[2] Nucleophilic substitution										
	[3] Free radical substitu	tion	[4] Oxidation										
Q.15	+I and -I effect of an ato	om is in comparison of											
	[1] Fluorine	[2] Alkyl radical	[3] Hydrogen	[4] Oxygen									
Q.16	Which of the following b	ehaves like a nucleophile											
	[1] ⁻ OH	[2] CN-	[3] ROH	[4] all of the above									
Q.17	Which of the following is	s a correct statement											
	[1] Inductive effect is she	own by the compounds wh	nich do not have single b	ond									
	[2] Electromeric effect is	s shown by the compound	which do not have doub	le or triple bonds									
	[3] Electromeric effect is	s shown by compounds or	nly when a reagent attac	eks it									
	[4] All of the above	,.XO											
Q.18	The structure of ter-buty	d carbonium ion is											
	[1] Pyramidal	[2] Trigonal planar	[3] Tetrahedral	[4] Square planar									
Q.19	State of hybridisation of	carbon atom number 2 in	1,2-butadiene is										
	[1] sp ³	[2] sp ²	[3] sp	[4] None of the above									
Q.20	Which of the following o	compounds is least acidic											
	[1] CF ₃ COOH	[2] CBr ₃ COOH	[3] CCl ₃ COOH	[4] CI ₃ COOH									
Q.21	Ethyl amine is more bas	sic than ammonia. Its reas	son is										
	[1] In ethyl amine ethyl (group attracts lone pair of	electrons present on niti	ogen atom									
	[2] Ethyl amine is more	soluble in water than amn	nonia										
	[3] In ethyl ammine, eth	yl group has +l effect											
	[4] In Ethyl amine ethyl	group has -I effect											
Q.22	Increasing order (least l	basic first) of basic strengt	th is shown by the set										
	[1] CINH ₂ , NH ₃ , CH ₃ NH ₂		[2] CINH ₂ , CH ₃ NH ₂ , NH ₃										
	$[3]\mathrm{NH_3},\mathrm{CINH_2},\mathrm{CH_3NH_2}$		[4] CH ₃ NH ₂ , CINH ₂ , N	H_3									
Q.23				oon. Bond length of all C–C bonds is C–C in the hydrocarbon will be									
	[1] 109°28'	[2] 100°	[3] 180°	[4] 120°									

Q.24	Which of the following	g compounds will give nuc	eleophilic substitution unimo	lecular (S _N ¹) most easily
	[1] Propyl chloride		[2] 2-chloropropane	
	[3] 2-chloro-2-methyl	propane	[4] 2-chloro-2-methyl b	outane
Q.25	Strongest acid in the	following is		
	[1] CH ₃ CH ₂ CH ₂ COOH		[2] BrCH ₂ .CH ₂ CH ₂ .CO	OH
	[3] CH ₃ CH ₂ CH(Br)CO	HC	[4] CF ₃ COOH	
Q.26	What is true for induc	tive effect		
	[1] It is permanently p	present in the compound		
	[2] It develops in the	compound at the time of a	ttack of a reagent	
	[3] It develops in the o	compound only when elect	tron attracting group is pres	ent
	[4] none of the above			
Q.27	The specie obtained a	after removing hydride ion	from methane molecule, is	
	[1] Methyl radical	[2] Carbonium ion	[3] Carbanion	[4] Methyl group
Q.28	For S _N ² reaction		Č	
	[1] Reaction rate does	s not depend on the conce	entration of nucleophile	9
	[2] Reaction rate does	s not depend on the conce	entration of reacting molecu	le
	[3] Reaction rate dep	ends on the concentration	of both reacting molecules	and nucleophile
	[4] Reaction rate ne nucleophile	ither depends on the co	oncentration of reacting m	olecules nor the concentration of
Q.29	Electromeric effect in	an organic compound is		
	[1] Temporary effect	[2] Permanent effect	[3] Temporary-permar	nent effect [4] None of these
Q.30	Which of the following	g classes of compounds do	oes not have π bond	
	[1] Aromatic hydrocal	bons	[2] Saturated hydrocal	rbons
	[3] Unsaturated hydro	carbons	[4] Arenes	
Q.31	In which of the followi	ng compounds carbon-ca	rbon bond length is shortest	i.
	[1] BrCH ₂ -CH ₂ Br	[2] C ₂ H ₅ OH	[3] C_2H_2	$[4] H_2C = CHCI$
Q.32	Which of the following	g statements is false		
	[1] Methyl radical is le	ess stable than ethyl radio	cal	
	[2] Benzyl radicals is	less stable than alkyl rad	ical	
	[3] Odd number of ele	ectrons are present on C-a	atom in a free radical	
	[4] C is sp ² hybridised	d in ⁺CH ₃		
Q.33	Atom or group which	does not show inductive e	effect is	
	[1] (CH ₃) ₃ C	[2] F	[3] H	[4] -CN
Q.34	In which of the followi	ng reactions free radicals	are not formed	
	[1] Electrolysis of an	aqueous solution of potas	ssium salt of a fatty acid	
	[2] By heating methar	ne with chlorine at 300–40	0°C	
	[3] Reaction of benze	ne with chlorine in the pre	sence of Fe	
	[4] Pyrolysis of propa	ne		

Q.35	Which of the following s	statements is true		
	[1] Reaction of ethyl iod	dide with KCN is S _N 1 react	tion	
	[2] Reaction of ethyl iod	lide with KOH (alc) is E ₁ r	reaction	
	[3] Reaction of 2-chloro	-2-methyl propane with e	thanolic sodium ethoxide is	E1 reaction
	[4] None of these			
Q.36	Ethylene has two types	of bonds (σ and π), which	h one of these two is strong	ger
	[1] σ-bond	[2] π -bond	[3] both are equally str	ong [4] None of these
Q.37	•	ant Hoff, the four valenc		towards four corners of a regular
	[1] 109°28'	[2] 104.5°	[3] 107.5°	[4] 90°
Q.38	Which is a false statem	ent		
	[1] Boiling point of salic	yl aldehyde is less than p	-hydroxy acetaldehyde	60
	[2] m-nitrophenol is moi	re acidic than p-nitrophen	ol	
	[3] C-C single bond len length in ethane	gth between phenyl and ı	methyl groups in toluene is	shorter than the C-C single bond
	[4] None of these			
Q.39	Enolic from of acetone	contains		
	[1] 9σ bonds, 1π bond a	ınd 2 lone pairs	[2] 8σ bonds, 2π bonds	and 2 lone pairs
	[3] 10σ bonds, 1π bond	and 1 lone pairs	[4] 9σ bonds, 2π bonds	and 1 lone pairs
Q.40	Maximum inactive free	radical in the following is		
				•
	[1] Ě	[2] C ₆ H ₅ C H ₂	$[3](C_{6}H_{5})_{3}\dot{C}$	[4] Č H ₃
Q.41	Specie used in aromati	c sulphonation is		
	[1] SO ₂ ⁺	[2] HSO ₄ -	[3] H ₃ SO ₄ +	[4] SO ₃
Q.42	Which of the following w	vill form a free radical mo	st easily	
	[1] Isopropyl benzene	•	[2] Ethane	
	[3] 1,2-diphenyl ethane		[4] Hexaphenyl ethane	
Q.43	Which of the following s	statements is false		
	[1] p-chloro benzaldehy	de gives nucleophilic sub	estitution easily as compare	ed to chlorobenzene
	[2] Formation of aniline nucleophilic substitute	•	penzene with ammonia in p	resence of cuprous oxide is a
	[3] C-Cl bond in chlorol	oenzene is shorter than C	-Cl bond in chloro-ethane	
	[4] Allyl chloride gives n	ucleophilic substitution re	eaction with difficulty as co	mpared to chlorobenzene
Q.44	Pair of nucleophiles in t	he following is		
	[1] Br ⁺ and SO ₃	[2] ROH and SnCl ₂	[3] $\stackrel{^+}{RNH_3}$ and $SnCl_2$	[4] ZnCl ₂ and SnCl ₄

Q.45 Conversion of phenyl hydroxyl amine to p-amino phenol is an example of

[1] Molecular rearrangement

[2] Electrophilic substitution

[3] Tautomerism

[4] Nucleophilic substitution

Q.46 C-H bond length in ethane, ethene, ethyne is

[1] Equal in all the three compounds

[2] Maximum in ethane

[3] Maximum in ethene

[4] Maximum in ethyne

Q.47 The correct order of basic character for

(a) CH₃NH₂

(b) $(CH_3)_2NH$

[3] $(CH_3)_3N$ is :-

[1] a = b = c

[2] c < b > a

[3] a > b > c

[4] c = b > a

Q.48 Supposing the geometry of CH₃ free radical is planar, the unpaired electron would be in the

[1] 2s orbital

[2] 2p_v orbital

[3] $2p_v$ orbital

[4] 2p_z orbital

 $\mathsf{RCH_2CI} + \overset{\Theta}{\mathsf{OH}} \to \ \mathsf{RCH_2OH} + \overset{\Theta}{\mathsf{CI}} \ \text{reaction follows S}_{\mathsf{N}} 2 \ \text{mechanism.} \ \text{Which of the following species will be}$ Q.49

formed as an intermediate

[1] Carbonium ion

[2] Carbanion

[3] Pentavalent carbon in the transition state

[4] Carbene

Q.50 Least stable carbanion is:

Q.50	Le	Least stable carbanion is : [1] $\overset{\circ}{C}H_3$ [2] $\overset{\circ}{\Theta}$ ⊕ $\overset{\circ}{C}H_2$ [3] $\overset{\circ}{\oplus}$ $\overset{\circ}{\Theta}$ $\overset{\circ}{C}H_2$																						
	[1]	$\overset{\scriptscriptstyle{\Theta}}{C}H_3$				[2]	Θ ⊕	-CH₂			3] ⊕	Θ-C	H ₂		[4]	CH ₃ -	-℃H ₂							
							•		C															
							(
					Ç,		5																	
					1																			
				1	7													18 19 20 2 3 4 38 39 40 2 1 3						
Qus.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20				
Ans.	4	3	4	1	4	3	2	3	2	2	2	4	4	3	3	4	3	2	3	4				
Qus.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39					
Ans.	3	1	4	4	4	1	2	3	1	2	3	2	3	3	3	1	1	2	1	3				
Qus.	41	42	43	44	45	46	47	48	49	50														
Ans.	4	4	4	2	1	2	2	4	3	3														

Exercise # 2

Q.1	In which of the following compounds not all the atoms show zero formal charge:
Q . 1	in winding the following compounds not all the atoms show zero formal onarge.

[1] CH₃-CN

[2] CH₂-NC

 $[3](CH_3)_3N$

[4] CH₃-ONO

Q.2 CH-CH₃ is the anhydride of

[1] 1,4-Butane diol

[2] 1,2-Butane diol

[3] 2,3-Butane diol

[4] 1,3,-Butane diol

Q.3 What is the geometry of the product of CH₂CHO and HCN:

[1] Plane triangle

[2] Trigonal pyramidal

[3] Tetrahedral

[4] Linear

Q.4 Which one is Lewis acid:

[1] Mercaptide ion

[2] Isopropyl carbanion [3] Diethyl sulphide

[4] Ferric chloride

Q.5 How many primary, secondary and tertiary free radicals can be written for C₄H₆

Р	S	Т
[1] 1	1	2
[2] 2	1	1
[3] 2	0	1
[4] 1	2	1

Proton donation tendency becomes minimum if E in the E-COOH is replaced by **Q.6**

[1]-CHCI,

[2] -CH2CI

[3] -CCI,

[4] -CHF₂

Q.7 Singlet methylene is

[1] Lewis base

[2] Diamagnetic

[3] Nucleophile

[4] Paramagnetic

Q.8 A group or atom exhibits inductive effect through

[1] π -Electrons

[2] σ-Electrons

[3] σ and π electrons

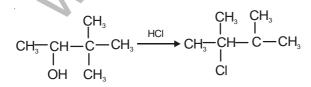
[4] None of the above

Which of the following reactions is classified as substitution reactions Q.9

Reactant

Reagent

Product


CH₃CH=N.NH₂

[3] (CH₃)₃C-OH

(CH₂)₂C=CH₂

[4] None of the above

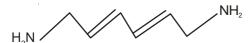
Q.10 Which of the following mechanistic step does not involve for the reaction

[1] Protonation of OH

[2] Elimination of water molecule

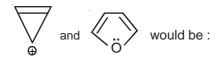
[3] Attack of Cl-on the carbocation formed

[4] Attack of Cl⁻ on the rearranged carbocation


Q.11 Maximum resonating structure can be formulated for the free radical [Where $\phi = C_6 H_5$]

[1] $\phi - \dot{C}H - \phi$

[2] $CH_2 = CH - \dot{C}H_2$ [3] $\phi - \dot{C}H_3$


[4] $\phi - \dot{C}H - CH_{\alpha}$

Q.12 Number of σ and π bonds in the following compounds would be :

- [1] 19 σ and 3 π
- [2] 19σ and 2π
- [3] 18σ and 2π
- [4] 17 σ and 2π

Q.13 Number of π -electrons present in the species :

- [1] 2, 4
- [2] 1, 4
- [3] 2,6
- [4] 1, 6
- **Q.14** Even on addition of proton the hybridisation state of central atom remains unaltered :
 - [1] OH-
- [2] NH₂-
- [3] CH₃-
- [4] All of these
- Q.15 Which of the following acids has the smallest dissociation constant?
 - [1] CH₃CHFCOOH
- [2] FCH, CH, COOH
- [3] BrCH, CH, COOH
- [4] CH, CHBrCOOH
- Q.16 Formic acid is considered as a resonance hybrid of the four structures

Which of the following order is correct for the stability of the four contributing structures.

- [1] I > II > III > IV
- [2] I > II > IV > III
- [3] I > III > II > IV
- [4] | > |V > |I| > |I|
- Q.17 Examine the followings two structures for the anilinium ion and choose the correct statement from the ones given below

- [1] II is not an acceptable canonical structure because carbonium ions are less stable than ammonium ion
- [2] Il is not an acceptable canonical structure because it is non-aromatic
- [3] II is not an acceptable canonical structure because the nitrogen has 10 valence electrons
- [4] II is an acceptable canonical structure
- Q.18 A nucleophile must necessarily have
 - [1] an overall positive charge

[2] an overall negative charge

[3] an unpaired electron

- [4] a lone pair of electrons
- Q.19 Which of the following should exert greater hyperconjugative effect than the remaining three
 - [1] CH -
- $[2](CH_3)_3C-$
- [3] (CH₃)₂CH–
- [4] C₂H₅-
- Q.20 Which of the following reactions does not involve nucleophile addition

$$[1] \xrightarrow{\mathsf{H}} \mathsf{C} = \mathsf{O} + \mathsf{NH}_2 - \mathsf{NH}_2 \longrightarrow \xrightarrow{\mathsf{C}} \mathsf{H} \xrightarrow{\mathsf{C}} \mathsf{EN} - \mathsf{NH}_2 + \mathsf{H}_2 \mathsf{O} \ [2] \xrightarrow{\mathsf{H}} \mathsf{C} = \mathsf{O} + [\mathsf{O}] \longrightarrow \xrightarrow{\mathsf{HO}} \mathsf{C} = \mathsf{O}$$

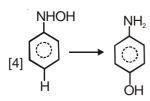
$$[3] \begin{picture}(100,0) \put(0,0){\oolimits} \pu$$

Q.21	Which of the following is	the process of cleavage o	of the covalent bond in Ko	olbe electrolytic synthesis					
	[1] Heterolysis	[2] Free radical fission	[3] Hydrolysis	[4] Ionization					
Q.22	Which of the following is ethylene	s the reactive intermediat	e species formed durinç	g Markownikoff addition of HCl on					
	[1] Vinyl chloride	[2] Ethyl cation	[3] Ethyl free radical	[4] Ethyl carbanion					
Q.23	Which of the following mechanism	should be more favoura	able condition for unim	olecular nucleophilic substitution					
	[1] Presence of a primary	/ alkyl halide substrate	[2] Presence of a polar	medium					
	[3] Presence of a peroxic	le	[4] Presence of a neutr	al nucleophile					
Q.24	Formation of propanenitr reaction mechanism	ile by the reaction of potas	sium cyanide on ethyl ch	loride is an example of the following					
	[1] S _N 1	[2] E2	[2] S _N 2	[4] E1					
Q.25	Select the set of the subs	stituent groups, which exe	rt M and negative induct	ive effects					
	[1] -CCl ₃ , -COOH, -CN	[2] -CH ₃ , -Cl, -F	[3] -SO ₃ H, -OCH ₃ , -C	HO [4] -NO ₂ , -COCI, -NH ₂					
Q.26	Which of the following sp	ecies sulphonates the be	nzene ring?	O					
	[1] SO ₃ ⁻²	[2] SO ₂	[3] SO ₃	[4] SO ₄					
Q.27	How does hydrobromic a	cid react with propene in	the presence of small am	ount of oxygen					
	[1] Through alkyl free rad	ical intermediate	[2] According to Marko	wnikoff rule					
	[3] Through ionic mechar	nism	[4] Through free radica	l mechanism					
Q.28	Which of the following is	the decreasing order of th	ne ease of S _N 2 mechanis	m in the alkyl halides given below					
	(I) (CH ₃) ₃ C–CI	(II) CH ₃ -CI	(III) CH ₃ CH ₂ -CI	(IV) (CH ₃) ₂ CH–CI					
	[1] I > III > IV	[2] III > IV > II > I	[3] II > III > IV > I	[4] > > > V					
Q.29	Which of the following is	not properly matched							
	[1] $(CH_3)_3CBr \xrightarrow{\circ} H (C$	H ₃) ₃ C–OH	S _N I Reaction						
	[1] $(CH_3)_3CBr \xrightarrow{\circ} (CG)$ [2] $C_6H_6 + RX \xrightarrow{AICI_3} CG$	C ₆ H ₅ -R	Electrophilic addition						
	[3] CH ₂ —CH ₃ ————————————————————————————————————	CH ₂ —CH ₃	Free radical addition						
	CH=CH ₂	◆ CH₂ -CH₂Br							
	$[4] CH_3CH_2CH_3 \xrightarrow{hv} C$	◆ CH₂ -CH₂Br CH₃CH-CH₃	Free radical substitution	on					
	+Cl ₂	CI							
Q.30	Which of the following re	actions can be used to co	nvert an alkyl halide to a	n alkanol					
	[1] Elimination		[2] Nucleophilic substit	tution					
	[3] Dehydrohalogenation		[4] Nucleophilic addition	n					
Q.31	Formation of an alcohol l	by the reaction of aqueous	s caustic alkali on ter-but	yl bromide is an example of					
	[1] bimolecular nucleoph	ilic substitution	[2] nucleophilic additio	n					
	[3] unimolecular nucleop	hilic substitution	[4] electrophilic substit	ution					
Q.32	Carbanion can be formed	lby							
	[1] homolytic fission of ca	rbon-carbon bond	[2] heterolytic fission of carbon-metal covalent bond						
	[3] heterolytic fission of ca	arbon-halogen covalent bo							
		ion from carbon-hydroger							

Q. 33		irst attacks the carbonyl		eaction of carbonyl compounds and the
	[1] Substitution, elec	trophile	[2] Addition, nucleo	phile
	[3] Addition, electrop	hile	[4] Substitution, nuc	cleophile
Q.34	Which of the followin	g compounds should hav	e lower rate of nucleophilic	c addition than the remaining three
	[1] Methanal	[2] Ethanal	[3] Propanone	[4] Propanal
Q.35	Addition of HI on pro	pene in the presence of a	a peroxide takes place by t	he following mechanism
	[1] Free radical addit	ion	[2] Electrophilic sul	bstitution
	[3] Electrophilic addi	tion	[4] Nucleophilic add	dition
Q.36	Addition of hydrochlo	oric acid on vinyl chloride	undergoes the following m	echanism
	[1] Electrophilic addi	tion	[2] Peroxide effect	
	[3] Markownikoff's fir	st rule	[4] Nucleophilic add	dition
Q.37	What is the cause of for one molecule	the experimental value o	f molecular weight of aceti	c acid being twice the value calculated
	[1] Intramolecular bo	nding	[2] Molecular rearra	ingement
	[3] Intermolecular hyd	drogen bonding	[4] Condensation p	olymerization
Q.38	When a hydrogen at	om of ammonia is substi	tuted by a methyl group, th	nere is
	[1] a decrease in ste	ric hindrance effect	[2] a change in the	type of hybridization on nitrogen atom
	[3] an increase in the	e base strength	[4] an increase in the	ne acid strength
Q.39	Acetamide is neutra	I to litmus due to		
	[1] positive inductive	effect of methyl group	[2] formation of wea	ak acid and weak base by hydrolysis
	[3] resonance which	decreases proton-donor	as well as proton-acceptor	rcapacity
	[4] its formation by re	eaction of acetic acid and	l ammonia	
Q.40	Which of the following	ng is the basic cause of e	ectrophilic substitution on	benzene ring
	[1] Presence of an e	lectrophile attracting aror	natic sextet	
	[2] Saturation of the	ring	[3] Presence of thre	ee double bonds
	[4] Presence of three	e pi bonds		
Q.41	Benzene can be con	verted to toluene by the a	attack of the following spec	cies
	[1]-CH ₃	[2] [®] CH ₃	[3] CH ₃ .	[4] : $\overset{\circ}{C}H_3$
Q.42	Both the species of v	which of the following pair	s do not exhibit electrophil	lic behaviour
	[1] H ₃ $\overset{\oplus}{\text{O}}$, $\overset{\oplus}{\text{NH}}_{4}$	[2] BF ₃ , CI	[3] AICI ₃ , SO ₃	[4] RNH ₂ , $\overset{\oplus}{\text{CH}}_3$
Q.43	The reaction of Grigr	nard reagent on formalde	hyde substrate is of the foll	owing type
	[1] Nucleophilic addi	tion	[2] Electrophilic add	dition
	[3] Electrophilic subs	stitution	[4] Free radical sub	estitution
Q.44	Which of the following condition	ing mechanism is not po	ossible for the reactions of	of chlorine on toluene under different
	[1] Free radical addit	ion	[2] Electrophilic add	dition
	[3] Electrophilic subs	stitution	[4] Free radical sub	ostitution
Q.45	Both the species of v	which of the following pair	s cannot behave as electro	ophiles
	[1] Nitronium ion, bro	monium ion	[2] Sulphur trioxide	, formyl cation
	[3] Anilinium ion, hyd	droxonium ion	[4] Ethyl carbocation	on, acetyl carbocation

- Q.46 Which of the following is more stable alkene than the remaining three towards electrophilic addition
 - [1] Ethylene
- [2] Methylethylene
- [3] trans β-butylene
- [4] cis β-butylene

- Q.47 Which of the following is not properly matched
 - [1] $CH_3CO-N: \rightarrow CH_3N=C=O$


Hofmann bromide reaction

$$\begin{array}{c} \text{[2]}\,\text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_3 \!\rightarrow\! \text{CH}_3 \!-\! \text{CH} -\! \text{CH}_3 \\ \text{CH}_3 \end{array}$$

Isomerisation

[3]
$$CH_3CH_2CH_2 \xrightarrow{\oplus} CH_2 \rightarrow CH_3 \xrightarrow{\oplus} CH_2CH_3$$

⊕ H Transfer

Intramolecular rearrangement

- Q.48 Which of the following is the most appropriate reason for the boiling points of ethanoic acid and ethyl ethanoate being 118° and 77°, respectively
 - [1] Difference in resonance stabilization
- [2] Difference in crystal lattice energy
- [3] Difference in molecular weight
- [4] Difference in intermolecular H-Bonding and ionization

Qus.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Ans.	2	3	3	4	2	2	2	2	2	3	1	2	3	4	3	1	3	4	2	2
Qus.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
Ans.	2	2	2	3	1	3	4	3	2	2	3	2	2	3	3	1	3	3	3	1
Qus.	41	42	43	44	45	46	47	48									•			
	2	1	1	2	3	3	3	4												

Exercise # 3

Q.1 Polarization of electrons in acrolein may be written as

[I.I.T. 1988]

[1]
$${}^{\delta_{-}}_{CH_{2}} = CH - {}^{\delta_{+}}_{CH} = O$$

[2]
$${}^{\delta-}_{CH_2} = {}^{\delta+}_{CH} - CH = O$$

[3]
$$\overset{\delta^-}{C}H_2$$
 =CH–CH= $\overset{\delta^+}{O}$

[4]
$$CH_2 = CH - CH = 0$$

Q.2 The number of sigma and pi bonds in 1-butene -3-yne are

[I.I.T. 1989]

[2] 7 sigma and 3pi

[4] 6 sigma and 4 pi

Q.3 The compound in which C uses its sp³ hybrid orbitals for bond formation is

[I.I.T. 1989]

[4] CH, C HO

Q.4 Indicate the correct statement

[P.M.T.(MP) 1990]

[1]
$$C_2H_5H_3OH$$
 is acidic

Q.5 $CH_3-C\equiv C-CH=CH_2$. The maximum number of linearly linked carbon atoms in the above compounds are

[I.S.M. 1994]

[4] 2

Q.6 Most stable carbonium is

[B.H.U. 1994]

Q.7 Which of the following statements is false about resonance contributing structures

[C.B.S.E. 1994]

- [1] Contributing structures contribute to the resonance hybrid in proportion of their energies
- [2] Equivalent contributing structures make the resonance hybrid very stable
- [3] Contributing structures are less stable than the resonance hybrid
- [4] Contributing structures represent hypothetical molecules having no real existence

Q.8 The carbon-carbon single bond distance in 1,2-dimethyl acetylene and ethane is 1.40Å and 1.54 Å respectively.

The shorter C-C bond distance of the former is best explained in terms of

[I.C.S. Pr. 1994]

- [1] Inductive effect
- [2] Its acidic nature
- [3] Hyperconjugation
- [4] Hybridisation

Q.9 In which of the compounds given below, there are carbon atoms having more than one type of hybridization (sp, sp², sp³) [C.B.S.E. 1995]

Q.10 Examine the following common chemical structures to which simple functional groups and often attached

(iv) CH₂CH₂CH₂CH₃-

Which of these systems have essentially planar geometry

[C.B.S.E. 1995]

[1] (iv)

- [2] (i) and (v)
- [3] (ii) and (iii)
- [4] (i), (iii) and (iv)
- Q.11 Which one of the following species is isoelectronic with ammonia

[I.C.S. Pr. 1995]

- [1] CH₃
- [2] CH₃+
- [3] CH₃-
- [4]:CH₂

Q.12 In the following reactions

[LC.S. Pr. 1995]

(a) CH_3 – $N=N-CH_3$ $\xrightarrow{\Delta}$

(b) CH₂N₂ ___hv___

(c) $(CH_3)_3C-OH+H^+ \rightarrow$

(d) $(CH_3)_3C-CI + AICI_3$

The reactive intermediates formed would be

- (a)
- (b)

(c)

(d)

- [1] CH₃*
- :CH,

- (CH) C
- $(CH_3)_3C^+$

- [2] CH₃-
- CH,

- (CH₃)₃C
- $(CH_2)_2C^+$

- [3] CH₃*
- :CH,

- (CH₃)₃C⁴
- $(CH_3)_3C^+$

- [4] CH₃*
- :C

- $(CH_3)_3C$
- $(CH_3)_3C^{-1}$

Q.13 Which statement is correct

[R.A.S. Pr. 1995]

- [1] Inductive effect is transmitted through pi-bonds
- [2] Mesomeric effect is transmitted through pi-bonds
- [3] Inductive effect is a field effect
- [4] Mesomeric effect involves both sigma and pi-bonds
- Q.14 Correct order of stability of carbocations is

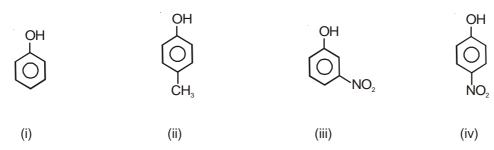
[R.A.S. Pr. 1995]

[1]
$$CH_2 = CH - \overset{+}{C}H_2 > CH_3\overset{+}{C}H_2 > C_6H_5\overset{+}{C}H_2 > (CH_3)_3\overset{+}{C}$$

$$[2] C_6 H_5 \overset{+}{C} H_2 > C H_2 = \overset{+}{C} H - C H_2 > (C H_3)_3 \overset{+}{C} > C H_3 \overset{+}{C} H_2$$

[3]
$$(CH_3)_3 \stackrel{+}{C} > CH_3 \stackrel{+}{C}H_2 > CH_2 = CH - \stackrel{+}{C}H_2 > C_6H_5 \stackrel{+}{C}H_2$$

[4]
$$C_6H_5\overset{+}{C}H_2 > CH_3\overset{+}{C}H_2 > (CH_3)_3\overset{+}{C} > CH_2 = CH-\overset{+}{C}H_2$$


Q.15 An example of carbanion intermediate is

[R.A.S. Pr. 1995]

- [1] Based catalysed halogenation of an aliphatic ketone [2] Nitration of benzene
- [3] Addition of HZ at double bond
- [4] Anti-Markownikoff's addition of HX across a double bond

Q.16 In the following compounds

[I.I.T. 1996]

The correct order of acid strength is

- Q.17 Pair of groups exerting (-I) effect is
 - [2] –NO₂ and –CI [3] -Cl and -CH₃ [4] -CH, and -C,H,
- [1] –NO₂ and –CH₃
- **Q.18** Which of the following pairs represent the phenomenon of resonance [I.C.S. Pr. 1997]

Q.19 The basic character of substituted anilines (I to IV) are such that [I.C.S. Pre 1997]

[R.A.S. Pr. 1996]

The order of ease of leaving group would be Q.20

[I.I.T. 1997]

- Q.21 n-Butyl bromide is converted into isobutyl bromide by heating the compound with anhydrous AICI₃. The intermediate formed in the isomeric change is [I.C.S. Pr. 1997]
 - [1] Primary butyl carbocation [2] Secondary butyl carbocation
 - [3] Primary and secondary butyl carbocation [4] Secondary butyl free radical
- Q.22 The true order of [-I] effect is [C.B.S.E. 1998]
- [3] $-N^+R_3 > F > OR$ $[1] -N^+ R_3 > OR > F$ [2] $F > -N^+R_3 > -OR$ [4] OR > $-N^{+}R_{3}$ > F
- Q.23 Which of the following compound on reaction with acetone gives the product containing > C=N - grouping

[1]
$$C_6H_5NH_2$$
 [2] $(CH_3)_3N$ [I.I. 1998] [3] $C_8H_8NHC_8H_5$ [4] $C_8H_8NHNH_2$

Q.24 Which of the following reactions is not usually stereospecific [R.A.S. 1998]

[1] $S_{N}1$

[2] Free radical substitution

[3] E2

[4] Hydrogenation with H₂/Ni

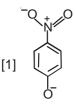
Q.25 Electrophile is: [B.H.U. 1998]

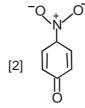
[1] H₂O

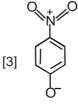
[2] NH₂

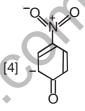
[3] AICI₂

 $[4] C_2 H_5 N H_2$


Q.26 Heterolytic fission of an organic covalent bond gives only [MP.P.M.T. 1998]


[1] Free radicals


[2] Both cation and anion [3] Only cation


[4] Only anion

Q.27 The most unlikely representation of resonance structures of p-nitrophenoxide ion is [I.I.T. 1999]

Q.28 A solution of (+) 2-chloro-2-phenyl ethane in toluene racemises slowly in presence of small amount of SbCl₅ due to the formation of [I.I.T. 1999]

[1] Carbanion

[2] Carbene

[3] Free radical

[4] Carbocation

Which of the following has the most acidic proton Q.29

[Roorkee Pr. 1998]

[1] CH, COCH,

[2] (CH₃)₂ C=CH₂

[3] CH₃COCH₃COCH₃

[4] (CH₃CO)₃CH

Which one of the following (C-H) bonds is the weakest for homolytic fission Q.30

[I.C.S.Pr. 1999]

[1] C₆H₅-H

[2] C₆H₅CH-H

[3] CH₃-H

 $[4](C_6H_5)_3C-H$

Q.31 Consider the following statements [I.C.S.Pr. 1999]

- (a) CH₃O $\overset{\oplus}{\text{CH}}_3$ is more stable than CH₃ $\overset{\oplus}{\text{CH}}_3$
- (b) $\operatorname{Me_2}^{\stackrel{\oplus}{\mathsf{C}}}$ is more stable than $\operatorname{CH_3CH_2}^{\stackrel{\oplus}{\mathsf{C}}} \operatorname{H_3}$
- (c) $CH_2 = CH \overset{\oplus}{C}H_2$ is more stable than $CH_3CH_2 \overset{\oplus}{C}H_2$ (d) $CH_2 = \overset{\oplus}{C}H$ is more stable than $CH_3 \overset{\oplus}{C}H_2$

of these statements

[1] a and b are correct

[2] c and d are correct

[3] a, b, and c are correct

[4] b, c and d are correct

Q.32 Consider the following carbocations [I.C.S.Pr. 1999]

The relative stabilities of these carbocations are such that

Q.33 Consider the following compounds

[I.C.S. Pr. 1999]

- (a) CH_2N_2
- (b) $CH_2=C=O$
- (c) CH₂I₂

Those compounds which would generate carbene on exposure to ultraviolet light include

- [1] a, b and c
- [2] a and c
- [3] a and b

[4] b and c

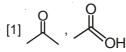
Q.34 Carbon atom in the compound (CN)₄C₂ are - [Roorkee Scr. 1999]

- [1] sp-Hybridised
- [2] sp²–Hybridised
- [3] sp and sp² Hybridised [4] sp, sp² and sp³ hybridised
- Q.35 In which of the following, dehydration under acidic condition is easiest:

[I.I.T. Screening 2000]

[4] NH₂-

Q.36 Among the following, the strongest base is [LLT. Screening 2000]


- [1] C₆H₅NH₂
- $[2] p-NO_2-C_6H_4NH_2$
- [4] C_EH_ECH₂NH₂

Q.37 Which of the following has the highest nucleophilicity? [I.I.T. Screening 2000]

[1] F-

- [2] OH-

Q.38 Which of the following pairs are resonating structures with respect to one another [RPMT 2001]

Consider the following reaction Q.39

[I.I.T. Scr. 2002]

$$H_3C-CH-CH-CH_3+\dot{B}r \rightarrow X+HBr$$
 I
 D
 CH_3

Identify the structure of the major product X

Which of the following is a pair of nucleophiles Q.40

[R.P.E.T. 2002]

- [1] Br, BF₃
- [2] $C_2H_5S^-$, N [3] $ZnCl_2$, $CH_3 \oplus$
- [4] RMgX, CI⊕

Q.41 How many π -bonds are present in naphthalene [R.P.M.T. 2002]

- [2] Two
- [3] Six
- [4] Four

Q.42 The most reactive nucleophile is: [AIIMS 2003]

- [1] CH₃O-
- [2] C₆H₅O⁻
- [3] (CH₃)₂CHO⁻
- [4] (CH₃)₃CO⁻

Rate of the reaction $R-C \stackrel{\frown}{\swarrow} + Nu^{-} \longrightarrow R-C \stackrel{\bigcirc}{\longleftrightarrow} + Z^{-}$ is fastest when Z is Q.43

- [AIEEE 2004]

- [1] OCOCH₃
- [2] NH₂
- [3] OC₂H₅
- [4] CI

Q.44 Which one of the following does not have sp² hybridised carbon [AIEEE 2004] [1] Acetamide [2] Acetic acid [3] Acetonitrile [4] Acetone Q.45 The strongest base among the following is -[AIIMS-2004] [3] [4] Q.46 The compound having only primary hydrogen atoms is -[AIIMS-2004] [1] Isobutene [2] 2, 3-Dimethylbuten [3] Cyclohexane [4] Propene [CPMT-2005] Q.47 Which amongst the following is the most stable carbocation -[1] CH₃ C + [3] CH₂ CH₂ Q.45 Due to the presence of an unpaired electron, free radicals are -[AIEEE-2005] [2] Chemically reactive (1) Chemically inactive [4] Anions [3] Cations Q.49 The decreasing order of nucleophilicity among the nuclepoiles [AIEEE-2005] 0 $CH_3C - O$ Ĭ (b) CH₃O (a) (d) H₂C O [1] (d), (c), (b), (a) [2] (a), (b), (c), (d) [3] (c), (b), (a), (d) [4] (b), (c), (a), (d) Q.50 Tertiary alkyl halides are practically inert to substitution by S_{N²} mechanism because of [AIEEE-2005] [2] insolubility [1] instability [3] seric hindrance [4] inductive effect Q.51 [AIEEE-2005] [1] NH₃ [3] OCOR [4] OC₂H₅ Q.52 Which of the following is more basic than aniline? [CPMT-2006] [1] p-Nitroaniline [2] Benzylamine [3] Diphenylamine [4] Triphenylamine Q.53 Nucleophilic addition reaction will be most favoured in [CPMT-2006] [3] $CH_3 - CH_2 - CH_2C - CH_3$ [4] $(CH_3)_2C = O$ [2] CH₂CHO [1] CH₂CH₂CHO [AIEEE-2006] Q.54 The increasing order of the rate of HCN addition to compounds A – D is (A) HCHO (B) CH₃COCH₃ (C) PHCOCH₃ (D) PhCOPh [1] D < B < C < A [2] D < C < B < A[3] C < D < B < A [4] A < B < C < D Q.55 The increasing order of stability of the following free radicals is -[AIEEE-2006] $[1] (C_6H_5)_3 \overset{\bullet}{\mathbb{C}} < (C_6H_5)_2 \overset{\bullet}{\mathbb{C}} + (CH_3)_3 \overset{\bullet}{\mathbb{C}} < (CH_3)_2 \overset{\bullet}{\mathbb{C}} + [2] (C_6H_5)_2 \overset{\bullet}{\mathbb{C}} + (C_6H_5)_3 \overset{\bullet}{\mathbb{C}} < (CH_3)_3 \overset{\bullet}{\mathbb{C}} < (CH_3)_2 \overset{\bullet}{\mathbb{C}} + [2] (C_6H_5)_2 \overset{\bullet}{\mathbb{C}} + (C_6H_5)_3 \overset{\bullet}{\mathbb{C}} < (CH_3)_3 \overset{\bullet}{\mathbb{C}} < (CH_3)_2 \overset{\bullet}{\mathbb{C}} + [2] (C_6H_5)_3 \overset{\bullet}{\mathbb{C}} < (CH_3)_3 \overset{\bullet$ $[3] (CH_3)_2 \overset{\bullet}{\mathbf{C}}_{\mathsf{H}} < (CH_3)_3 \overset{\bullet}{\mathbf{C}} < (C_6H_5)_3 \overset{\bullet}{\mathbf{C}} < (C_6H_5)_2 \overset{\bullet}{\mathbf{C}}_{\mathsf{H}} \qquad [4] (CH_3)_2 \overset{\bullet}{\mathbf{C}}_{\mathsf{H}} < (CH_3)_3 \overset{\bullet}{\mathbf{C}} < (C_6H_5)_2 \overset{\bullet}{\mathbf{C}}_{\mathsf{H}} < (C_6H_5)_3 \overset{\bullet}{\mathbf{C}} = (C_6H_5)_3 \overset{\bullet}{\mathbf{C}}_{\mathsf{H}} < (C_6H_5)_3 \overset{\bullet}{\mathbf{C}}_{\mathsf{H$

 $\textbf{Q.56} \qquad \text{CH}_{3} \text{Br} + \text{Nu}^{-} \rightarrow \text{CH}_{3} - \text{Nu} + \text{Br}^{-}$

The decreasing order of the rate of the above reaction with nucleophiles (Nu⁻) A to D is -

 $[Nu^{-} = (A) PhO^{-}, (B) AcO^{-}, (C) HO^{-}, (D) CH_{3}O^{-}]$

[AIEEE-2006]

[1] D > C > B > A

[2] A > B > C > D

[3] B > D > C > A

[4] D > C > A > B

Q.57 The correct order of increasing acid strength of the compounds

[AIEEE-2006]

(A) CH₃CO₂H

(B) MeOCH₂CO₂H

(C) CF₃CO₂H

[1] D < A < C < B

[2] D < A < B < C

[3] A < D < C < B

[4] B < D < A < C

The electrophile involved in the above reaction is

[AIEEE - 2006]

[1] Dichlorocarbene (: CCl₂)

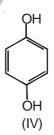
[2] Trichloromethyl anion (CCl_3)

[3] Formyl cation (CHO)

[4] Dichloromethyl cation (CHCl₂)

Q.59 Arrange the boiling point of

[IIT - 2006]


(I)

OF

(II)

OH

(III)

[1] IV < I < III < II

[2] II < III < I < IV

 $[3]~{\rm IV} < {\rm I} < {\rm II} < {\rm III}$

[4] I < IV < III < II

Q.60 CH₃NH₂ + CHCl₃ + KOH \longrightarrow (?) + 3KCl + H₂C

The missing product is

[1] CH₃CN

[2] CH₃ N≡C

 $[3] CH_3 \overline{N} \equiv C^+$

[4] CH₃NHCI

Q.61 Which of the following is the correct order of decreasing SN² reactivity?

 $[1] R_3CX > R_2CHX > RCH_2X$

[2] R₂CHX > R₃CX > RCH₂X

[3] $RCH_2X > R_3CX > R_2CHX$

[4] RCH₂X > R₂CHX > R₃CX

(X = a halogen)

[AIEEE- 2007]

[IIT - 2006]

Q.62 Which one of the following is the strongest base in aqueous solution?

[1] Dimethylamine

[2] Methylamine

[3] Trimethylamine

[4] Aniline

[AIEEE- 2007]

Answer Key

Qus.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Ans.	4	2	3	3	2	3	4	4	1	2	3	3	2	2	1	4	2	2	4	2
Qus.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
Ans.	3	3	4	4	3	2	3	4	4	4	3	1	3	3	1	4	3	2	2	2
Qus.	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
Ans.	1	1	4	3	3	1	1	2	4	3	2	2	2	2	3	4	2	1	2	2
Qus.	61	62		•	•		•		•			•		•	•	•			•	
Ans.	4	1																		