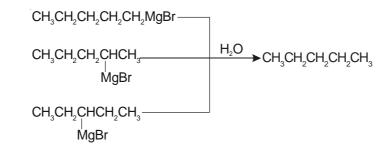

# Solved Example

| Ex.1 | Which of the following co                       | mpounds will form a hydro                                                    | ocarbon on reactio                    | on with a G | Grignard reagent -                                  |
|------|-------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------|-------------|-----------------------------------------------------|
|      | [1] CH <sub>3</sub> CH <sub>2</sub> OH          | [2] CH <sub>3</sub> CHO                                                      | [3] CH <sub>3</sub> COCH <sub>3</sub> | 3           | [4] CH <sub>3</sub> CO <sub>2</sub> CH <sub>3</sub> |
| Sol. | [3] CH <sub>3</sub> CH <sub>2</sub> OH + RMgX - | $\rightarrow$ R-H + MgX(OC <sub>2</sub> H <sub>5</sub> )                     |                                       |             |                                                     |
| Ex.2 | Methane is formed when                          | -                                                                            |                                       |             |                                                     |
|      | [1] Sodium acetate is he                        | ated with soda-lime                                                          | [2] Iodometha                         | ne is redu  | ced                                                 |
|      | [3] Aluminium carbide re                        | eacts with water                                                             | [4] All.                              |             |                                                     |
| Sol. | [4] CH <sub>3</sub> COONa + NaOH                | $\xrightarrow{\text{CaO}}$ CH <sub>4</sub> + Na <sub>2</sub> CO <sub>3</sub> |                                       |             |                                                     |
|      | $CH_3I + 2[H] \rightarrow CH_4 +$               | Н                                                                            |                                       |             |                                                     |
|      | $Al_4C_3 + 12H_2O \rightarrow 2Al(OH_2)$        | H) <sub>3</sub> + 3CH <sub>4</sub>                                           |                                       |             | <b>60</b> ,                                         |
| Ex.3 |                                                 | on atoms in the potassiur                                                    | -                                     |             | nen the alkane formed on elec                       |
|      | [1] n                                           | [2] n – 1                                                                    | [3] 2n – 1                            | 10          | [4] 2(n – 1)                                        |
| Sol. | [4] $2RCOO^- \rightarrow R-R + 1$               |                                                                              |                                       |             |                                                     |
|      | R—R has 2(n—1) carbor                           | _                                                                            |                                       |             |                                                     |
| Ex.4 | Ethyne can be prepared                          |                                                                              | 7                                     |             |                                                     |
|      | [1] Calcium carbide                             | [2] Ethylidene bromide                                                       | e [3] Ethylene b                      | romide      | [4] All of these                                    |
| Sol. | [4] $CaC_2 + 2H_2O \rightarrow Ca(C_2)$         | $O(H)_2 + C_2H_2$                                                            |                                       |             |                                                     |
|      |                                                 | $\rightarrow$ HC ≡ CH + 2KBr + 2H <sub>2</sub>                               | 0                                     |             |                                                     |
|      | BrCH <sub>2</sub> CH <sub>2</sub> Br + 2KOH(ald | a.) → HC <u>=</u> CH + 2KBr + 2H                                             | H <sub>2</sub> O                      |             |                                                     |
| Ex.5 | 2,3-Dibromobutane, whe                          | n heated with zinc dust, y                                                   | ields -                               |             |                                                     |
|      | [1] 2-Butene                                    | [2] 2-Butyne                                                                 | [3] 1-Butene                          |             | [4] Butane.                                         |
| Sol. | [1] Heating with zinc dust                      | brings about dehalogena                                                      | tion of 2, 3-dibrom                   | obutane.    |                                                     |
| Ex.6 | An aqueous solution of p                        | otassium salt of fumaric a                                                   | acid is electrolyzed                  | l. The hyd  | rocarbon produced at anode is                       |
|      | [1] Ethane                                      | [2] Ethene                                                                   | [3] Methane                           |             | [4] Ethyne                                          |
| Sol. | CHCOOK<br>[4]    + 2H <sub>2</sub> O =          | CH     + 2CO <sub>2</sub> + I                                                | H <sub>2</sub> + 2KOH                 |             |                                                     |
|      | Potassium fumarate                              | Acetylene                                                                    |                                       |             |                                                     |
| Ex.7 | 2-Pentyne can be conver                         | ted into trans-pent-2-ene                                                    | by reaction with -                    |             |                                                     |
|      | [1] H <sub>2</sub> /Ni                          |                                                                              | [2] H <sub>2</sub> /Lindlar's         | s catalyst  |                                                     |
|      | [3] Na/Liq : NH <sub>3</sub>                    |                                                                              | [4] Zn/HCI.                           |             |                                                     |
| Sol  | [3] Sodium in the present                       | ce of liquid ammonia conv                                                    | verte alkunes to co                   | rraenandir  | na trans-alkenes                                    |




[1] 4

[2] 2

[3] 3

[4] 5

**Sol.** [3]



Ex.9 Which of the following compounds has the highest melting point -

[1] n-Butane

[2] n-Pentane

[3] n-Hexane

[4] n-Heptane

Sol. [4] n-heptane has the longest chain of carbon atoms.

Ex.10 Which of the following compounds has the highest boiling point -

[1] Ethene

[2] Propene

[3] cis-2-Butene

[4] trans-2-Butene

Sol. [3] cis-Isomer has higher boiling point than trans due to its greater polarity.

**Ex.11** The density of a hydrocarbon at N.T.P. 2.5 gram/lit. What is hydrocarbon.

**Sol.** Density of 1 lit. hydrocarbon = 2.5 gram/lit

∴ Mol. wt. of H.C. =  $2.5 \times 22.4 = 56$ 

After mol. wt. we calculate the molecular formula

 $C_n H_{2n+2} = \text{mol. wt. (Alkane) or } 14n+2 = \text{mol. wt.}$ 

 $C_n H_{2n} = \text{mol. wt. (Alkene) or } 14n = \text{mol. wt.}$ 

 $C_n H_{2n-2} = \text{mol. wt. (Alkyne) or } 14n-2 = \text{mol. wt.}$ 

with the help of above three formulae, we can identify the given H.C. 14n = 56 (Alkene)  $\Rightarrow n = 4$ 

∴ Hydrocarbon is C<sub>4</sub>H<sub>8</sub>

**Ex.12** 8 C.C. of gaseous hydrocarbon requires 40 C.C. of O<sub>2</sub> for complete combustion which hydrocarbon is this.

Vol. of 
$$O_2 = 40$$
 c.c.

 $\Rightarrow$ 

$$\frac{8}{40} = \frac{2}{3n-1}$$
 (for alkane)

$$\frac{1}{10} = \frac{2}{3n+1}$$
 or  $3n+1=10$ 

$$3n = 10 - 1 = 9$$
 in  $= 3$ 

.. Hydrocarbon is C<sub>2</sub>H<sub>6</sub> (Propane)

- **Ex.13** 10 ml of a mixture of CH<sub>4</sub> and C<sub>3</sub>H<sub>8</sub> requires 41 ml. of oxygen for complete combustion. What is the vol. of CH<sub>4</sub> and C<sub>3</sub>H<sub>8</sub> in the mixture.
- **Sol.** Suppose the volume of  $CH_4$  in  $(CH_4 + C_3H_8)$  mix = x C.C.

= Vole. of 
$$C_3H_8$$
 will be  $10 - x$  C.C

For CH,

$$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$$

· 1 Vol. of CH<sub>4</sub> requires 2 vol. of O<sub>2</sub> for complete combustion

$$\therefore$$
 x c.c. of CH<sub>4</sub> = 2x C.C. of O<sub>2</sub>

$$C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4H_2O$$

∴ 1 vol. of C<sub>3</sub>H<sub>8</sub> requires 5 ml of O<sub>2</sub> for complete combustion

$$\therefore$$
 (10 – x) C.C. of C<sub>3</sub>H<sub>8</sub> requires 5 (10 – x) C.C. of O<sub>2</sub>

Total Vol. of  $O_2 = 2x + 5 (10 - x)$  it is equivalent to 41

$$\therefore 2x + 5(10 - x) = 41 \Rightarrow x = 3 \text{ C.C.}$$

Ans. Vol. of 
$$CH_4$$
 is 3 c.c. and Vol. of  $C_3H_8$  is 7 C.C.

Ex.14 If 5 gm C<sub>2</sub>H<sub>5</sub>I reacts with Na (Metallic) in presence of ether, and the yield is 60% then how many grams of n-butane will you get.

**Sol.** 
$$2C_2H_5I + 2Na \rightarrow C_4H_{10} + 2NaI$$

Mol. wt. of 
$$C_2H_5I = 24 + 5 + 127 = 156$$

Mol. wt. of 
$$C_4H_{10} = 48 + 10 = 58$$

Two molecule of C<sub>2</sub>H<sub>5</sub>I are taking part in above reaction

$$\therefore$$
 We get 58 gm. of  $C_4H_{10}$  from 2 x 156 gm of  $C_2H_5I$ 

.. We get 
$$\frac{58}{2\times156}$$
 gm. of  $\mathrm{C_4H_{10}}$  from 1 gm of  $\mathrm{C_2H_5I}$ 

.. We get 
$$\frac{58\times5}{2\times156}$$
 gm. of C<sub>4</sub>H<sub>10</sub> from 5 gm of C<sub>2</sub>H<sub>5</sub>1 yield in 60%

So the quantity of 
$$C_4H_{10}$$
 will be  $\frac{58\times5}{2\times156}\times\frac{60}{100}$ gm = 0.55 gm.

**Ex.15** How many mole oxygen is required for complete combustion of 1 mole of Alkene.

**Sol.** 
$$2C_nH_{2n} + 3nO_2 \rightarrow 2nCO_2 + 2nH_2O_2$$

keeping in mind, the above equation

- · for 2 mole of alkene, 3n mole of O<sub>2</sub> is required for combustion
- $\therefore$  for 1 mole of alkene,  $\frac{3n}{2}$  mole of  $O_2$  is required for combustion.
- = 1.5n mole of  $O_3$
- **Ex.16** The density of one hydrocarbon at N.T.P. in 1.964 gm/lit. Which hydrocarbon is this.

$$= 1.964 \times 22.4$$

So mol. wt. of hydrocarbon = 44

So the hydrocarbon is C<sub>3</sub>H<sub>8</sub> (Propane)

# Exercise # 1

| Q.1  | On cracking of petrol,                                      | we get :                               |                                                                         |                        |
|------|-------------------------------------------------------------|----------------------------------------|-------------------------------------------------------------------------|------------------------|
|      | [1] CH <sub>4</sub>                                         |                                        | $[2] C_{3}H_{6}$                                                        |                        |
|      | [3] Both of the above                                       |                                        | [4] CH <sub>3</sub> + CH <sub>4</sub> + C <sub>2</sub> H <sub>6</sub> + | alcohols               |
| Q.2  | Photochemical chlorin                                       | ation of alkane is initiated           | d by a process of :                                                     |                        |
|      | [1] Pyrolysis                                               | [2] Substitution                       | [3] Homolysis                                                           | [4] Peroxidation       |
| Q.3  | Lead tetraethyl is used                                     | d as :                                 |                                                                         |                        |
|      | [1] Fire extinguisher                                       | [2] Pain killer                        | [3] Petroleum additive                                                  | [4] Mosquito repellant |
| Q.4  | Formation of alkane b                                       | y action of Zn on alkyl hal            | lide is called :                                                        |                        |
|      | [1] Frankland reaction                                      | [2] Cannizzaro's reaction              | on[3] Wurtz reaction                                                    | [4] Kolbe's reaction   |
| Q.5  | The following reaction                                      | is an example of :                     |                                                                         |                        |
|      |                                                             | $C_3H_8 + 2CI_2 \xrightarrow{Light} C$ | C <sub>3</sub> H <sub>6</sub> Cl <sub>2</sub> + 2HCl                    |                        |
|      | [1] An addition reaction                                    | n                                      | [2] A substitution react                                                | ion                    |
|      | [3] An oxidation reaction                                   | on [4] Elimination reaction            | 1                                                                       | <b>)</b>               |
| Q.6  | Petroleum consists ma                                       | ainly of :                             |                                                                         |                        |
|      | [1] Aliphatic hydrocarb                                     | ons                                    | [2] Aromatic hydrocarb                                                  | ons                    |
|      | [3] Aliphatic alcohols                                      |                                        | [4] None of the above                                                   |                        |
| Q.7  | By coal-tar distillation                                    | which is not obtained :                |                                                                         |                        |
|      | [1] Light oil                                               | [2] Middle oil                         | [3] Heavy oil                                                           | [4] Mobil oil          |
| Q.8  | Highest boiling point is                                    | s expected for:                        |                                                                         |                        |
|      | [1] Isooctane                                               |                                        | [2] n-octane                                                            |                        |
|      | [3] 2, 2, 3, 3-tetra met                                    | nyl butane                             | [4] n-Butane                                                            |                        |
| Q.9  | Which of the following                                      | represents the most oxid               | ised form of hydrocarbon                                                | $R-CH_3$ :             |
|      | [1] CO <sub>2</sub>                                         | [2] RCHO                               | [3] RCOOH                                                               | [4] RCO.OOH            |
| Q.10 | The order of reactivity                                     | of halogens in substitutio             | n reaction in polar protic s                                            | colvent is :           |
|      |                                                             |                                        | [3] $F > Br > Cl > I$                                                   | [4] $F > CI = Br > I$  |
| Q.11 | 2CH <sub>4</sub> + O <sub>2</sub> copper-tub<br>200°C,100 a | Product is:                            |                                                                         |                        |
|      | [1] Formaldehyde and                                        | H <sub>2</sub> [2] Acetic acid         | [3] Carbondioxide                                                       | [4] Methanol           |
| Q.12 | Which of the following                                      | compounds should under                 | rgo chlorination faster thai                                            | n the remaining three? |
|      | [1] n-Pentane                                               | [2] Neopentane                         | [3] Isopentane                                                          | [4] n-Butane           |
| Q.13 | Which of the following                                      | alkanes should have lowe               | er boiling point ?                                                      |                        |
|      | [1] Triptane                                                | [2] Isoheptane                         | [3] Neoheptane                                                          | [4] n-Heptane          |
| Q.14 | Which of the following                                      | reagents cannot be used                | for preparing an alkane fr                                              | om a ketone ?          |
|      | (A) Zn/Hg+ conc. HCl                                        |                                        | (B) Red P + $I_2$                                                       |                        |
|      | $(C) H_2 NNH_2 $ and $C_2 H_5 O$                            | Na                                     | (D) NaBH <sub>4</sub>                                                   |                        |
|      | [1] A and B                                                 | [2] A and C                            | [3] B and D                                                             | [4] C and D            |
| Q.15 | Which of the following                                      | is the principal constituer            | nt present in liquefied petr                                            | oleum gas (L.P.G) ?    |
|      | [1] Propane                                                 | [2] n-Butane                           | [3] Ethane                                                              | [4] Methane            |

| Q.16 | The main constitue                       | ents of calor gas are :              |                                       |                                      |  |
|------|------------------------------------------|--------------------------------------|---------------------------------------|--------------------------------------|--|
|      | [1] Methane + Etha                       | nne                                  | [2] Isobutane + n-B                   | Butane                               |  |
|      | [3] Propane + n-Bu                       | tane                                 | [4] Methane + Etha                    | ane + Propane                        |  |
| Q.17 | Which of the follow                      | ring gases is present as ch          | nief constituent in fire da           | mp?                                  |  |
|      | [1] CO                                   | [2] CH <sub>4</sub>                  | [3] $C_2H_2$                          | [4] H <sub>2</sub> S                 |  |
| Q.18 | Methane reacts with                      | th chlorine in direct sunligl        | ht to form :                          |                                      |  |
|      | [1] C + HCI                              | [2] CCI <sub>4</sub> + HCI           | [3] CHCl <sub>3</sub> + HCl           | [4] CH <sub>3</sub> CI + HCI         |  |
| Q.19 | Which of the follow                      | ing processes is suitable f          | or converting methanoic               | acid to a paraffin ?                 |  |
|      | [1] Electrolysis of s                    | sodium salt                          | [2] Reduction with                    | red P + HI                           |  |
|      | [3] Decarboxylation                      | 1                                    | [4] Reduction with                    | LiAIH <sub>4</sub>                   |  |
| Q.20 | How much air sl<br>temperature and pr    | •                                    | complete combustion                   | of 44 grams of propane at normal     |  |
|      | [1] 25L                                  | [2] 15 L                             | [3] 25 moles                          | [4] 10 moles                         |  |
| Q.21 | Which of the follow                      | ing can be used for the pre          | eparation of an alkane?               |                                      |  |
|      | [1] Reduction of an                      | alkyl halide                         |                                       | 0.                                   |  |
|      | [2] Reaction of a G                      | rignard reagent with a com           | pound having reactive h               | ydrogen atom                         |  |
|      | [3] Reduction of a k                     | retone                               |                                       |                                      |  |
|      | [4] All of the above                     |                                      |                                       |                                      |  |
| Q.22 | A war gas can be p                       | repared from an aliphatic            | hydrocarbon by the read               | ction of :                           |  |
|      | [1] AsCl <sub>5</sub>                    | $[2] S_2Cl_2$                        | [3] SCl <sub>2</sub>                  | [4] $As_2O_3$                        |  |
| Q.23 | Which of the follow                      | ring is not a gas at room te         | emperature?                           |                                      |  |
|      | [1] Propane                              | [2] Ethylene                         | [3] n-Pentane                         | [4] Ethane                           |  |
| Q.24 | Suitable for preparat                    | tion of higher alkanes from          | n a lower alkyl halide is             | subjected to -                       |  |
|      | [1] Reduction                            | 00.                                  | [2] Hoffmann br                       | omamide reaction                     |  |
|      | [3] Hunsdiecker read                     | etion                                | [4] Wurtz reacti                      | ion                                  |  |
| Q.25 | The organic reaction                     | n product from the reactio           | n of methyl magnesium                 | bromide and ethyl alcohol is -       |  |
|      | [1] Methane                              | [2] Ethane                           | [3] Propane                           | [4] Butane                           |  |
| Q.26 | Aqueous solution of                      | which compound gave et               | hane on electrolysis -                |                                      |  |
|      | [1] Acetic acid                          | [2] Acetamide                        | [3] Potassium a                       | acetate [4] Ethyl acetate            |  |
| Q.27 | In the complete com                      | bustion of $C_nH_{2n+2}$ , the nur   | mber of oxygen moles re               | equired is -                         |  |
|      | [1] n/2O <sub>2</sub>                    | $[2] \left(\frac{n+1}{2}\right) O_2$ | $[3] \left(\frac{3n+1}{2}\right) O_2$ | $[4] \left(\frac{n+2}{2}\right) O_2$ |  |
| Q.28 | The catalyst used to nearly 600° C are - | convert alkanes containi             | ng 6 to 10 carbon atom                | s into benzene and its homologous at |  |

Q.29 Which sodium salt will be heated soda lime to obtain propane -

- Q.30 Alkyl halides on reduction with Zn-Cu couple and alcohol give -
  - [1] Alkanes
- [2] Alkenes
- [3] Alkynes
- [4] Cyclic compounds

- Q.31 The most volatile alkane is -
  - [1] n-pentane
- [2] isopentane
- [3] neopentane
- [4] n-hexane

- Q.32 Wurtz reaction is best used for making -
  - [1] Unbranched alkanes

[2] symmetrical alkanes

[3] Unsymmetrical alkanes

- [4] n-Alkanes with odd. number of carbon
- Q.33 What are the gases evolved at anode during kolbe synthesis -
  - [1] Hydrocarbons
- [2] CO<sub>2</sub>
- [3] Both
- [4] None
- Q.34 Which fone of the following compounds does not form an ozonide
  - [1] Ethene
- [2] Propyne
- [3] Propene
- [4] Propane
- Q.35 Conversion of CH<sub>4</sub> to CH<sub>3</sub>Cl is an example of ...... reaction -
  - [1] Free radical substitution

[2] Free radical addition

[3] Electrophilic substitution

- [4] Nucleophilic substitution
- $CH_2 = CH_2$  reacts with HCl to form : Q.36

- [3] CH<sub>2</sub>CI CH<sub>2</sub>CI
- [4] CH<sub>3</sub>CHCl<sub>2</sub>
- Q.37 Hydrocarbon containing following bond is most reactive towards electrophile?
  - $[1] C \equiv C$

- [4] All
- Q.38 Ethylene reacts with alkaline KMnO<sub>4</sub> (Baeyer's reagent) to form :
  - [1] Oxalic acid
- [2] Acetic acid
- [3] Glycol
- [4] Glycerol
- Q.39 When propylene reacts with hydrogen bromide in the presence of peroxide, the product formed is:
  - [1] n-Propyl alcohol
- [2] Propylene peroxide [3] n-Propyl bromide
- [4] 1, 3-dibromo propane

- Q.40 Cyclopentene on treatment with alkaline KMnO<sub>4</sub> gives :
  - [1] Cyclopentanol

[2] Trans-1, 2-cyclopentanediol

[3] Cis-1, 2-cyclopentanediol

- [4] 1:1 mixture of cis- and trans-1, 2-cyclopentanediol
- Q.41 Ethylene from ethyl bromide is obtained by treating it with -
  - [1] Hydrogen

[2] Alcoholic caustic potash

[3] Aqueous caustic potash

- [4] Aqueous caustic soda
- Ethylene can be prepared by electrolysis of an aqueous solution of: Q.42
  - [1] Sodium acetate
- [2] Sodium succinate
- [3] Sodium fumarate
- [4] Sodium propionate

| Q.43 | Ethyl alcohol is heated                               | with conc. $H_2SO_4$ . The pr     | roduct formed is:                                |                                       |
|------|-------------------------------------------------------|-----------------------------------|--------------------------------------------------|---------------------------------------|
|      | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | [2] C <sub>2</sub> H <sub>6</sub> | [3] C <sub>2</sub> H <sub>4</sub>                | [4] C <sub>2</sub> H <sub>2</sub>     |
| Q.44 | Ethylene readily under                                | goes the following type of        | reaction:                                        |                                       |
|      | [1] Addition                                          | [2] Substitution                  | [3] Elimination                                  | [4] Rearrangement                     |
| Q.45 | Which of the following                                | types of reactions occur v        | vhen a reactant has got a                        | double bond?                          |
|      | [1] Addition                                          | [2] Photolysis                    | [3] Substitution                                 | [4] Polymerization                    |
| Q.46 | Which one of the follow                               | ving organic compounds o          | decolourizes an alkaline K                       | (MnO <sub>4</sub> solution :          |
|      | [1] CS <sub>2</sub>                                   | [2] C <sub>3</sub> H <sub>6</sub> | [3] C <sub>3</sub> H <sub>8</sub>                | [4] CH <sub>3</sub> OH                |
| Q.47 | Cojnugated double bor                                 | nd is present in :                |                                                  |                                       |
|      | [1] Propylene                                         | [2] Isobutylene                   | [3] 1, 3-Butadiene                               | [4] Butylene                          |
| Q.48 | A compound "X" on oz                                  | conolysis forms two molec         | cules of HCHO. "X" is :                          |                                       |
|      | [1] C <sub>2</sub> H <sub>4</sub>                     | [2] C <sub>2</sub> H <sub>2</sub> | [3] C <sub>2</sub> H <sub>6</sub>                | [4] C <sub>6</sub> H <sub>6</sub>     |
| Q.49 | Formation of ethylene                                 | from ethyl bromide is a ca        | ase of :                                         |                                       |
|      | [1] Addition reaction                                 |                                   | [2] Substitution reaction                        | <b>4</b> )                            |
|      | [3] Elimination reaction                              | l                                 | [4] Rearrangement read                           | tion                                  |
| Q.50 | Electrolysis of cold con                              | ncentrated aqueous solut          | ion of potassium succinat                        | e yields :                            |
|      | [1] Ethane                                            | [2] Ethyne                        | [3] Ethene                                       | [4] Ethane-1, 2-diol                  |
| Q.51 | The products of oxidati                               | ve ozonolysis of an unsyr         | mmetrical alkene are :                           |                                       |
|      | [1] alcohol and/or acids                              |                                   | [2] aldehydes and/or ad                          | ids                                   |
|      | [3] ketones and/or acid                               | ls .                              | [4] aldehydes and/or ke                          | tones                                 |
| Q.52 | The reaction of propen                                | e with HOCI proceeds via          | the addition of:                                 |                                       |
|      | [1] H <sup>+</sup> in the first step                  |                                   | [2] Cl+ in the first step                        |                                       |
|      | [3] OH <sup>-</sup> in the first step                 |                                   | [4] Cl <sup>-</sup> and OH <sup>-</sup> in a sin |                                       |
| Q.53 | In the presence of perdalkene because:                | oxide, hydrogen chloride          | and hydrogen iodide don                          | 't give anti Markonikov's addition to |
|      | [1] both are highly ionic                             |                                   |                                                  |                                       |
|      | [2] one is oxidising and                              | other is reducing                 |                                                  |                                       |
|      | [3] one of the steps is e                             | endothermic in both the c         | ase                                              |                                       |
|      | [4] all the steps are exc                             | othermic in both the case         |                                                  |                                       |
| Q.54 | Which of the following                                | cannot give ethene on py          | rolysis?                                         |                                       |
|      | [1] Ethane                                            | [2] Propane                       | [3] Ethyl acetate                                | [4] Isobutane                         |
| Q.55 | Hydroxylation of alkene                               | es cannot be achieved by          | :                                                |                                       |
|      | [1] Baeyer's reagent                                  | [2] osmium tetraoxide             | 7                                                | n[4] acid permanganate                |
| Q.56 |                                                       | d on the reaction of zinc         |                                                  |                                       |
|      | [1] a gem dibromide                                   | [2] a <i>vic</i> dibromide        | [3] vinyl bromide                                | [4] isopropylidene dibromide          |
| Q.57 |                                                       | acetate is used for the pr        |                                                  |                                       |
|      | [1] a plastic                                         | [2] an adhesive                   | [3] a fibre                                      | [4] a rubber                          |

| Q.58 | Which of the following                                     | g catalysts is regarded as n                               | nost appropriate for pol              | ymerisation of propylene?                |
|------|------------------------------------------------------------|------------------------------------------------------------|---------------------------------------|------------------------------------------|
|      | [1] (CH <sub>3</sub> ) <sub>3</sub> AI + AICI <sub>3</sub> | $[2] (C_2H_5)_3AI + TiCI_4$                                | [3] Al2O3 + CH3CI                     | [4] AlBr <sub>3</sub> + HBr              |
| Q.59 | Markownikoff rule do                                       | es not apply on the addition                               | of HX on the following                | alkene?                                  |
|      | [1] 1-Butene                                               | [2] 3-Hexene                                               | [3] Propene                           | [4] 1-Pentene                            |
| Q.60 | Which of the following                                     | g is known as Lindlar's cata                               | alyst?                                |                                          |
|      | [1] R <sub>3</sub> Al + TiCl <sub>4</sub>                  |                                                            | [2] Pd/CaCO <sub>3</sub> + Quin       | oline + Lead acetate                     |
|      | [3] Pd/BaSO <sub>4</sub> + CaCO                            | $D_3$                                                      | [4] Mg/Hg + $H_2$                     |                                          |
| Q.61 | The polymer of acrylo                                      | onitrile is :                                              |                                       |                                          |
|      | [1] terylene                                               | [2] orlon                                                  | [3] PVC                               | [4] bakelite                             |
| Q.62 | Action of RMgX with                                        | vinyl chloride gives -                                     |                                       |                                          |
|      | [1] Alkane                                                 | [2] Alkyne                                                 | [3] Alkene                            | [4] All                                  |
| Q.63 | The relative stability                                     | of the compounds -                                         |                                       | CO,                                      |
|      | CH —C = C—CH                                               | CH —C = CH—CH                                              | CH₃ ∠H                                | CH, CH                                   |
|      | CH, CH,                                                    | CH <sub>3</sub> —C = CH—CH <sub>3</sub><br>CH <sub>3</sub> | H $C = C$                             | C = C                                    |
|      | 3 3 3                                                      | - 3                                                        | 5113                                  | , n                                      |
|      | (i)                                                        | (iii)                                                      | (iii)                                 | (iv)                                     |
|      | $CH_3$ — $CH = CH_2$                                       | $CH_2 = CH_2$                                              | is in the order                       |                                          |
|      | (v)                                                        | (vi)                                                       |                                       |                                          |
|      | [1] i > ii > iii > iv > v                                  | > vi [2] vi > v> iv > iii > ii                             | > i [3] i > iii > v > ii :            | > iv > vi [4] ii > i > iv > iii > v > vi |
| Q.64 | The reaction of an alke                                    | ene with peracids to form a                                | an epoxide is known af                | ter the name of -                        |
|      | [1] Baeyer                                                 | [2] Brown                                                  | [3] Prileshchiaev                     | [4] Kharasch                             |
| Q.65 | Cis-2-Butene cannot b                                      | e changed to trans-2-buter                                 | ne because -                          |                                          |
|      | [1] Cis isomer has two                                     | hydrogen atoms on the sa                                   | ame side of the $\pi$ bond            | d                                        |
|      | [2] Trans isomer has to                                    | wo hydrogen atoms on the                                   | opposite of the $\pi$ bone            | d                                        |
|      | [3] Of hindered rotation                                   | about the carbon-carbon                                    | double bond                           |                                          |
|      | [4] The transformation                                     | does not required energy                                   |                                       |                                          |
| Q.66 | Identify X in the reaction                                 | on $CH_2 = CH_2 + H_2SO_4 \rightarrow i$                   | ntermediate — H <sub>O</sub> → X      | -                                        |
|      | [1] CH <sub>3</sub> OH                                     | [2] CH <sub>3</sub> CH <sub>2</sub> OH                     | [3] CH <sub>3</sub> COCH <sub>3</sub> | [4] CH <sub>3</sub> OCH <sub>3</sub>     |
| Q.67 | The acetylene molec                                        | ule contains :                                             |                                       |                                          |
|      | [1] 5 sigma bonds                                          |                                                            | [2] 4 sigma and 1 pi l                | bonds                                    |
|      | [3] 3 sigma and 2 pi b                                     | oonds                                                      | [4] 2-sigma and 3 pi l                | bonds                                    |
| Q.68 | Acetylene reacts with                                      | HCl to produce :                                           |                                       |                                          |
|      | [1] 1, 1-dichloroethan                                     | е                                                          | [2] 1, 2-dichloroethan                | ne                                       |
|      | [3] 1, 1, 1-trichloroeth                                   | ane                                                        | [4] None of these                     |                                          |
| Q.69 | Polymerization of acc                                      | etylene leads to the formati                               | on of :                               |                                          |
|      | [1] Benzene                                                | [2] Butane                                                 | [3] Naphthalene                       | [4] Octane                               |
| Q.70 | Acidic hydrogen is pr                                      | resent in :                                                |                                       |                                          |
|      | [1] Ethyne                                                 | [2] Ethene                                                 | [3] Benzene                           | [4] Ethane                               |

| Q.71 | Acetylene reacts with 4                            | 12% H <sub>2</sub> SO <sub>4</sub> containing | 1% HgSO <sub>4</sub> to give :                 |                                                |  |  |  |  |  |  |  |
|------|----------------------------------------------------|-----------------------------------------------|------------------------------------------------|------------------------------------------------|--|--|--|--|--|--|--|
|      | [1] C <sub>2</sub> H <sub>3</sub> HSO <sub>4</sub> | [2] CH <sub>3</sub> CHO                       | [3] HCHO                                       | [4] $CH_2 = CH_2$                              |  |  |  |  |  |  |  |
| Q.72 | Acetylene reacts will ar                           | mmoniacal AgNO <sub>3</sub> forn              | ning:                                          |                                                |  |  |  |  |  |  |  |
|      | [1] Silver mirror                                  | [2] Metal silver                              | [3] Silver acetate                             | [4] Silver acetylide                           |  |  |  |  |  |  |  |
| Q.73 | Propyne and propene of                             | can be distinguished by                       | y:                                             |                                                |  |  |  |  |  |  |  |
|      | [1] Conc. H <sub>2</sub> SO <sub>4</sub>           | [2] Br <sub>2</sub> in CCl <sub>4</sub>       | [3] Dilute KMnO <sub>4</sub>                   | [4] AgNO <sub>3</sub> in Ammonia               |  |  |  |  |  |  |  |
| Q.74 | CH≡CH O <sub>3</sub> /NaOH >                       | $\langle \xrightarrow{Zn/CH_3COOH} Y$         | compound Y is:                                 |                                                |  |  |  |  |  |  |  |
|      |                                                    |                                               | СНО                                            | CH <sub>2</sub> OH                             |  |  |  |  |  |  |  |
|      | [1] C <sub>2</sub> H <sub>5</sub> OH               | [2] CH <sub>3</sub> COOH                      | [3]  <br>CHO                                   | [4]   CH <sub>2</sub> OH                       |  |  |  |  |  |  |  |
| Q.75 | Propyne can react with                             | two moles of HCl to fo                        | orm :                                          |                                                |  |  |  |  |  |  |  |
|      | [1] propylidene dichlorid                          | de                                            | [2] isopropylidene did                         | chloride                                       |  |  |  |  |  |  |  |
|      | [3] ethylidene dichloride                          | e                                             | [4] butylidene dichlor                         | ide                                            |  |  |  |  |  |  |  |
| Q.76 | Which of the follow                                | ring reagents shou                            | ld be suitable for cor                         | nverting propyne to propanone                  |  |  |  |  |  |  |  |
|      | [1] Ozone                                          |                                               | [2] Dilute H <sub>2</sub> SO <sub>4</sub> + Hg |                                                |  |  |  |  |  |  |  |
|      | [3] Acidified KMnO <sub>4</sub>                    |                                               | [4] Dialkylborane follo                        | owed by alkaline H <sub>2</sub> O <sub>2</sub> |  |  |  |  |  |  |  |
| Q.77 | The ascending order of solubility in water is:     |                                               |                                                |                                                |  |  |  |  |  |  |  |
|      | [1] Ethane < Ethyne <                              | Ethene                                        | [2] Ethene < Ethane                            | < Ethyne                                       |  |  |  |  |  |  |  |
|      | [2] Ethyne < Ethene <                              | Ethane                                        | [4] Ethane < Ethene                            | < Ethyne                                       |  |  |  |  |  |  |  |
| Q.78 | Acetylene can be prepare                           | ed from -                                     |                                                |                                                |  |  |  |  |  |  |  |
|      | [1] Potassium fumarate                             | [2] Calcium carbide                           | e [3] Ethylene brom                            | ide [4] All                                    |  |  |  |  |  |  |  |
| Q.79 | Mesitylene is obtained by                          | y the polymerisation of                       |                                                |                                                |  |  |  |  |  |  |  |
|      | [1] Propyne                                        | [2] Propane                                   | [3] Propene                                    | [4] None of these                              |  |  |  |  |  |  |  |
| Q.80 | A compound is treated w                            | it NaNH <sub>2</sub> to give sodiu            | m salt. Identify the compo                     | und -                                          |  |  |  |  |  |  |  |
|      | [1] C <sub>2</sub> H <sub>2</sub>                  | [2] C <sub>6</sub> H <sub>6</sub>             | [3] C <sub>2</sub> H <sub>6</sub>              | $[4] C_2H_4$                                   |  |  |  |  |  |  |  |
| Q.81 | Total no. of C-atom in a s                         | implest hydrocarbon n                         | nolecule containing three                      | acetylenic H-atom -                            |  |  |  |  |  |  |  |
|      | [1] 4                                              | [2] 5                                         | [3] 6                                          | [4] 7                                          |  |  |  |  |  |  |  |
| Q.82 | Which of the following is fumaric acid -           | formed by the kolbey's                        | s electrolysis of the mixtu                    | re of potassium salt of maleic acid and        |  |  |  |  |  |  |  |
|      | $[1] C_2 H_4 + C_2 H_2 + CO_2$                     | $[2] C_2 H_2 + C_2 H_4$                       | $[3] C_2 H_2 + CO_2$                           | $[4] C_2 H_4 + CO_2$                           |  |  |  |  |  |  |  |
|      | U.                                                 | Ansı                                          | wer <b>K</b> ey                                |                                                |  |  |  |  |  |  |  |

| Qus. | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
|------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| Ans. | 3  | 3  | 3  | 1  | 2  | 1  | 4  | 2  | 1  | 1  | 4  | 3  | 1  | 3  | 2  | 2  | 2  | 1  | 2  | 3  |
| Qus. | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 |
| Ans. | 4  | 2  | 3  | 4  | 1  | 3  | 3  | 1  | 4  | 1  | 3  | 2  | 3  | 4  | 1  | 2  | 2  | 3  | 3  | 3  |
| Qus. | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 |
| Ans. | 2  | 2  | 3  | 1  | 1  | 2  | 3  | 1  | 3  | 3  | 3  | 2  | 3  | 4  | 4  | 3  | 2  | 2  | 2  | 2  |
| Qus. | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 |
| Ans. | 2  | 3  | 1  | 3  | 3  | 2  | 3  | 1  | 1  | 1  | 2  | 4  | 4  | 4  | 2  | 2  | 4  | 4  | 1  | 1  |
| Qus. | 81 | 82 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| Ans. | 4  | 3  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |

### Exercise # 2

| Q.1  | The complete combustion                                       | of CH <sub>4</sub> gives -                                          |                                         |                                |  |  |  |  |  |  |  |
|------|---------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------|--------------------------------|--|--|--|--|--|--|--|
|      | [1] CO <sub>2</sub> + H <sub>2</sub> O                        | [2] CO <sub>2</sub> + H <sub>2</sub>                                | [3] CO <sub>2</sub> + COCl <sub>2</sub> | [4] CO + H <sub>2</sub> O      |  |  |  |  |  |  |  |
| Q.2  | Which hydrocarbon are n                                       | ot formed by the wurtz rea                                          | ction of ethyl iodide and n             | -propyl iodide -               |  |  |  |  |  |  |  |
|      | [1] n-Butane                                                  | [2] n-Heptane                                                       | [3] n-pentane                           | [4] n-Hexane                   |  |  |  |  |  |  |  |
| Q.3  | Which product is not form                                     | n in chlorination of CH <sub>4</sub> -                              |                                         |                                |  |  |  |  |  |  |  |
|      | [1] CH <sub>3</sub> —CI                                       | [2] CH <sub>3</sub> —CH <sub>3</sub>                                | [3] Cl <sub>2</sub>                     | [4] None of these              |  |  |  |  |  |  |  |
| Q.4  | What is the required volu                                     | me of O <sub>2</sub> (lit.) for the comp                            | lete combustion of 6 gm                 | ethane -                       |  |  |  |  |  |  |  |
|      | [1] 6.12                                                      | [2] 7.8                                                             | [3] 15.68                               | [4] 22.4                       |  |  |  |  |  |  |  |
| Q.5  | In nitration propane & hig                                    | her alkane shows -                                                  |                                         |                                |  |  |  |  |  |  |  |
|      | [1] Free radical substitution                                 | on [2] Ionic mechanism                                              | [3] Both                                | [4] None                       |  |  |  |  |  |  |  |
| Q.6  | Methane cannot formed b                                       | y -                                                                 |                                         | <b>*</b>                       |  |  |  |  |  |  |  |
|      | [1] COCI <sub>2</sub>                                         | [2] CS <sub>2</sub>                                                 | [3] CHCl <sub>3</sub>                   | [4] CCI <sub>4</sub>           |  |  |  |  |  |  |  |
| Q.7  | Which compound does no                                        | ot give alkane on reductior                                         | with Red P + HI -                       | ·                              |  |  |  |  |  |  |  |
|      | [1] Alcohol                                                   | [2] Aldehyde & Ketone                                               | [3] Acid                                | [4] Acid derivatives           |  |  |  |  |  |  |  |
| Q.8  | n-heptane on reaction wit                                     | h chromium oxide, then de                                           | hydrogenation followed by               | / cyclization gives -          |  |  |  |  |  |  |  |
|      | [1] 1-heptene                                                 | [2] Benzene                                                         | [3] o-xylene                            | [4] Methyl benzene             |  |  |  |  |  |  |  |
| Q.9  | The catalyst used in Ziegl                                    | er process for polyethylene                                         |                                         |                                |  |  |  |  |  |  |  |
|      | [1] Consists of aluminium                                     | [1] Consists of aluminium triethyl and titanium tetrachloride       |                                         |                                |  |  |  |  |  |  |  |
|      | [2] Consists of aluminium                                     | chloride and titanium diox                                          | ide                                     |                                |  |  |  |  |  |  |  |
|      | [3] Is vanadium pentoxide                                     |                                                                     |                                         |                                |  |  |  |  |  |  |  |
|      | [4] Is finely divided nickel                                  |                                                                     |                                         |                                |  |  |  |  |  |  |  |
| Q.10 | Baeyer's reagent is used                                      | in the laboratory for -                                             |                                         |                                |  |  |  |  |  |  |  |
|      | [1] Reduction process                                         | [2] Oxidation process                                               |                                         | [4] Detection of double bond   |  |  |  |  |  |  |  |
| Q.11 | Which one of the followin                                     |                                                                     |                                         |                                |  |  |  |  |  |  |  |
|      | [1] Polystyrene                                               | [2] Polytetrafluoroethyler                                          |                                         | [4] None of these              |  |  |  |  |  |  |  |
| Q.12 | Reaction of isobutylene a                                     |                                                                     |                                         |                                |  |  |  |  |  |  |  |
|      | [1] 2-Methyl propane-2-su                                     | Ilphonic acid                                                       | [2] t-butyl sulphonic acid              | d                              |  |  |  |  |  |  |  |
| 0.40 | [3] Both                                                      |                                                                     | [4] None                                |                                |  |  |  |  |  |  |  |
| Q.13 | The reaction of perbenzoi                                     | . ,                                                                 |                                         | [4] O O English stone          |  |  |  |  |  |  |  |
|      | [1] 2,3-Butanediol                                            | [2] 1,2-Epoxybutane                                                 | [3] 2,3-Epoxypropane                    | [4] 2,3-Epoxybutane            |  |  |  |  |  |  |  |
| Q.14 | $CH_2 = CH_2 \xrightarrow{Br_2 \\ CCl_4} A \xrightarrow{(i)}$ | $\xrightarrow{\text{Alc.KOH}}$ B $\xrightarrow{\text{+2HX}}$ C in r | reaction C is -                         |                                |  |  |  |  |  |  |  |
|      | [1] Vis dihalide                                              | [2] Gem dihalide                                                    | [3] Gem dibromide                       | [4] $\alpha,\omega$ - dihalide |  |  |  |  |  |  |  |
| Q.15 | What the main product of                                      | addition of "Tildon reagen                                          | t" at $\alpha$ - butylene -             |                                |  |  |  |  |  |  |  |
|      | [1] 2-Chloro-1-nitrosopropa                                   | ane                                                                 | [2] 1-Chloro-2-nitrosobut               | ane                            |  |  |  |  |  |  |  |

[4] Butane nitrosochioride

[3] 2-chloro-1-nitrosobutane

|      |                                                                                   |                                            |                                                               | HYDROCARBO                                                                          |  |  |  |  |  |  |
|------|-----------------------------------------------------------------------------------|--------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Q.16 | What type of compound                                                             | I form by the reaction of d                | iazomethane at methyl ethy                                    | lene -                                                                              |  |  |  |  |  |  |
|      | [1] saturated acylic                                                              | [2] Saturated homocy                       | clic [3] Homocyclic aromati                                   | c [4] Unsaturated homocyclic                                                        |  |  |  |  |  |  |
| Q.17 | The application of ethyle                                                         | ene are -                                  |                                                               |                                                                                     |  |  |  |  |  |  |
|      | [A] Formation of Mustar                                                           | rd gas                                     | [B] Repining of Fruits                                        |                                                                                     |  |  |  |  |  |  |
|      | [C] Formation of Lewisit                                                          | e                                          | [D] Formation of Glycol                                       |                                                                                     |  |  |  |  |  |  |
|      | Correct answer is :                                                               |                                            |                                                               |                                                                                     |  |  |  |  |  |  |
|      | [1] ABD                                                                           | [2] ABC                                    | [3] ACD                                                       | [4] BCD                                                                             |  |  |  |  |  |  |
| Q.18 | $CH_2 = CH_2 + H_2O \frac{PdCl}{CiCl}$                                            | X, in reaction X is -                      |                                                               |                                                                                     |  |  |  |  |  |  |
|      | [1] Acetic acid                                                                   | [2] Ethylene glycol                        | [3] Ethanal                                                   | [4] Ethylene oxide                                                                  |  |  |  |  |  |  |
| Q.19 | Which of the following of                                                         | compound are not used in                   | the "Oxo reaction" of olefine                                 | s -                                                                                 |  |  |  |  |  |  |
|      | [1] HCHO                                                                          | [2] CO                                     | [3] Co                                                        | [4] H <sub>2</sub>                                                                  |  |  |  |  |  |  |
| Q.20 | Which olefine is formed                                                           | on the heating Dimethyl r                  | n-propylamine oxide at 150°                                   | C-                                                                                  |  |  |  |  |  |  |
|      | [1] Ethene                                                                        | [2] Ethyl ethylene                         | [3] Methyl ethylene                                           | [4] Sym. Dimethyl ethylene                                                          |  |  |  |  |  |  |
| Q.21 | Which compound is formed by the oxidation of SeO <sub>2</sub> on ethyl ethylene - |                                            |                                                               |                                                                                     |  |  |  |  |  |  |
|      | [1] 2-butene-1-ol                                                                 | [2] 3-butene-2-ol                          | [3] 1-butnen-1-ol                                             | [4] 3-butene-1-ol                                                                   |  |  |  |  |  |  |
| Q.22 | Koch reaction on proper                                                           | ne give -                                  |                                                               |                                                                                     |  |  |  |  |  |  |
|      | [1] Iso valeric acid                                                              | [2] Isobutyric acid                        | [3] Propionic acid                                            | [4] None of these                                                                   |  |  |  |  |  |  |
| Q.23 | In Whol's Ziegler reaction                                                        | on which group is substitu                 | ted by the allylic hydrogen                                   | atom of alkene -                                                                    |  |  |  |  |  |  |
|      | [1] —OH                                                                           | [2] —NH <sub>2</sub>                       | [3] —Br                                                       | [4]—COOH                                                                            |  |  |  |  |  |  |
| Q.24 | Which of the following re                                                         | eagent converts the proper                 | ne to 1-propanol -                                            |                                                                                     |  |  |  |  |  |  |
|      | [1] H <sub>2</sub> O, H <sub>2</sub> SO <sub>4</sub>                              | [2] aqueous KOH                            | [3] MgSO <sub>4</sub> , NaBH <sub>4</sub> /H <sub>2</sub> O   | [4] B <sub>2</sub> H <sub>6</sub> , H <sub>2</sub> O <sub>2</sub> , OH <sup>-</sup> |  |  |  |  |  |  |
|      |                                                                                   | CH,                                        |                                                               |                                                                                     |  |  |  |  |  |  |
| Q.25 | The product of the follow                                                         | l °<br>wing reaction CH <sub>3</sub> —C— C | $H = CH_{a} \xrightarrow{(i)Hg(OAc)_{2}H_{2}O} \rightarrow -$ |                                                                                     |  |  |  |  |  |  |
|      | The product of the following                                                      | CH,                                        | (ii)NaBH <sub>4</sub>                                         |                                                                                     |  |  |  |  |  |  |
|      |                                                                                   | 3                                          |                                                               |                                                                                     |  |  |  |  |  |  |
|      |                                                                                   |                                            |                                                               |                                                                                     |  |  |  |  |  |  |
|      | CH <sub>3</sub>                                                                   |                                            | ÇH₃                                                           |                                                                                     |  |  |  |  |  |  |

Q.26 Review the following reactions and choose reactions which are completed by free radical mechanism -

[b] 
$$CH_3$$
—  $CH = CH_2 \xrightarrow{(Peroxide)} CH_3$ — $CH_2$ — $CH_2$ B

[c] 
$$CH_3CH = CH_2 \xrightarrow{CH_1N_2} CH_2 \xrightarrow{CH_2} CH_2$$

[d] 
$$CH_4 + CI_2 \xrightarrow{\text{(Light)}} CH_3CI + HCI$$

Correct answer is:

Q.27 Which of the unsaturated compound react with sodamide -

Q.28 Reagent can apply for the formation of chloroprene from acetylene -

[1] 
$$Cu(NH_3)_2$$
 and  $HCl$  [2]  $Cu_2Cl_2$  and  $O_2$ 

Q.29  $CH \equiv CH + CO + H_2O \xrightarrow{Ni(CO)_4}$  Product, for this reaction which statement is false -

- [1] The product of reaction is a  $\alpha$ ,  $\beta$  -unsaturated acid
- [2] In reaction the addition of Hydrogen and carboxylic group at  $\pi$  bond
- [3] The product name in this reaction is acrylic acid
- [4] The product react with ethyl alcohol give ethyl butanoate

**Q.30** A 
$$\xrightarrow{\text{Electrolysis}}$$
 B  $\xrightarrow{\text{CH}_3\text{OH}}$  Methylal, [A] is -

[1] Potassium formate [2] Potassium acetate [3] Sodium succinate MAN

[4] Sodium fumarate

### Answer Kev

| Qus. | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
|------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| Ans. | 1  | 2  | 4  | 3  | 1  | 1  | 4  | 4  | 1  | 4  | 2  | 3  | 4  | 2  | 3  | 2  | 1  | 3  | 1  | 3  |
| Qus. | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |    |    |    |    |    |    |    |    |    |    |
| Ans. | 2  | 2  | 3  | 4  | 1  | 1  | 4  | 1  | 4  | 4  |    |    |    |    |    |    |    |    |    |    |

## Exercise # 3

#### **Alkane**

| Q. I | (D <sub>2</sub> O) -                               | ture of the organic product v                        | whenethyrn                                      | nagnesium bro                                     | irilide is treated                   | (DCE-1994)         |
|------|----------------------------------------------------|------------------------------------------------------|-------------------------------------------------|---------------------------------------------------|--------------------------------------|--------------------|
|      | $[1] C_2 H_5 - C_2 H_5$                            | [2] C <sub>2</sub> H <sub>5</sub> OD                 | [3] C <sub>2</sub> H <sub>6</sub>               |                                                   | [4] C <sub>2</sub> H <sub>5</sub> D. |                    |
| Q.2  | The reagent used for the co                        | onversion, CH <sub>3</sub> CH <sub>2</sub> COOH      | $\rightarrow$ CH <sub>3</sub> CH <sub>2</sub> C | CH <sub>3</sub> is -                              |                                      | (DCE-1994)         |
|      | [1] LiAlH <sub>4</sub>                             |                                                      | [2] Soda-li                                     | ime                                               |                                      |                    |
|      | [3] Red P and concentrate                          | d HI                                                 | [4] Amalga                                      | amated zinc a                                     | nd concentrate                       | ed HCI             |
| Q.3  | Liquefied petroleum gas (L                         | PG) mostly contains -                                |                                                 |                                                   |                                      | (KCET-1995)        |
|      | [1] Methane                                        | [2] Ethane                                           | [3] Butane                                      | •                                                 | [4] Propane                          |                    |
| Q.4  | $C_3H_8 + CI_2 \xrightarrow{\text{Light}} C_3H_7C$ | I + HCl is an example of w                           | hich of the                                     | following type                                    | s of reactions                       | - [RPET-1998]      |
|      | [1] Substitution                                   | [2] Elimination                                      | [3] Additio                                     | on C                                              | [4] Rearrange                        | ement              |
| Q.5  | Volume of oxygen is require                        | red for total combustion of                          | propane -                                       |                                                   |                                      | [RPET-1998]        |
|      | [1] Five times of propane                          |                                                      | [2] 2 + 1/2                                     | 2 times of prop                                   | ane                                  |                    |
|      | [3] 2 times of propane                             |                                                      | [4] Equal t                                     | to propane                                        |                                      |                    |
| Q.6  | Alkane is prepared by -                            |                                                      | 0                                               |                                                   |                                      | [RPET-1998]        |
|      | [1] Wurtz                                          | [2] Reduction to alkyl halid                         | le[3] By grig                                   | nard reagent                                      | [4] All the abo                      | ove                |
| Q.7  | Which hydrocarbon is solid                         | d at normal temperature -                            |                                                 |                                                   |                                      | [RPET-1999]        |
|      | [1] CH <sub>4</sub>                                | [2] C <sub>7</sub> H <sub>8</sub>                    | [3] C <sub>8</sub> H <sub>18</sub>              |                                                   | $[4] C_{20} H_{42}$                  |                    |
| Q.8  | For the complete combusti                          | ion of four liters of ethane t                       | he necessa                                      | ary volume of o                                   | oxygen would b                       | oe -[RPMT-2000]    |
|      | [1] 4 liters                                       | [2] 8 liters                                         | [3] 12 liter                                    | rs                                                | [4] 14 liters                        |                    |
| Q.9  | Which of the following alka                        | anes contains primary, sec                           | ondary, terti                                   | iary and quate                                    | rnary carbon a                       | atoms together-    |
|      | [1] (CH <sub>3</sub> ) <sub>3</sub> CH             | [2] (C <sub>2</sub> H <sub>5</sub> ) <sub>3</sub> CH | [3] (CH <sub>3</sub> ) <sub>3</sub> C           | CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | $[4](CH_3)_4C$                       | [MPPMT-2001]       |
| Q.10 | On electrolysis of sodium a                        | acetate H <sub>2</sub> gas is evolved a              | at cathode,                                     | C <sub>2</sub> H <sub>6</sub> is at ano           | de. Then react                       | tion is known as - |
|      | [1] Frankland                                      | [2] Kolbe                                            | [3] Clemer                                      | nson                                              | [4] wolf-keish                       | ner[RPMT-2001]     |
| Q.11 | C.N.G. is -                                        |                                                      |                                                 |                                                   |                                      | [RPMT-2001]        |
|      | [1] CH <sub>4</sub> + Propane + Butar              | ne + Higher Alkane                                   | [2] CH4 +                                       | Ethane + But                                      | ane                                  |                    |
|      | (84%)                                              |                                                      | (33%)                                           | (33%) (33                                         | 3%)                                  |                    |
|      | [3] Benzene + petrol                               |                                                      | [4] CH <sub>4</sub> +                           | LPG                                               |                                      |                    |
|      | (1 1)                                              |                                                      | (10%)                                           | (90%)                                             |                                      |                    |
| Q.12 | Mustard gas is obtained b                          | y -                                                  |                                                 |                                                   |                                      | [RPET-2002]        |
|      | [1] The action of dilute acid                      | ds on mustard seeds                                  | [2] Treatin                                     | ng ethylene wit                                   | h mustard oil                        |                    |
|      | [3] Treating sulphur chlorid                       | le with ethylene                                     | [4] None o                                      | of these                                          |                                      |                    |

| Q.13 | Butene-1-may be converted to butane by reaction with -                           |                                                                          |                                                                |                                          |                              |  |  |  |  |
|------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------|------------------------------|--|--|--|--|
|      | [1] Pd/H <sub>2</sub>                                                            | [2] Zn - HCl                                                             | [3] Sn - HCl                                                   | [4] Zn - Hg.                             |                              |  |  |  |  |
| Q.14 | On mixing a certain alkane                                                       | with chlorine and irradiating                                            | it with ultraviolet light, it for                              | rms only one mond                        | ochloroalkane.               |  |  |  |  |
|      | This alkane could be -                                                           |                                                                          |                                                                | [                                        | [AIEEE-2003]                 |  |  |  |  |
|      | [1] neopentane                                                                   | [2] propane                                                              | [3] pentane                                                    | [4] isopentane                           |                              |  |  |  |  |
| Q.15 | Which one of the following                                                       | is reduced with Zn & HCl                                                 | to give the corresponding                                      | hydrocarbon: [/                          | AIEEE-2004]                  |  |  |  |  |
|      | [1] Butane-2-one                                                                 | [2] Acetic acid                                                          | [3] Acetamide                                                  | [4] Ethyl acetate                        | ;                            |  |  |  |  |
| Q.16 | Amongst the following com                                                        | pounds, the optically activ                                              | e alkane having lowest mo                                      | olecular mass is : [                     | AIEEE-2004]                  |  |  |  |  |
|      | [1]CH <sub>3</sub> –CH <sub>2</sub> –C≡CH                                        | CH <sub>3</sub> [2] CH <sub>3</sub> -CH <sub>2</sub> -CH-CH <sub>3</sub> | [3] $CH_3$ – $C_2H_5$                                          | [4] CH <sub>3</sub> -CH <sub>2</sub> -CH | <sub>2</sub> CH <sub>3</sub> |  |  |  |  |
| Q.17 | Which one of the following                                                       | has the minium boiling po                                                | pint :                                                         | • [4                                     | AIEEE-2004]                  |  |  |  |  |
|      | [1] isobutane                                                                    | [2] 1-butyne                                                             | [3] 1-butene                                                   | [4] n-butene                             |                              |  |  |  |  |
| Q.18 | Natural gas is mixture of                                                        |                                                                          |                                                                | [                                        | [RPMT-2004]                  |  |  |  |  |
|      | [1] H <sub>2</sub> O + CO <sub>2</sub>                                           | [2] CO + H                                                               | [3] $CH_4 + C_2H_6 + C_3H_8$                                   | [4] CO + H <sub>2</sub> + C              | H <sub>4</sub>               |  |  |  |  |
| Q.19 | Marsh gas continas mainly                                                        |                                                                          | (O)                                                            | I                                        | [RPMT-2004]                  |  |  |  |  |
|      | [1] CH <sub>4</sub>                                                              | [2] C <sub>2</sub> H <sub>4</sub>                                        | [3] H <sub>2</sub> S                                           | [4] CO                                   |                              |  |  |  |  |
| Q.20 | 2-Methylbutane on reacting                                                       | g on reacting with bromine                                               | in the presence of sunlig                                      | ht gives mainly                          | [AIEEE-05]                   |  |  |  |  |
|      | [1] 2-bromo-2-methylbutane                                                       |                                                                          | [2] 1-bromo-2-methylbuta                                       | ane                                      |                              |  |  |  |  |
|      | [3] 1-bromo-3-methylbutane                                                       |                                                                          | [4] 2-bromo-3-methylbuta                                       | ane                                      |                              |  |  |  |  |
| Q.21 | Which of the following read                                                      | ctions will not give propane                                             | ?                                                              | [                                        | DPMT 2005]                   |  |  |  |  |
|      | [1] CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> CI Mg/ether H <sub>2</sub> O | $\rightarrow$                                                            | *[2] CH <sub>3</sub> COCI CH <sub>3</sub> MgX H <sub>2</sub> O | $\rightarrow$                            |                              |  |  |  |  |
|      | [3] $CH_3CH = CH_2 \frac{B_2H_6}{CH_3COOO}$                                      | H→                                                                       | CH <sub>3</sub> CH-CH <sub>3</sub> OH                          | $\stackrel{\mathrm{I}}{\longrightarrow}$ |                              |  |  |  |  |
| Q.22 | Which of the following is n                                                      | ot an endothermic reaction                                               | n ?                                                            | ı                                        | [J & K 2005]                 |  |  |  |  |
|      | [1] Dehydrogenation                                                              |                                                                          | [2] Ethane to ethene                                           |                                          |                              |  |  |  |  |
|      | *[3] Combustion of propane                                                       | Э                                                                        | [4] Change of chlorine n                                       | nolecule into chlor                      | ine atoms                    |  |  |  |  |
| Q.23 | Which of the following con                                                       | tain isopropyl group -                                                   |                                                                |                                          | [BHU 2005]                   |  |  |  |  |
|      | [1] 2,2,3,3-tetramethylpenta                                                     | ane                                                                      | *[2] 2-methyl pentane                                          |                                          |                              |  |  |  |  |
|      | [3] 2,2,3-tetramethylpentan                                                      | e                                                                        | [4] 3,-3dimethyl pentane                                       |                                          |                              |  |  |  |  |

**Q.24** The product obtained on reaction of C<sub>2</sub>H<sub>5</sub>Cl with hydrogen over palladium carbon is -[AFMC 2005]  $[3] C_2 H_6$ [1] C<sub>2</sub>H<sub>8</sub>  $[2] C_4 H_{10}$  $[4] C_2H_A$ **Alkene** Q.25 Alkyl halides react with dialkyl copper reagent to give [AIEEE-05] [1] alkyl copper halides [2] alkenes [3] alkeny halides [4] alkanes Q.26 Which set of products is expected on reductive ozonolysis of the following olefins -(DCE-1994) CH<sub>3</sub> CH<sub>3</sub>—CH = C—CH = CH<sub>2</sub> [2]  $CH_3CH = C(CH_3)CHO$ ;  $CH_2O$ [1]  $CH_3CHO$ ;  $CH_3COCH = CH_2$ [4]  $\mathrm{CH_{3}CHO}$  ;  $\mathrm{CH_{3}COCH_{3}}$  ;  $\mathrm{CH_{2}O}$ [3] CH<sub>2</sub>CHO; CH<sub>2</sub> COCHO; CH<sub>2</sub>O Q.27 The product formed by the action of chlorine on ethene in saturated solution of KBr is/are -[1] CICH, CH, CI + CICH, CH, CH, Br [2] CICH, CH, CI (Pb. CET-1996) [3] CICH, CH, CI + BrCH, CH, CI [4] CICH<sub>2</sub>CH<sub>2</sub>CI + BrCH<sub>2</sub>CH<sub>2</sub>Br + CICH<sub>2</sub>CH<sub>2</sub>Br Q.28 When propene is treated with HBr in the dark and in absence of peroxide the main product is -(DCE-1996) [3] 1, 2-Dibromopropane [4] 1, 3-Dibromopropane [1] 1-Bromopropane [2] 2-Bromopropane Q.29 Formation of polyethene from calcium carbide takes place as follows - $CaC_2 + 2H_2O \rightarrow Ca(OH)_2 + C_2H_2$ ;  $\mathsf{C_2H_2} + \mathsf{H_2} \to \mathsf{C_2H_4} \, ; \qquad \mathsf{nC_2H_4} \to (--\mathsf{CH_2} - \mathsf{CH_2})$ The amount of polythene obtained from 64 kg of  $\mathrm{CaC}_2$  is (AIIMS-1997) [2] 14 kg [1] 7 kg [3] 21 kg [4] 28 kg Q.30 When potassium permanganate (KMnO<sub>4</sub>) is added to ethylene gives -[MPPET-95, AFMC-1998] [Ž] Ethanol [3] Methanol [1] Glycerol [4] Ethylene glycol Q.31 Which of the following is the most stable alkene -[Manipal-94,RPMT-93, AIIMS-98] [1]  $R_2C = CR_2$ [2] RCH = CHR[3]  $CH_2 = CHR$ [4]  $CH_2 = CH_2$ Q.32 2-Bromopentane is heated with potassium ethoxide in ethanol. The major product obtained is -[CPMT-1998] [1] 1-Pentene [2] cis-2-pentene [3] trans-2-pentene [4] 2-Ethoxypentane Q.33 Which alkene gives same product with both Markownikoff's and anti Markownikoff's method - [RPMT-1998] [1]  $\alpha$ -Butylene [2] Propylene [3]  $\alpha$ -amylene [4] β-Butylene Q.34 PVC is the polymer of -[RPMT-1998] [1] Vinly cyanide [3] Vinyl chloride [4] Ethylene [2] Vinly acetate Q.35 A reagent used to test unsaturation in alkene is -[KCET-1999] [2] Ammoniacal AgNO<sub>3</sub> [3] Solution of Br<sub>2</sub> in CCl<sub>4</sub> [4] Conc. H<sub>2</sub>SO<sub>4</sub> [1] Ammoniacal Cu<sub>2</sub>Cl<sub>2</sub>

**Q.36** In the reaction 
$$CH_2 = CH_2 \xrightarrow{\text{hypochlorous}} M \xrightarrow{R} CH_2OH \text{ where } M = \text{Molecule and } R = \text{Reagent M} \text{ and R} \text{ are-} CH_2OH$$

[1] CH<sub>3</sub>CH<sub>2</sub>Cl and NaOH

[2]  $\mathrm{CH_2Cl}\mathrm{--}\mathrm{CH_2OH}$  and aq.  $\mathrm{NaHCO_3}$ [CPMT-1999]

[3] CH<sub>3</sub>CH<sub>2</sub>OH and HCl

[4]  $CH_2$ = $CH_2$  and heat

Q.37 Alkene not showing addition of HBr according to Anti-Markownikoffs rule is -

[RPET-96, RPMT-99]

[1] 2-Pentene

[2] 2-Butene

[3] 1-Butene

[4] Propene

**Q.38** CH<sub>3</sub>—CH=CH<sub>2</sub>  $\xrightarrow{\text{HBr}}$  A, Here product A is -

[RPMT-1999]

 $\begin{tabular}{ll} [1] BrCH_2--CH=CH_2 & & [2] CH_3--CH_2--CH_2 Br & & [3] CH_3--CH(Br)--CH_3 \\ \hline \end{tabular}$ 

[4] Br—CH<sub>2</sub>—CH<sub>2</sub>CH<sub>3</sub>Br

Q.39 Ethene is given by the following compound on dehydration -

Q.43 Favourable conditions of the polymerisation of ethene is -

[RPET-1999]

[1] Ethyl acetate

[2] C<sub>2</sub>H<sub>5</sub>OH

[3] HCHO

[4] 1 and 2

Q.40 The compound which gives only acetaldehyde on ozonolysis is -

[MPPET-2000]

[1] Butene-1

[2] Butene-2

[3] Ethylene

¶4] Propylene

Q.41 Which of the following reagent is used in formation of alkene from alkyl halide

[RPMT-2000]

[1] Alc. KOH + Heat

[2] Aq. KOH + cold water [3] NaOH

[4] LiOH

Q.42 Ethene react with bromine form -

[MPPMT-2001]

[RPET-2001]

[1] Only high temperature

[2] Only catalyst

[3] Only high pressure

[4] High temperature and High pressure

**Q.44** 
$$6CH_2 = CH_2 + B_2H_6 \rightarrow 2(H-C-C-)_3B - H_1 + H_2$$

[RPET-2001]

Product is base of formation of organo-boron compound. It was prepared by scientist

[1] Brown & Benzamine

[2] Brown & Zweifel

[3] Brown & Metheson [4] Brown & Supparoev

Q.45 1, 3-pentadiene is more stable then -1, 4-pentadiene because of -

[RPET-2001]

[1] It is conjugated diene

[2] It has more dipole moment

[3] Both are functional & position isomer

[4] None

Q.46 Monomer of 
$$\begin{bmatrix} CH_3 \\ -C-CH_2 \end{bmatrix}$$
 is -

[CBSE-2002]

[1] 2-Methyl propene

[2] Styrene

[3] Propylene

[4] Ethene

[Orissa JEE 2005]

[4] 2-hexene

Q.47 The reaction: [MPPMT-2002]  $CH_3 CH = CH_2 \xrightarrow{CO + H_3O} CH_3 - CH_3 - CH_3$  is known as -[2] Koch reaction [3] Clemensen reduction [4] Kolbe's reaction [1] Wurtz reaction Q.48 General formulae of alkenes and alkyl radicals are respectively -[MPPMT-2002]  $[1] \ C_{n} H_{2n} \ \text{and} \ C_{n} H_{2n+1} \qquad \qquad [2] \ C_{n} H_{2n} \ \text{and} \ C_{n} H_{2n+1} \qquad \qquad [3] \ C_{n} H_{2n-1} \ \text{and} \ C_{n} H_{2n} \qquad \qquad [4] \ C_{n} H_{2n+1} \ \text{and} \ C_{n} H_{2n+2} \ \text$ Q.49 Correct position of double bond in alkene is identified with -[RPET-2002] [1] Hydrogenation [2] Ozonolysis [3] Baeyer's reagent [4] Dehydration Q.50 Reaction of HBr with propane in the presence of peroxide gives [CPMT Scr. 2004] [1] 3-bromo propane [2] allyl bromide [3] n-propyl bromide [4] isopropyl pentachloride Q.51 Which of the following reaction will give maximum yield of C<sub>2</sub>H<sub>E</sub>Cl [RPMT-2004] [1]  $C_2H_6 + CI_2 \xrightarrow{\text{hv. light}} C_2H_5CI + HCI$ [3]  $C_2H_6 \xrightarrow{\text{hv. light}} C_2H_5CI$ Q.52 A compound 'X' gives two moles of HCHO on ozonolysis then is [RPMT-2004] [3] C<sub>2</sub>H<sub>6</sub> [2] C<sub>2</sub>H<sub>4</sub> [4] C<sub>6</sub>H<sub>6</sub> [1] C<sub>2</sub>H<sub>5</sub> Q.53 A compound decolourises KMNO<sub>4</sub> but does not gives amm. AgNO<sub>3</sub> ppt test [RPMT-2004] [2] C<sub>3</sub>H<sub>6</sub> [1] CH<sub>3</sub>COCH<sub>3</sub> [4] C<sub>2</sub>H<sub>2</sub> Q.54 Reduction of Alkene under a catalyst is called as [RPMT-2004] [1] Markoni-koff's rule [2] Frankland reaction [3] Wurtz reaction [4] Sabtier-Senderence reaction Q.55 Reaction of one molecule of HBr with one molecule of 1,3-butane at 40°C gives predominantly [1] 1-bromo-2-butene under thermodynamically controlled conditions [2] 3-bromobutene under kinetically controlled conditions [3] 1-bromo-2-butene under kinetically controlled conditions [4] 3-bromobutene under thermodynamically controlled conditions Q.56 Acid catalyzed hydration of alkenes except ethene leads to the formation of [AIEEE-05] [1] secondary or tertiary alcohol [2] primary alcohol [3] mixture of secondary and tertiary alcohols [4] mixture of primary and secondary alcohols Q.57 Elimination of bromine from 2-bromobutane results in the formation of [AIEEE-05] [1] predominantly 2-butene [2] equimolar mixture of 1 and 2-butene [4] predominantly 1-butene [3] predominantly 2-butyne

Q.58 Which of these does not follow Anti-Markownikoff's rule

[2] 1-butene

[3] 2-pentene

[1] 2-butene

| Q.59 | Which of the following read                               | ct with KMnO <sub>4</sub> but does no                                   | ot react with AgNO <sub>3</sub> ?                        | [BCECE 2005]                                                               |
|------|-----------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------|
|      | [1] C <sub>2</sub> H <sub>6</sub>                         | [2] CH <sub>4</sub>                                                     | [3] C <sub>2</sub> H <sub>4</sub>                        | [4] C <sub>2</sub> H <sub>2</sub>                                          |
| Q.60 | 3-Phenylpropene on reacti                                 | on with HBr gives (as a ma                                              | ajor product)                                            | [AIIMS 2005]                                                               |
|      | $[1]C_6H_5CH_2CH(Br)CH_3$                                 | [2] C <sub>6</sub> H <sub>5</sub> CH(Br)CH <sub>2</sub> CH <sub>3</sub> | $[3]\mathrm{C_6H_5CH_2CH_2CH_2Br}$                       | [4] C <sub>6</sub> H <sub>5</sub> CH(Br)CH=CH <sub>2</sub>                 |
| Q.61 | The only alcohol that can I                               | pe prepared by the indirec                                              | t hydration of alkene is -                               | [AFMC 2005]                                                                |
|      | [1] Ethyl alcohol                                         | [2] Propyl alcohol                                                      | [3] Isobutyl alcohol                                     | [4] Methyl alcohol                                                         |
| Q.62 | The reaction of HBr with C                                | $CH_3$<br>$CH_3 - C = CH_2$ in the prese                                | ence of peroxide will give                               | - [BHU 2005]                                                               |
|      | CH <sub>3</sub> CBrCH <sub>3</sub><br>[1] CH <sub>3</sub> | [2] CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> Br  | CH <sub>3</sub> [3] CH <sub>3</sub> CHCH <sub>2</sub> Br | CH <sub>3</sub><br> <br> CH <sub>3</sub> CH <sub>2</sub> CHCH <sub>3</sub> |
| Q.63 | A gas decolourised by KM                                  | nO <sub>4</sub> solution but gives no                                   | precipitate with ammonia                                 | cal cuprous chloride is -                                                  |
|      |                                                           |                                                                         |                                                          | [KCET 2005]                                                                |
|      | [1] Ethane                                                | [2] Methane                                                             | [3] Ethene                                               | [4] Acetylene                                                              |
| Q.64 | Cyclohexene on reaction v                                 | vith OsO <sub>4</sub> followed by reac                                  | tion with NaHSO <sub>3</sub> gives                       | [Orissa JEE 2005]                                                          |
|      | [1] cis-diol                                              | [2] trans-diol                                                          | [3] ероху                                                | [4] alcohol                                                                |
| Q.65 | Find the final product; CF                                | $H_3$ -CH=C $H_2$ +NOCI $\longrightarrow$ ?                             |                                                          | [IIT 2006]                                                                 |
|      | [1] H <sub>3</sub> C-CI                                   | [2] H <sub>3</sub> CNO                                                  | [3]CI                                                    | [4] H <sub>3</sub> C—CI                                                    |
| Alk  | yne                                                       | (0)                                                                     |                                                          |                                                                            |
| Q.66 | When acetylene is hydrate obtained is -                   | •                                                                       | SO <sub>4</sub> containing mecruric s                    | sulphate at 330-370, the product [AFMC-94,RPMT-1998]                       |
|      | [1] Acetone                                               | [2] Acetaldehyde                                                        | [3] Isopropyl alcohol                                    | [4] n-Propyl aldehyde                                                      |
| Q.67 | 0 0                                                       | s with ammoniacal ${\rm AgNO_3}$ to ${\rm EH_3)_2}$ CHCOOH. Therefore   |                                                          | and on oxidation with hot alkaline (AIIMS-1994)                            |
|      | [1] CH <sub>2</sub> = CHCH = CHCH <sub>3</sub>            | [2] CH <sub>3</sub> CH=CHCH <sub>2</sub> CH <sub>3</sub>                | [3]I(CH <sub>3</sub> ) <sub>2</sub> CH—C≡CH              | [4] $(CH_3)_2C = C = CH_2$                                                 |
| Q.68 | When an alkyne, RC ≡ CH                                   | , is treated with cuprous ic                                            | on in an ammoniacal med                                  | ium, one of the products is -                                              |
|      | [1] RC≡CCu                                                | [2] CuC ≡ CH                                                            | [3] CuC≡CCu                                              | [4] RC=CR (DCE-1996)                                                       |
| Q.69 | Acetylene on reacting with                                | ammoniacal AgNO <sub>3</sub> gives                                      | -                                                        | [CPMT-1998]                                                                |
|      | [1] Silver mirror                                         | [2] Silver metal                                                        | [3] Silver acetate                                       | [4] Silver acetylide                                                       |
| Q.70 |                                                           |                                                                         | -                                                        | excess of $\mathrm{Br_2}$ a new substance r nitrate solution. A may be -   |
|      | [1] But-1-yne                                             | [2] But-2-yne                                                           | [3] But-1-ene                                            | [4] But-2-ene [MPPMT-1998]                                                 |

```
Q.71 In the reaction CH_3—C \equiv C—CH_3 \xrightarrow[(i)H_2O]{(i)H_2O} CH_3—C—C—CH_3, X is -
                                                                                                                     [MPPET-1998]
       [1] HNO<sub>2</sub>
                                                                                                    [4] KMnO<sub>4</sub>
Q.72 The compound formed by the reaction of simplest alkyne with excess of bromine is -
                                                                                                                      [RPMT-1998]
       [1] Acetylene dibromide
                                                                      [2] Acetylene tetrabromide
       [3] Vinly bromide
                                                                      [4] All these above
Q.73 Which compound is formed by the reaction of one mole acetylene and two mole hypochlorous acid -
                                        [2] Dichloro acetaldehyde [3] Dichloro acetone
                                                                                                    [4] Both 1 & 2 [RPMT-1998]
Q.74 In which of the following hydrocarbons, hydrogen is most acidic -
                                                                                                                   [AFMC-2000.99]
                                        [2] CH_{2} = CH_{2}
                                                                      [3] CH = CH
       [1] C<sub>e</sub>H<sub>e</sub>
                                                                                                    [4] CH<sub>3</sub>—CH<sub>3</sub>
Q.75 Mesitylene is the addition polymer of compound -
       [1] Acetone
                                        [2] Propene
                                                                      [3] Propyne
Q.76 Which one of following react with HOCI to from CH<sub>2</sub>—CO—CHCI<sub>2</sub> product -
                                                                                                                       [RPMT-1999]
                                        [2] CH_3—C \equiv CH
                                                                                                              -CH_-C=CH
       [1] CH<sub>3</sub>—C ≡ C—CH<sub>3</sub>
                                                                      [3] CH = CH
Q.77 Two mole of HBr is added with CH_3—C \equiv CH in presence of peroxide to give
       [1] CH<sub>3</sub>—CH<sub>2</sub>—CHBr<sub>3</sub>
                                      [2] CH<sub>3</sub>—CH(Br)—CH<sub>2</sub>Br [3] CH<sub>3</sub>—CBr<sub>2</sub>—CH<sub>2</sub>
                                                                                                    [4] CH<sub>3</sub>—CH<sub>2</sub>Br—CHBr<sub>3</sub>
Q.78 Tollen's reagent is -
                                                                                                                       [RPMT-1999]
       [1] Solution of CuSO.
                                                                      [2] Ammoniacal AgNO<sub>3</sub> solution
       [3] Anhydrous ZnCl<sub>2</sub>
                                                                      [4] Fuccine
Q.79 If mixture of CH = CH & N<sub>2</sub> is passed electric spark to give -
                                                                                                                       [RPMT-1999]
                                                                      [3] HCN
       [1] Ether
                                        [2] Ethylamine
                                                                                                    [4] NH<sub>2</sub>
Q.80 Benzene is a polymer of -
                                                                                                                       [RPET-1999]
                                        [2] Ethylene
       [1] Ethyne
                                                                      [3] Methane
                                                                                                    [4] Ethane
Q.81 Compound 'C' can be distinguished from the other three compounds by the reagent -
                                                                                                                     [MPPET-2000]
                                        (B) CH_3—CH_2—CH_3—CH_3 (C) CH_3CH_2C\equivCH
       (A) CH<sub>2</sub>C ≡ C—CH<sub>2</sub>
                                                                                                    (D) CH<sub>2</sub>CH=CH<sub>2</sub>
                                        [2] Bromine in acetic acid[3] Alkaline KMnO
       [1] Bromine in CCI,
                                                                                                    [4] Ammoniacal silver nitrate
Q.82 Chloroform, on warming with Ag powder, gives -
                                                                                                            [RPET-99, BHU-2000]
       [1] C<sub>2</sub>H<sub>2</sub>
                                      [2] C_2H_4
                                                                                                    [4] C<sub>6</sub>H<sub>6</sub>
Q.83 Ammoniacal solution of cuprous chloride give red precipitate with -
                                                                                                                      [AIIMS-2000]
       [1] H—C=C—CH,
                                        [2] CH_2 = CH_2
                                                                                                    [4] CH_3 - C = C - C_2H_5
Q.84 Alkynes mainly shows -
                                                                                                                       [RPMT-2000]
       [1] Polymerisation
                                       [2] Electrophilic addition [3] Free radical substitution [4] All of the above
Q.85 HC \equiv CH \xrightarrow{Hg^{2}} A \xrightarrow{CH,MgX} B \xrightarrow{\circ} C, Identify the product C in series -
                                                                                                                      [RPMT-2000]
       [1] Ethyl alcohol
                                                                      [3] Isopropyl alcohol
                                                                                                    [4] Acetaldehyde
                                        [2] Acetone
Q.86 Which of the following acidity order is correct -
                                                                                                                       [RPET-2000]
       [1] 1-Alkyne > Alkene > Alkane
                                                                      [2] Alkene > Alkane > 1-Alkyne
       [3] Alkane > Alkene > 1-Alkyne
                                                                      [4] None of these
Q.87 But-1-ene and propyne are distinguished by -
                                                                                                                       [RPET-2002]
       [1] Baeyers reagent
                                        [2] Hinsbergs reagent
                                                                      [3] Tollen's reagent
                                                                                                    [4] None
Q.88 When CH<sub>2</sub>CH<sub>2</sub>CHCl<sub>2</sub> is treated with NaNH<sub>2</sub> the product formed is -
                                                                                                                       [CBSE-2002]
       [1] CH<sub>2</sub>—CH = CH<sub>2</sub>
                                       [2] CH_3 - C \equiv CH
                                                                      [3] CH<sub>3</sub>CH<sub>2</sub>CH(NH<sub>2</sub>)<sub>2</sub>
                                                                                                    [4] CH<sub>2</sub>CH<sub>2</sub>CHCI(NH<sub>2</sub>)
```

Q.89 With sodium, liberation of hydrogen gas is possible with the following hydrocarbon -[RPMT-2002] [1] CH<sub>4</sub> [2] C<sub>2</sub>H<sub>6</sub> [3]  $C_{2}H_{4}$ **Q.90** Hydrocarbon 'A' of molecular formula C<sub>5</sub>H<sub>8</sub> gives white precipitate with ammoniacal AgNO<sub>3</sub> solution. 'A' on treatment with acidified K2Cr2O7 produces acid of the formula (CH3)2CHCOOH. Hence the compound 'A is' -[1] (CH<sub>3</sub>)<sub>2</sub>CH—CH=CH<sub>2</sub> [2]  $CH_3$ —CH = CH— $CH = CH_2$ [RPMT-2002] [3]  $(CH_3)_2CH - C \equiv CH$ [4]  $CH_3CH_2CH_2 - C \equiv CH$ Q.91 Which of these will not react with acetylene -[AIEEE-2002] [1] NaOH [2] ammoniacal AgNO<sub>3</sub> [3] Na [4] HCI Q.92 What is the product formed when acetylene reacts with hypochlorous acid -[AIEEE-2002] [2] CICH, CHO [3] CI<sub>2</sub>CHCHO [4] CICH, COOH [1] CH<sub>2</sub>COCI **Q.93** Products of the following reaction  $CH_3C \equiv CCH_2CH_3 \xrightarrow{(1)O_3} \dots$  are [CBSE PMT 2005] [1] CH<sub>2</sub>CHO + CH<sub>2</sub>CH<sub>2</sub>CHO [2] CH, COOH + CH, CH, CHC [4] CH<sub>3</sub>COOH + CO, [3] CH<sub>3</sub>COOH + HOOCCH<sub>2</sub>CH<sub>3</sub> Q.94 Treacts with acetic acid in presence of Hg<sup>2+</sup> to give -[BHU 2005] [4] None of these Q.95 Which reacts with ammoniacal AgNO<sub>3</sub> [Orissa JEE 2005] [1] Propyne [3] 1,3-butadiene [4] Pentene **Q.96** CH = CH  $\xrightarrow{\text{HgSO}_4}$   $\xrightarrow{\text{CH}_3\text{MgBr}}$   $\xrightarrow{\text{CH}_3\text{MgBr}}$ [DPMT 2005] [2] CH, CH, CH, Br [1] CH<sub>2</sub>CH(Br)CH<sub>3</sub>  $[3] CH_2 = CH - Br$ [4]  $BrCH = CH-CH_3$ Q.97 Carbide, which react with water to give propyne is -[Kerala CET 2005] [2] SiC [1] CaC, [3] Mg<sub>2</sub>C<sub>3</sub> $[4] Al_4C_3$ Which of the following reactions will yiled 2,2-dibromopropane? Q.98 [AIEEE 2007] [1]  $CH \equiv CH + 2HBr -$ [2]  $CH_3 - CH = CH_2 + HBr \longrightarrow$ [3]  $CH_3 - C \equiv CH + 2HBr \longrightarrow$ [4]  $CH_3CH = CHBr + HBr \longrightarrow$ 

#### Answer Key

| Qus.         | 1             | 2         | 3         | 4             | 5         | 6         | 7  | 8             | 9  | 10        | 11        | 12        | 13        | 14          | 15        | 16        | 17          | 18        | 19        | 20 |
|--------------|---------------|-----------|-----------|---------------|-----------|-----------|----|---------------|----|-----------|-----------|-----------|-----------|-------------|-----------|-----------|-------------|-----------|-----------|----|
| Ans.         | 4             | 3         | 3         | 1             | 1         | 4         | 4  | 4             | 3  | 2         | 1         | 3         | 1         | 1           | 1         | 3         | 1           | 3         | 1         | 1  |
| Qus.         | 21            | 22        | 23        | 24            | 25        | 26        | 27 | 28            | 29 | 30        | 31        | 32        | 33        | 34          | 35        | 36        | 37          | 38        | 39        | 40 |
| Ans.         | 2             | 3         | 2         | 3             | 4         | 3         | 3  | 2             | 4  | 4         | 1         | 3         | 4         | 3           | 3         | 2         | 2           | 3         | 2         | 2  |
| Qus.         | 41            | 42        | 43        | 44            | 45        | 46        | 47 | 48            | 49 | 50        | 51        | 52        | 53        | 54          | 55        | 56        | 57          | 58        | 59        | 60 |
| A            | 4             | _         | 4         | 4             | 1         | 1         | 2  | 4             | 2  | 2         | 1         | 2         | 2         | 1           | 1         | 1         | 1           | 1         | 2         | 2  |
| Ans.         | 1             | 3         | 4         | 7             | 1         | 1         |    | I             |    | 3         | I         |           | ၁         | 4           | 4         | I         | I           | I         | 3         |    |
| Ans.<br>Qus. | 61            | <b>62</b> | 63        | 64            | 65        | 66        | 67 | 68            | 69 | <b>70</b> | 71        | <b>72</b> | <b>73</b> | 74          | 75        | 76        | 77          | 78        | <b>79</b> | 80 |
| -            | 61<br>1       | _         | <b>63</b> | <b>64</b>     | <b>65</b> | <b>66</b> |    | <b>68</b>     |    | -         | <b>71</b> |           | _         | <b>74</b> 3 | -         | <b>76</b> | <b>77</b> 2 | <b>78</b> | _         |    |
| Qus.         | 61<br>1<br>81 | 62        |           | 64<br>1<br>84 | 2         |           | 67 | 68<br>1<br>88 |    | -         | 3         | 72        | 73        |             | <b>75</b> | 2         |             |           | 79        |    |

(1) Fire extinguisher

(2) Pain killer

(3) Petroleum additive (4) Mosquito repellant

#### EXERCISE # 3

| Q.1. | $CH_2 = CH_2$ reacts with H<br>(1) $CICH = CH - CI$ | HCl to form: $(2) CH_2 - CH_2$                     | (3) CH <sub>2</sub> CI – CH <sub>2</sub> CI                             | (4) CH <sub>3</sub> CHCl <sub>2</sub> |
|------|-----------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------|
|      | ,                                                   | CI                                                 | . ,                                                                     | . , 3 2                               |
| Q.2  | Hydrocarbon containing                              | g following bond is most re                        | eactive towards electropl                                               | nile?                                 |
|      | (1) C ≡ C                                           | (2) C = C                                          | (3) C – C                                                               | (4) All                               |
| Q.3  | Ethylene reacts with alk                            | caline KMnO₄ (Baeyer's re                          | eagent) to form :                                                       |                                       |
|      | (1) Oxalic acid                                     | (2) Acetic acid                                    | (3) Glycol                                                              | (4) Glycerol                          |
| Q.4  | On cracking of petrol, w                            | ve get :                                           |                                                                         |                                       |
|      | (1) CH <sub>4</sub>                                 |                                                    | (2) $C_3H_6$                                                            |                                       |
|      | (3) Both of the above                               |                                                    | (4) CH <sub>3</sub> + CH <sub>4</sub> + C <sub>2</sub> H <sub>6</sub> + | alcohols                              |
| Q.5  | When propylene reacts                               | s with hydrogen bromide i                          | n the presence of peroxi                                                | de, the product formed is :           |
|      | (1) n-Propyl alcohol                                | (2) Propylene peroxide                             |                                                                         | (4) 1, 3-dibromo propane              |
| Q.6  | Cyclopentene on treatn                              | nent with alkaline KMnO <sub>4</sub>               | gives:                                                                  |                                       |
|      | (1) Cyclopentanol                                   | 7                                                  |                                                                         |                                       |
|      | (2) Trans-1, 2-cyclopen                             | tanediol                                           |                                                                         |                                       |
|      | (3) Cis-1, 2-cyclopentar                            | nediol                                             |                                                                         |                                       |
|      | (4) 1 : 1 mixture of cis-                           | and trans-1, 2-cyclopenta                          | anediol                                                                 |                                       |
| Q.7  | Photochomical chloring                              | ation of alkane is initiated                       | by a process of :                                                       |                                       |
| Q.I  | (1) Pyrolysis                                       |                                                    | (3) Homolysis                                                           | (4) Peroxidation                      |
|      | (1)1 yrolyolo                                       | (2) Gabotitation                                   | (a) Homolyele                                                           | (1) I GIOMGAGOII                      |
| Q.8  | Ethylene from ethyl bro                             | mide is obtained by treati                         | ing it with -                                                           |                                       |
|      | (1) Hydrogen                                        | 4.6                                                | (2) Alcoholic caustic po                                                | otash                                 |
|      | (3) Aqueous caustic po                              | tash                                               | (4) Aqueous caustic so                                                  | da                                    |
| Q.9  | The acetylene molecule                              | e contains :                                       |                                                                         |                                       |
|      | (1) 5 sigma bonds                                   |                                                    | (2) 4 sigma and 1 pi bo                                                 | onds                                  |
|      | (3) 3 sigma and 2 pi bo                             | onds                                               | (4) 2-sigma and 3 pi bo                                                 | onds                                  |
| Q.10 | Ethylene can be prepar                              | ed by electrolysis of an a                         | queous solution of :                                                    |                                       |
|      | (1) Sodium acetate                                  | (2) Sodium succinate                               | (3) Sodium fumarate                                                     | (4) Sodium propionate                 |
| Q.11 | Ethyl alcohol is heated                             | with conc. H <sub>2</sub> SO <sub>4</sub> . The pr | oduct formed is :                                                       |                                       |
|      |                                                     |                                                    | (3) C <sub>2</sub> H <sub>4</sub>                                       | $(4) C_2 H_2$                         |
|      | (1) $H_3C - C - OC_2H_6$                            |                                                    |                                                                         |                                       |
| Q.12 |                                                     | goes the following type of                         | reaction :                                                              |                                       |
|      | (1) Addition                                        | (2) Substitution                                   | (3) Elimination                                                         | (4) Rearrangement                     |
| Q.13 | Lead tetraethyl is used                             | as:                                                |                                                                         |                                       |

| Q.14 | Which of the following types of reactions occur when a reactant has got a double bond? |                                         |                                   |                              |  |  |  |  |  |  |
|------|----------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------|------------------------------|--|--|--|--|--|--|
|      | (1) Addition                                                                           | (2) Photolysis                          | (3) Substitution                  | (4) Polymerization           |  |  |  |  |  |  |
| Q.15 | Formation of alkane by                                                                 | action of Zn on alkyl hali              | de is called :                    |                              |  |  |  |  |  |  |
|      | (1) Frankland reaction                                                                 |                                         | (2) Cannizzaro's reaction         | n                            |  |  |  |  |  |  |
|      | (3) Wurtz reaction                                                                     |                                         | (4) Kolbe's reaction              |                              |  |  |  |  |  |  |
| Q.16 | Which one of the follow                                                                | ving organic compounds                  | decolourizes an alkaline h        | KMnO <sub>4</sub> solution : |  |  |  |  |  |  |
|      | (1) CS <sub>2</sub>                                                                    | (2) $C_{3}H_{6}$                        | (3) C <sub>3</sub> H <sub>8</sub> | (4) CH <sub>3</sub> OH       |  |  |  |  |  |  |
| Q.17 | The following reaction                                                                 | - · · · · · · · · · · · · · · · · · · · |                                   |                              |  |  |  |  |  |  |
|      |                                                                                        | $C_3H_8 + 2CI_2 \xrightarrow{Light} C$  |                                   |                              |  |  |  |  |  |  |
|      | (1) An addition reaction                                                               |                                         | (2) A substitution reaction       |                              |  |  |  |  |  |  |
|      | (3) An oxidation reaction                                                              | on (4) Elimination reaction             |                                   |                              |  |  |  |  |  |  |
| Q.18 | Acetylene reacts with I                                                                |                                         |                                   | ~O,                          |  |  |  |  |  |  |
|      | (1) 1, 1-dichloroethane                                                                |                                         | (2) 1, 2-dichloroethane           |                              |  |  |  |  |  |  |
|      | (3) 1, 1, 1-trichloroetha                                                              | ne                                      | (4) None of the foregoing         | ng                           |  |  |  |  |  |  |
| Q.19 | Cojnugated double bor                                                                  | nd is present in :                      |                                   | <b>4</b> )                   |  |  |  |  |  |  |
| 4.10 | (1) Propylene                                                                          | (2) Isobutylene                         | (3) Butadiene                     | (4) Butylene                 |  |  |  |  |  |  |
|      |                                                                                        |                                         |                                   |                              |  |  |  |  |  |  |
| Q.20 | ·                                                                                      | onolysis forms two molec                | cules of HCHO. "X" is:            |                              |  |  |  |  |  |  |
|      | $(1) C_2 H_6$                                                                          | (2) C <sub>2</sub> H <sub>2</sub>       | (3) C <sub>2</sub> H <sub>6</sub> | $(4) C_6 H_6$                |  |  |  |  |  |  |
| Q.21 | Polymerization of acety                                                                | lene leads to the formation             | on of :                           |                              |  |  |  |  |  |  |
|      | (1) Benzene                                                                            | (2) Butane                              | (3) Naphthalene                   | (4) Octane                   |  |  |  |  |  |  |
|      |                                                                                        |                                         |                                   |                              |  |  |  |  |  |  |
| Q.22 | Petroleum consists ma                                                                  |                                         |                                   |                              |  |  |  |  |  |  |
|      | (1) Aliphatic hydrocarb                                                                | ons                                     | (2) Aromatic hydrocarbo           | ons                          |  |  |  |  |  |  |
|      | (3) Aliphatic alcohols                                                                 | 640                                     | (4) None of the above             |                              |  |  |  |  |  |  |
| Q.23 | By coal-tar distillation v                                                             | which is not obtained :                 |                                   |                              |  |  |  |  |  |  |
|      | (1) Light oil                                                                          | (2) Middle oil                          | (3) Heavy oil                     | (4) Mobil oil                |  |  |  |  |  |  |
|      |                                                                                        |                                         |                                   |                              |  |  |  |  |  |  |
| Q.24 | Acidic hydrogen is pres                                                                | sent in :                               |                                   |                              |  |  |  |  |  |  |
|      | (1) Ethyne                                                                             | (2) Ethene                              | (3) Benzene                       | (4) Ethane                   |  |  |  |  |  |  |
| 0.05 |                                                                                        |                                         |                                   |                              |  |  |  |  |  |  |
| Q.25 | Highest boiling point is                                                               | expected for :                          | (0)                               |                              |  |  |  |  |  |  |
|      | (1) Isooctane                                                                          | ud buton e                              | (2) n-octane                      |                              |  |  |  |  |  |  |
|      | (3) 2, 2, 3, 3-tetra meth                                                              | iyi butane                              | (4) n-Butane                      |                              |  |  |  |  |  |  |
| Q.26 |                                                                                        | represents the most oxidi               | ised form of hydrocarbon          | $R - CH_3$ :                 |  |  |  |  |  |  |
|      | (1) CO <sub>2</sub>                                                                    |                                         | (2) RCHO                          |                              |  |  |  |  |  |  |
|      | (3) RCOOH                                                                              |                                         | (4) RCO.OOH                       |                              |  |  |  |  |  |  |
| Q.27 |                                                                                        | from ethyl bromide is a ca              |                                   |                              |  |  |  |  |  |  |
|      | (1) Addition reaction                                                                  |                                         | (2) Substitution reaction         |                              |  |  |  |  |  |  |
|      | (3) Elimination reaction                                                               | 1                                       | (4) Rearrangement read            | ction                        |  |  |  |  |  |  |

Q.14

Q.28

|              | (1) C <sub>2</sub> H <sub>3</sub> HSO <sub>4</sub>                             | (2) CH <sub>3</sub> CHO                 | (3) HCHO                        | (4) $CH_2 = CH_2$                         |
|--------------|--------------------------------------------------------------------------------|-----------------------------------------|---------------------------------|-------------------------------------------|
| Q.29         | Electrolysis of cold cond                                                      | centrated aqueous soluti                | on of potassium succinate       | e yields :                                |
|              | (1) Ethane                                                                     | (2) Ethyne                              | (3) Ethene                      | (4) Ethane-1, 2-diol                      |
| Q.30         | Acetylene reacts will an                                                       | nmoniacal AgNO <sub>3</sub> formin      | g :                             |                                           |
|              | (1) Silver mirror                                                              | (2) Metal silver                        | (3) Silver acetate              | (4) Silver acetylide                      |
| Q.31         | •                                                                              | e ozonolysis of an unsyr                | nmetrical alkene are :          |                                           |
|              | (1) alcohol and/or acids                                                       | , ,                                     | ehydes and/or acids             |                                           |
|              | (3) ketones and/or acids                                                       | S                                       | (4) aldehydes and/or ke         | etones                                    |
| Q.32         | The order of reactivity o                                                      | f halogens in substitutior              | n reaction in polar prootic     | solvent is:                               |
|              | (1) $F > Cl > Br > I$                                                          |                                         | (2) $I > Br > Cl > F$           |                                           |
|              | (3) $F > Br > Cl > I$                                                          |                                         | (4) $F > CI = Br > I$           | -O'                                       |
| Q.33         | Propyne and propens of                                                         | an be distinguished by :                |                                 |                                           |
| <b>Q.</b> 33 | (1) Conc. H <sub>2</sub> SO <sub>4</sub>                                       | (2) Br <sub>2</sub> in CCl <sub>4</sub> | (3) Dilute KMnO <sub>4</sub>    | (4) AgNO <sub>3</sub> in Ammonia          |
|              | (1) 30110.112334                                                               | (2) $Bi_2$ iii $OOi_4$                  | (b) Blidte Rivillo <sub>4</sub> | (4) / 1910 <sub>3</sub> 117 (111111011111 |
| Q.34         | The reaction of propens                                                        | with HOCI proceeds via                  | a the addition of :             |                                           |
|              | (1) H <sup>+</sup> in the first step                                           |                                         | (2) Cl+ in the first step       | ,                                         |
|              | (3) OH <sup>-</sup> in the first step                                          |                                         | (4) Cl⁻ and OH⁻ in a sin        | gle step                                  |
| 0.05         | L. (I                                                                          | 21. 1. 1                                |                                 | de et e e estado de estado de terror      |
| Q.35         | addition to alkene beca                                                        |                                         | and hydrogen lodide dor         | 't give anti Markonikov's's               |
|              | (1) both are highly ionic                                                      |                                         |                                 |                                           |
|              | (2) one is oxidising and                                                       |                                         |                                 |                                           |
|              |                                                                                | endothermic in both the c               | ase                             |                                           |
|              |                                                                                | thermic in both the case                |                                 |                                           |
|              |                                                                                | .01                                     |                                 |                                           |
| Q.36         | $CH \equiv CH \xrightarrow{O_3/NaOH} X$                                        | $Z_n/CH_3COOH \rightarrow Y CO$         | mpou <b>ndi</b> y is :          | CH <sub>2</sub> OH                        |
|              | (1) C <sub>2</sub> H <sub>5</sub> OH                                           | (2) CH <sub>3</sub> COOH                | (3)  <br>CHO                    | (4)                                       |
|              | copper-tube                                                                    |                                         | OHO                             | CH₂OH                                     |
| Q.37         | $2CH_4 + O_2 = \frac{\text{copper-tube}}{200^{\circ}\text{C},100 \text{ atm}}$ |                                         | (O) A = (' = = -' d             |                                           |
|              | (1) Formaldehyde and i                                                         | <b>1</b> <sub>2</sub>                   | (2) Acetic acid                 |                                           |
|              | (3) Carbondioxide                                                              |                                         | (4) Methanol                    |                                           |
| Q.38         | Which of the following of                                                      | compounds should under                  | rgo chlorination faster tha     | in the remaining three?                   |
|              | (1) n-Pentane                                                                  | (2) Neopentane                          | (3) Isopentane                  | (4) n-Butane                              |
| Q.39         | Which of the following a                                                       | alkanes should have lowe                | er boiling point ?              |                                           |
| 4.00         | (1) Triptane                                                                   | (2) Isoheptane                          | (3) Neoheptane                  | (5) n-Heptane                             |
|              | (1) 1114131113                                                                 | (=) 100110 p ta0                        | (5)                             | (0)                                       |
| Q.40         | Which of the following r                                                       | eagents cannot be used                  | for preparing an alkane fi      | rom a ketone ?                            |
|              | (A) Zn/Hg+ conc. HCl                                                           |                                         | (B) Red P + $I_2$               |                                           |
|              | (C) $H_2NNH_2$ and $C_2H_5O$                                                   |                                         | (D) NaBH <sub>4</sub>           |                                           |
|              | (1) A and B                                                                    | (2) A and C                             | (3) B and D                     | (4) C and D                               |

Acetylene reacts with 42%  $\rm H_2SO_4$  containing 1%  $\rm HgSO_4$  to give :

| Q.41 | (1) Propane                                                            | (2) n-Butane                                  | (3) Ethane                                                                 | (4) Methane                        |
|------|------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------------------------|------------------------------------|
| Q.42 | The main constituents of (1) Methane + Ethane (3) Propane + n-Butane   | -                                             | (2) Isobutane + n-Butar<br>(4) Methane + Ethane +                          |                                    |
| Q.43 | Which of the following (1) CO                                          | gases is present as chief (2) CH <sub>4</sub> | constituent in fire damp $\frac{1}{2}$ (3) $C_2H_2$                        | (4) H <sub>2</sub> S               |
| Q.44 |                                                                        | lorine in direct sunlight to                  |                                                                            |                                    |
|      | (1) C + HCI                                                            | (2) CCI <sub>4</sub> + HCI                    | (3) CHCl <sub>3</sub> + HCl                                                | (4) CH <sub>3</sub> CI + HCI       |
| Q.45 | Which of the following p (1) Electrolysis of sodiu (3) Decarboxylation | orocesses is suitable for c<br>m salt         | onverting methanoic acid (2) Reduction with red I (4) Reduction with LiAll | P+HI                               |
| Q.46 |                                                                        |                                               | e combustion of 44 gra                                                     | ms of propane at normal            |
|      | temperature and pressu<br>(1) 25L                                      | ure ?<br>(2) 15 L                             | (3) 25 moles                                                               | (4) 10 moles                       |
| Q.47 | (1) Reduction of an alky                                               | ard reagent with a compo                      |                                                                            | ogen atom                          |
| Q.48 | Which of the following of                                              | cannot give ethene on pyr                     | olysis?                                                                    |                                    |
|      | (1) Ethane                                                             | (2) Propane                                   | (3) Ethyl acetate                                                          | (4) Isobutane                      |
| Q.49 | Hydroxylation of alkene                                                | s cannot be achieved by                       | :                                                                          |                                    |
|      | (1) Baeyer's reagent                                                   |                                               | (2) osmium tetroxide                                                       |                                    |
|      | (3) dilute KMnO <sub>4</sub> solution                                  | on                                            | (4) acid permanganate                                                      |                                    |
| Q.50 | An alkene is not formed                                                | I on the reaction of zinc d                   | ust with :                                                                 |                                    |
|      | (1) a gem dibromide                                                    |                                               | (2) a vic dibromide                                                        |                                    |
|      | (3) vinyl bromide                                                      |                                               | (4) isopropylidene dibro                                                   | mide                               |
| Q.51 | Polymerisation of vinyl                                                | acetate is used for the pre                   | eparation of :                                                             |                                    |
|      | (1) a plastic                                                          | (2) an adhesive                               | (3) a fibre                                                                | (4) a rubber                       |
| Q.52 | A war gas can be prepa                                                 | ared from an aliphatic hyd                    | rocarbon by the reaction                                                   | of:                                |
|      | (1) AsCl <sub>5</sub>                                                  | (2) S <sub>2</sub> Cl <sub>2</sub>            | (3) SCI <sub>2</sub>                                                       | (4) As <sub>2</sub> O <sub>3</sub> |
| Q.53 | Which of the following o                                               | atalysts is regarded as m                     | ost appropriate for polym                                                  | nerisation of propylene?           |
|      | •                                                                      | (2) $(C_{2}H_{5})_{3}AI + TiCI_{4}$           |                                                                            | (4) AlBr <sub>3</sub> + HBr        |

Q.54 Markownikoff rule does not apply on the addition of HX on the following alkene?

(1) 1-Butene

(2) 3-Hexene

(3) Propene

(4) 1-Pentene

**Q.55** Which of the following is not a gas at room temperature?

(1) Propane

(2) Ethylene

(3) n-Pentane

(4) Ethane

Q.56 Which of the following is known as Lindlar's catalyst?

(1) R<sub>3</sub>AI + TiCI<sub>4</sub>

(2) Pd/CaCO<sub>3</sub> + Quinoline + Lead acetate

(3) Pd/BaSO<sub>4</sub> + CaCO<sub>3</sub>

(4)  $Mg/Hg + H_{2}$ 

**Q.57** Propyne can react with two moles of HCl to form:

(1) propylidene dichloride

(2) isopropylidene dichloride

(3) ethylidene dichloride

(4) butylidene dichloride

Q.58 Which of the following reagents should be suitable for converting propyne to propanone?

(1) Ozone

(2) Dilute H<sub>2</sub>SO<sub>4</sub> + HgSO<sub>4</sub>

(3) Acidified KMnO<sub>4</sub>

(4) Dialkylborane followed by alkaline H<sub>2</sub>O<sub>2</sub>

**Q.59** The ascending order of solubility in water is:

(1) Ethane < Ethyne < Ethene

(2) Ethene < Ethane < Ethyne

(2) Ethyne < Ethene < Ethane

(4) Ethane < Ethene < Ethyne

**Q.60** The polymer of acrylonitrile is:

(1) terylene

(2) orlon

(3) PVC

(4) bakelite

## ANSWER KEY EXERCISE # 1

| Qus. | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
|------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| Ans. | 2  | 2  | 3  | 3  | 3  | 3  | 3  | 2  | 3  | 2  | 3  | 1  | 3  | 1  | 1  | 2  | 2  | 1  | 1  | 1  |
| Qus. | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |    |    |    |    |    |    |    |    |    |    |
| Ans. | 1  | 1  | 4  | 1  | 2. | 1  | 3  | 2  | 3  | 4  |    |    |    |    |    |    |    |    |    |    |

| Qus. | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
|------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| Ans. | 3  | 2  | 4  | 2  | 3  | 4  | 4  | 3  | 1  | 3  | 1  | 2  | 2  | 1  | 2  | 3  | 4  | 4  | 4  | 3  |
| Qus. | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |    |    |    |    |    |    |    |    |    |    |
| Ans. | 2  | 2  | 2  | 2  | 3  | 2  | 2  | 2  | 4  | 2  |    |    |    |    |    |    |    |    |    |    |

#### **EXERCISE # 2**

1 But-1-ene and propyne are distringuished by - [RPET-2002]

- [1] Baeyerss regent
- [2] Hinsbergs reagent
- [3] Tollen's reagent
- [4] None

Monomer of  $\begin{bmatrix} CH_3 \\ -C-CH_2- \\ CH_2 \end{bmatrix}$  is -2

[CBSE-2002]

- [1] 2-Methyl propene
- [2] Styrene
- [3] Propylene
- [4] Ethene

3 The reaction:

$$H_3$$
 CH = CH<sub>2</sub>  $\xrightarrow{\text{CO} + \text{H}_2\text{O}}$  CH<sub>3</sub>—CH—CH<sub>3</sub> is known as -

- [1] Wurtz reaction
- [2] Koch reaction
- [3] Clemensen reeduction
- [4] Kolbe's reaction

General formulae of akenes and alkyl radicals are respectively 4

[MPPMT-2002]

[MPPMT-2002]

- [1]  $C_n H_{2n}$  and  $C_n H_{2n-1}$
- [2]  $C_n H_{2n}$  and  $C_n H_{2n+2}$
- [3]  $C_n H_{2n-1}$  and  $C_n H_{2n}$  [4]  $C_n H_{2n+1}$  and  $C_n H_{2n+2}$

5 Mustard gas is obtained by - [RPET-2002]

- [1] The action of dilute acids on mustard seeds
- [2] Treating ethylene with mustard oil
- [3] Treating sulphur chloride with ethylene
- [4] None of these
- 6 Correct position of double bond in alkene is identified with -

[RPET-2002]

- [1] Hydrogenation
- [2] Ozonolysis
- [3] Baeyer's reagent
- [4] Dehydration
- 7 When CH<sub>3</sub>CH<sub>2</sub>CHCl<sub>2</sub> is treated with NaNH<sub>2</sub> the product formed is -

[CBSE-2002]

- [3] CH<sub>3</sub>CH<sub>2</sub>CH(NH<sub>2</sub>)<sub>2</sub>
- [4] CH<sub>2</sub>CH<sub>2</sub>CHCI(NH<sub>2</sub>)

8 Lewisite is - [MPPMT-2002]

[1] CI.CH = CH.As 
$$(I)$$
 [2] CH<sub>2</sub> = CH.As  $(I)$  [3] CH<sub>2</sub> = CAs  $(I)$  [4] AsCl<sub>2</sub>

$$CI$$
 $[2]$  CH<sub>2</sub> = CH.As

- 9 With sodium, liberation of hydrogen gas is posible with the following hydorcarbon -
- [RPMT-2002]

[1] CH<sub>4</sub>

- $[2] C_2 H_6$
- $[3] C_2 H_4$
- $[4] C_2 H_2$
- Hydrocoarbon 'A' of molecular formula C<sub>5</sub>H<sub>8</sub> gives white precipitate with ammonical AgNO<sub>3</sub> solution. 'A' on treat-10 ment with acidified K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub> produces acid of the formula (CH<sub>3</sub>)<sub>2</sub>CHCIIH. Hence the copound 'A is' -
  - [1] (CH<sub>3</sub>)<sub>2</sub>CH—CH=CH<sub>2</sub>

- [2]  $CH_3$ —CH = CH— $CH = CH_2$
- [RPMT-2002]

[3]  $(CH_3)_2CH - C \equiv CH$ 

- [4]  $CH_3CH_2CH_2 C \equiv CH$
- 11 Which of the following alkanes contains primary, secondary, tertiary and quaternary carbon atoms togeter-
  - [1] (CH<sub>3</sub>)<sub>3</sub>CH
- $[2](C_2H_5)_3CH$
- [3]  $(CH_3)_3CCH_2CH(CH_3)_2$  [4]  $(CH_3)_4C$  [MPPMT-2001]

| 12 | The shape of mehan mo                               | plecule is -                                           |                                                       | [CPMT 97, MPPMT-2001]                   |
|----|-----------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------|-----------------------------------------|
|    | [1] Tetrachedral                                    | [2] Triangular                                         | [3] Planar                                            | [4] Octahedral                          |
| 13 | On electrolysis of sodium                           | m acetate H <sub>2</sub> gas is evolve                 | ed at cathode, c <sub>2</sub> H <sub>6</sub> is at an | od. Then reaction is known as -         |
|    | [1] Frenchland                                      | [2] Kolbay                                             | [3] Clemension                                        | [4] wolf-keishner[RPMT-2001]            |
| 14 | G.N.G. is -                                         |                                                        |                                                       | [RPMT-2001]                             |
|    | [1] CH <sub>4</sub> + Propane + Bu<br>(84%)         | tane + Higher Alkane                                   | [2] Ch <sub>4</sub> + Ethane + But                    | ane<br>33%)                             |
|    | [3] Benzene + petrol                                |                                                        | [4] CH <sub>4</sub> + LPG                             |                                         |
|    | (1 1)                                               |                                                        | (10%) (90%)                                           |                                         |
| 15 | What is the maximum n                               | umber of open chain struc                              | ctures possible for C <sub>4</sub> H <sub>8</sub> -   | [MPPMT-2001]                            |
|    | [1] 2                                               | [2] 3                                                  | [3] 4                                                 | [4] 1                                   |
| 16 | Ethene react with bromi                             | ne form -                                              |                                                       | [MPPMT-2001]                            |
|    | [1] Br—CH <sub>2</sub> —CH <sub>3</sub>             | [2] CH <sub>3</sub> —CBr <sub>3</sub>                  | [3] Br—CH <sub>2</sub> —CH <sub>2</sub> —Br           | [4] CHBr <sub>3</sub>                   |
| 17 | Types of Hybridisatioon                             | in $CH_2 = C = CH_2$ is -                              |                                                       | [RPET-2001]                             |
|    | [1] Only sp <sup>2</sup>                            | [2] Only sp                                            | [3] sp and sp <sup>2</sup>                            | [4] sp <sup>2</sup> and sp <sup>3</sup> |
| 18 | Favourable conditions o                             | f the polymerisation of eth                            | ene is -                                              | [RPET-2001]                             |
|    | [1] Only high temperatur                            | е                                                      | [2] Only catalyst                                     |                                         |
|    | [3] Only high presure                               |                                                        | [4] High temperature ar                               | nd High pressure                        |
| 19 | $6CH_2 = CH_2 + B_2H_6 \rightarrow 2$               | H H<br>   <br>2(H—C—C—) <sub>3</sub> B -<br>   <br>H H | 300                                                   | [RPET-2001]                             |
|    | Product is base of forma                            | ation of organo-boron com                              | pound. It was prepraced by                            | sicientist                              |
|    | [1] Brown & Benzamine                               | [2] Brown & Zweifel                                    | [3] Brown & metheson                                  | [4] Brown & Supparoev                   |
| 20 | Reaction of C <sub>2</sub> H <sub>2</sub> with As   | sCl <sub>3</sub> in presence of (AlCl <sub>3</sub>     | + HCI) then product will be                           | - [RPET-2001]                           |
|    | [1] Lewisite                                        | [2] Fumigent                                           | [3] Germicide                                         | [4] Antiseptic                          |
| 21 | If Hybridisation in C <sub>2</sub> H <sub>2</sub> i | s sp then bone angle is -                              |                                                       | [RPET-2001]                             |
|    | [1] 180°                                            | [2] 1200                                               | [3] 150°                                              | [4] 90°                                 |
| 22 | Which is correct sequen                             | ice of bond lenght is -                                |                                                       | [RPET-2001]                             |
|    | [1] $HC \equiv CH > H_2C = CH$                      | <sub>2</sub> > H <sub>3</sub> C—CH <sub>3</sub>        | [2] $H_2C = CH_2 > HC \equiv C$                       | $H > H_3C - CH_3$                       |
|    | [3] $H_3C - CH_3 > H_2C = C$                        | CH <sub>2</sub> > HC <sup>*</sup> ≡CH                  | [4] $H_3C - CH_3 > HC \equiv C$                       | $CH > H_2C = CH_2$                      |
| 23 | Shape of C <sub>2</sub> H <sub>2</sub> is -         |                                                        |                                                       | [RPET-2001]                             |
|    | [1] Linear                                          | [2] Triagonal planar                                   | [3] Pyramidal                                         | [4] Bent                                |
| 24 | _                                                   |                                                        | bond dissocation energy -                             | [CPMT-2000]                             |
|    | [1] Primary (1°) C—H bo                             |                                                        | [2] Secondry (2°) C—H                                 | bond                                    |
| 25 | [3] Tertiary (3°) C—H bo                            | nu<br>stable then -1, 4-pentadie                       | [4] All of these the because of -                     | [RPET-2001,BHU-2000]                    |
|    | [1] It is conjugated diene                          | •                                                      | [2] It has more dipole n                              |                                         |
|    | [3] Both are functional 8                           | position ismer                                         | [4] None                                              |                                         |

| 26 | Which of the following reagent is used to distinguish ehtene from ethyne - [KCET-2000] |                                                                 |                                          |                                     |                                  |  |  |  |  |
|----|----------------------------------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------|-------------------------------------|----------------------------------|--|--|--|--|
|    | [1] Ammonical Cu <sub>2</sub> Cl <sub>2</sub>                                          | [2] Bromine in CCI <sub>4</sub>                                 | [3] Alkaline KMnO <sub>4</sub>           | [4] Bromine w                       | ater                             |  |  |  |  |
| 27 | Alkene, which on ozonoly                                                               | sis yiedls acetone -                                            |                                          |                                     | [MPPMT-2000]                     |  |  |  |  |
|    | [1] CH <sub>2</sub> = CH—CH <sub>2</sub> —CH <sub>3</sub>                              | [2] CH <sub>3</sub> —CH = CH <sub>2</sub>                       | [3] CH <sub>3</sub> —CH=CH <sub>2</sub>  | $[4] (CH_3)_2 C = 0$                | C(CH <sub>3</sub> ) <sub>2</sub> |  |  |  |  |
| 28 | Carbons in the compound                                                                | 1-butene-3-yne are -                                            |                                          |                                     | [MPPET-2000]                     |  |  |  |  |
|    | [1] sp hybridsed                                                                       | [2] sp <sup>2</sup> hybridised                                  | [3] so and sp <sup>2</sup> hybridise     | ed[4] sp, sp² an                    | d sp³ hybridised                 |  |  |  |  |
| 29 | The compound which give                                                                | es only acetaldhyde on ozo                                      | onolysis is -                            |                                     | [MPPET-2000]                     |  |  |  |  |
|    | [1] Butene-1                                                                           | [2] Butene-2                                                    | [3] Ethylene                             | [4] Propylene                       |                                  |  |  |  |  |
| 30 | Compound 'C' can be dist                                                               | inguished from the other t                                      | hree compounds by the re                 | eagent -                            | [MPPET-2000]                     |  |  |  |  |
|    | $(A) CH3C \equiv C-CH3$                                                                | $\hbox{(B) CH}_3\hbox{CH}_2\hbox{CH}_2\hbox{CH}_3$              | (C) $CH_3CH_2C \equiv CH$                | (D) CH <sub>3</sub> CH=C            | $H_2$                            |  |  |  |  |
|    | [1] Bromine in CCI <sub>4</sub>                                                        |                                                                 | [2] Bromine in acetic ac                 | cid                                 |                                  |  |  |  |  |
|    | [3] Alkalne KMnO <sub>4</sub>                                                          |                                                                 | [4] Ammonical silver nit                 | rate                                |                                  |  |  |  |  |
| 31 | Which of the following typ                                                             | es of bonds are present b                                       | etween two carbon atoms                  | s in ethylene -                     | [RPMT-2000]                      |  |  |  |  |
|    | [1] 1 π & 4 σ                                                                          | [2] 1 π & 5 σ                                                   | [3] 3 σ & 1 π                            | [4] 1 σ & 1 π                       |                                  |  |  |  |  |
| 32 | Which of the following rea                                                             | gent is used in formation                                       | of alkene from alkyl halide              | 9 -                                 | [RPMT-2000]                      |  |  |  |  |
|    | [1] Alc. KOH + Heat                                                                    | [2] Aq. KOH + cold water                                        | er[3] NaOH                               | [4] LiOH                            |                                  |  |  |  |  |
| 33 | Chloroform, jon warming v                                                              | vith Ag powder, gives -                                         |                                          | [RPET                               | -99, BHU-2000]                   |  |  |  |  |
|    | [1] C <sub>2</sub> H <sub>2</sub>                                                      | [2] C <sub>2</sub> H <sub>4</sub>                               | [3] $C_2H_6$                             | $[4] C_6 H_6$                       |                                  |  |  |  |  |
| 34 | Ammonical solution ofcup                                                               | rous chloride give red pred                                     | cipitate with -                          |                                     | [AIIMS-2000]                     |  |  |  |  |
|    | $[1] H - C \equiv C - CH_3$                                                            | [2] CH <sub>2</sub> = CH <sub>2</sub>                           | $[3](C_2H_5)_2C=CH_2$                    | [4] CH <sub>3</sub> -C≡C            | -C <sub>2</sub> H <sub>5</sub>   |  |  |  |  |
| 35 | Alkynes mainly shows -                                                                 |                                                                 |                                          |                                     | [RPMT-2000]                      |  |  |  |  |
|    | [1] Polymerisation                                                                     |                                                                 | [2] Electrrophilic additio               | n                                   |                                  |  |  |  |  |
|    | [3] Free radical substitution                                                          |                                                                 | [4] All of the above                     |                                     |                                  |  |  |  |  |
| 36 | $HC \equiv CH \xrightarrow{Hg^{-2}} A \xrightarrow{CHA} H_2$                           | $b \xrightarrow{\text{NgX}} B \xrightarrow{\circ} C$ , Identify | the product C in series -                |                                     | [RPMT-2000]                      |  |  |  |  |
|    | [1] Ethyl alcohol                                                                      | [2] Acetone                                                     | [3] Isopropyl alcohol                    | [4] Acetaldehy                      | yde                              |  |  |  |  |
| 37 | Which of the following aci                                                             | dity order is correct -                                         |                                          |                                     | [RPET-2000]                      |  |  |  |  |
|    | [1] 1-Alkyne > Alkene > A                                                              | Alkane                                                          | [2] Alkene > Alkene >                    | 1-Alkyne                            |                                  |  |  |  |  |
|    | [3] Alkane > Alkene > 1-A                                                              | Alkyne                                                          | [4] None of these                        |                                     |                                  |  |  |  |  |
| 38 | Which hydrocarbon is soli                                                              | d at normal temperature -                                       |                                          |                                     | [RPET-1999]                      |  |  |  |  |
|    | [1] CH <sub>4</sub>                                                                    | [2] C <sub>7</sub> H <sub>8</sub>                               | [3] C <sub>8</sub> H <sub>18</sub>       | [4] C <sub>20</sub> H <sub>20</sub> |                                  |  |  |  |  |
| 39 | For the complete combust                                                               | ion of four liters of ehtane                                    | the necessary volume of                  | oxygen would b                      | e -[RPMT-2000]                   |  |  |  |  |
|    | [1] 4 litres                                                                           | [2] 8 litres                                                    | [3] 12 litres                            | [4] 14 litres                       |                                  |  |  |  |  |
| 40 | A reagent used to test un                                                              | saturation in alkene is -                                       |                                          |                                     | [KCET-1999]                      |  |  |  |  |
|    | [1] Ammonical Cu <sub>2</sub> Cl <sub>2</sub>                                          |                                                                 | [2] Ammonical AgNO <sub>3</sub>          |                                     |                                  |  |  |  |  |
|    | [3] Solution of Br <sub>2</sub> in CCl <sub>4</sub>                                    |                                                                 | [4] Conc. H <sub>2</sub> SO <sub>4</sub> |                                     |                                  |  |  |  |  |
|    |                                                                                        |                                                                 |                                          |                                     |                                  |  |  |  |  |

#### HYDROCARBONS

| 41 | The reacton : $CH_2 = CH CH_3 + HBr \rightarrow CH_3 CHBrCH_3$ , is a types of - <b>[BHU-2000, AFMC-199]</b> |                                                                                   |                                                          |                                             |  |  |  |  |  |
|----|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------|--|--|--|--|--|
|    | [1] Nucleophilic addition                                                                                    | reaction                                                                          | [2] Free recdical additio                                | n reaction                                  |  |  |  |  |  |
|    | [3] Electrophilic addition                                                                                   | reaction                                                                          | [4] Electrophilic substitu                               | ution reaction                              |  |  |  |  |  |
|    |                                                                                                              | C                                                                                 | H <sub>2</sub> OH                                        |                                             |  |  |  |  |  |
| 42 | In Ithe reaction CH <sub>2</sub> = CH                                                                        | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                             | $H_2OH$ where M = Molecule                               | and R = Reagent M and R are-                |  |  |  |  |  |
|    | [1] CH <sub>3</sub> CH <sub>2</sub> Cl and NaOH                                                              |                                                                                   | [2] CH <sub>2</sub> CI—CH <sub>2</sub> OH and            | aq. NaHCO <sub>3</sub> [CPMT-1999]          |  |  |  |  |  |
|    | [3] CH <sub>3</sub> CH <sub>2</sub> OH and HCl                                                               |                                                                                   | [4] CH <sub>2</sub> —CH <sub>2</sub> and heat            |                                             |  |  |  |  |  |
| 43 | Which of the following is                                                                                    | omerism isw not shown by                                                          | alkene -                                                 | [RPMT-1999]                                 |  |  |  |  |  |
|    | [1] Metamerism                                                                                               | [2] Chain                                                                         | [3] Position                                             | [4] Geometrical                             |  |  |  |  |  |
| 44 | Alkene not showing addi                                                                                      | tion of HBr according to Ar                                                       | nti-Markownikoffs rule is -                              | [RPET-96, RPMT-99]                          |  |  |  |  |  |
|    | [1] 2-Pentene                                                                                                | [2] 2-Butene                                                                      | [3] 1-Butene                                             | [4] Propene                                 |  |  |  |  |  |
| 45 | $CH_3$ — $CH=CH_2$ $\xrightarrow{HBr}$ $I$                                                                   | A, Here produt A is -                                                             |                                                          | [RPMT-1999]                                 |  |  |  |  |  |
|    | [1] BrCH <sub>2</sub> —CH=CH <sub>2</sub>                                                                    | $[2]  \mathrm{CH_3} \mathrm{\!-\!\!-\!\!CH_2} \mathrm{\!-\!\!CH_2} \mathrm{\!Br}$ | [3] CH <sub>3</sub> —CH(Br)—CH <sub>3</sub>              | [4] Br—CH <sub>2</sub> —CH <sub>2</sub> Br  |  |  |  |  |  |
| 46 | Ethene is given by the fo                                                                                    | llowing compound on dehy                                                          | dration -                                                | [RPET-1999]                                 |  |  |  |  |  |
|    | [1] Ethyl acetate                                                                                            | [2] C <sub>2</sub> H <sub>5</sub> OH                                              | [3] HCHO                                                 | [4] 1 and 2                                 |  |  |  |  |  |
| 47 | Ethylene posesses -                                                                                          |                                                                                   |                                                          | [RPET-1999]                                 |  |  |  |  |  |
|    | [1] Two sigma and two p                                                                                      | i bonds                                                                           | [2] Two pi bonds                                         |                                             |  |  |  |  |  |
|    | [3] Five sigma and one p                                                                                     | oi bonds                                                                          | [4] Four sigma and one                                   | pi bond                                     |  |  |  |  |  |
| 48 | Which of the following C                                                                                     | -H bonds has lowest bond                                                          | dissociation energy -                                    | [Manipal-1999]                              |  |  |  |  |  |
|    | [1] Primary (1°) C—H bo                                                                                      | nd                                                                                | [2] Secondary (2º) C—H                                   | d bond                                      |  |  |  |  |  |
|    | [3] Tertiary (3°) C—H bor                                                                                    | nd                                                                                | [4] All of these                                         |                                             |  |  |  |  |  |
| 49 | In which of the following                                                                                    | hydocarbons, hydrogen is                                                          | most acidic -                                            | [AFMC-2000,99]                              |  |  |  |  |  |
|    | [1] C <sub>6</sub> H <sub>6</sub>                                                                            | [2] $CH_2 = CH_2$                                                                 | [3] CH ≡ CH                                              | [4] CH <sub>3</sub> —CH <sub>3</sub>        |  |  |  |  |  |
| 50 | Bond lenght of ethane (i)                                                                                    | ethene (ii), actylene (iii) ar                                                    | nd benzene (iv) follows the                              | order - [CPMT-1999]                         |  |  |  |  |  |
|    | [1] i > ii > iii > iv                                                                                        | [2] i > ii > iv > iii                                                             | [3] i > iv > ii > iii                                    | [4] iii > iv > ii > i                       |  |  |  |  |  |
| 51 | Mesetylene is the addition                                                                                   | on polymer of compound -                                                          |                                                          | [RPMT-1999]                                 |  |  |  |  |  |
|    | [1] Acetone                                                                                                  | [2] Propene                                                                       | [3] Propyne                                              | [4] Actylene                                |  |  |  |  |  |
| 52 | Which one of following re                                                                                    | eact with HOCl to from CH <sub>3</sub> :                                          | —CO—CHCl <sub>2</sub> product -                          | [RPMT-1999]                                 |  |  |  |  |  |
|    | [1] $CH_3 - C = C - CH_3$                                                                                    | $[2] CH_3 - C = CH$                                                               | [3] CH≡CH                                                | $[4] CH_3 - CH_2 - C' = CH$                 |  |  |  |  |  |
| 53 | Two mole of HBr is adde                                                                                      | d with CH <sub>3</sub> —C≡CH in pres                                              | sence of peroxiode to give                               | - [RPMT-1999]                               |  |  |  |  |  |
|    | [1] CH <sub>3</sub> —CH <sub>2</sub> —CHBr <sub>2</sub>                                                      | [2] CH <sub>3</sub> —CH(Br)—CH <sub>2</sub> B                                     | r [3] CH <sub>3</sub> —CBr <sub>2</sub> —CH <sub>3</sub> | [4] CH <sub>3</sub> —CHBr—CHBr <sub>2</sub> |  |  |  |  |  |
| 54 | Tollen's reagent is -                                                                                        |                                                                                   |                                                          | [RPMT-1999]                                 |  |  |  |  |  |
|    | [1] Solution of CuSO <sub>4</sub>                                                                            |                                                                                   | [2] Ammonical AgNO <sub>3</sub> solution                 |                                             |  |  |  |  |  |
|    | [3] Anhydrous ZnCl <sub>2</sub>                                                                              |                                                                                   | [4] Fuccine                                              |                                             |  |  |  |  |  |
| 55 | C—H bond energy in eth                                                                                       | nane, ethene and ethyne is                                                        | -                                                        | [RPMT-1999]                                 |  |  |  |  |  |
|    | [1] same in three                                                                                            | [2] Maximum in ethane                                                             | [3] Maximum in ethyne                                    | [4] Maximum in ethene                       |  |  |  |  |  |

| 56 | If mixture of CH ≡ CH & N                            | 2 is passed electric spark             | to give -                                         |                                                                        | [RPMT-1999]   |
|----|------------------------------------------------------|----------------------------------------|---------------------------------------------------|------------------------------------------------------------------------|---------------|
|    | [1] Ether                                            | [2] Ethylamine                         | [3] HCN                                           | [4] NH <sub>3</sub>                                                    |               |
| 57 | Number of unhybridised o                             | rbitals in vinyl acetylene a           | re -                                              |                                                                        | [RPMT-1999]   |
|    | [1] 2                                                | [2] 3                                  | [3] 1                                             | [4] 6                                                                  |               |
| 58 | Ozonolysis of acetylene g                            | ives -                                 |                                                   |                                                                        | [RPMT-1999]   |
|    | [1] Glycol                                           | [2] Glyoxal                            | [3] Formaldehyde                                  | [4] None                                                               |               |
| 59 | Adition of HOCI to ethylen                           | ne gives -                             |                                                   |                                                                        | [RPMT-1999]   |
|    | [1] Ethylene chloride                                | [2] Vinyl chloride                     | [3] Ethylidene chloride                           | [4] Dichloro ac                                                        | etaldehyde    |
| 60 | Benzene is a polymer of                              | -                                      |                                                   |                                                                        | [RPET-1999]   |
|    | [1] Ethyne                                           | [2] Ethylene                           | [3] Methane                                       | [4] Etgabe                                                             |               |
| 61 | Acidic hydorgen is preser                            | nt in -                                |                                                   |                                                                        | [RPET-1999]   |
|    | [1] Ethyne                                           | [2] Ethylene                           | [3] Ethane                                        | [4] Benzene                                                            |               |
| 62 | $C_3H_8 + CI_2 \xrightarrow{\text{Light}} C_3H_7C_3$ | CI + HCI is an example of              | which of the following type                       | es of reactions -                                                      | [RPET-1998]   |
|    | [1] Substitution                                     | [2] Elimination                        | [3] Addition                                      | [4] Rearrangen                                                         | nent          |
| 63 | Volume of oxygen is requi                            | ried for totral comustin fo p          | propane -                                         |                                                                        | [RPET-1998]   |
|    | [1] Five times of propane                            |                                        | [2] 2 + 1/2 times of prop                         | oane                                                                   |               |
|    | [3] 2 times of propane                               |                                        | [4] Equal to propane                              |                                                                        |               |
| 64 | Which of the following hyd                           | drocarbon has the maximu               | ım boling point -                                 |                                                                        | [RPET-1998]   |
|    | [1] CH <sub>4</sub>                                  | [2] C <sub>2</sub> H <sub>6</sub>      | [3] C <sub>3</sub> H <sub>8</sub>                 | [4] C <sub>4</sub> H <sub>10</sub>                                     |               |
| 65 | In which of the following c                          | arbonly group is absent -              |                                                   |                                                                        | [RPET-1998]   |
|    | [1] Aldehyde                                         | [2] Ketone                             | [3] Acid                                          | [4] Alkane                                                             |               |
| 66 | Alkane is prepared by -                              |                                        |                                                   |                                                                        | [RPET-1998]   |
|    | [1] Wurtz                                            |                                        | [2] Reduction to alkyl ha                         | alide                                                                  |               |
|    | [3] By grignard reagent                              | .(0                                    | [4] All the above                                 |                                                                        |               |
| 67 | When potassium permang                               | ganate (KMnO₄) is added t              | o ehtylene gives -                                | [MPPET-95                                                              | 5, AFMC-1998] |
|    | [1] Glycerol Ethanol                                 | [2] Ethanolx                           | [3] Ethanol                                       | [4] Ethylene gl                                                        | ycol          |
| 68 | Which of the following is t                          | the most stable alkene -               | [Man                                              | ipal=-94,RPMT-                                                         | 93, AIIMS-98] |
|    | [1] $R_2C = CR_2$                                    | [2] RCH = CHR                          | [3] $CH_2 = CHR$                                  | [4] $CH_2 = CH_2$                                                      |               |
| 69 | 2-Bromopentane is heated                             | d with potasium ethoxide in            | n ethanol. The major prod                         | uct obtained -                                                         | [CPMT-1998]   |
|    | [1] 1-Pentene                                        | [2] cis-2-pentene                      | [3] trans-2-pentene                               | [4] 2-Ethoxype                                                         | ntane         |
| 70 | Which alkene gives same                              | proudct with both Markow               | nikoff's and anti Markown                         | ikoff's method -                                                       | [RPMT-1998]   |
|    | [1] $\alpha$ -Butylene                               | [2] Propylene                          | [3] $\alpha$ -amylene                             | [4] β-Butylene                                                         |               |
| 71 | Product from by simplest                             | alkene with baeyer's reag              | ent is -                                          |                                                                        | [RPMT-1998]   |
|    | [1] CH <sub>3</sub> OH                               | [2] CH <sub>3</sub> CH <sub>2</sub> OH | CH <sub>2</sub> OH<br>[3]  <br>CH <sub>2</sub> OH | CH <sub>2</sub> OH<br> <br>CHOH<br> <br> <br> <br> <br> <br> <br> <br> |               |

#### HYDROCARBONS

| <b>72</b> | Acetylene on reacting with                                                                                                                                                                                                | n ammonical AgNo <sub>3</sub> gives - | -                                              |                                                      | [CPMT-1998]                    |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|------------------------------------------------|------------------------------------------------------|--------------------------------|
|           | [1] Silver mirror                                                                                                                                                                                                         | [2] Silver metal                      | [3] Silver acetate                             | [4] Silver acety                                     | lide                           |
| 73        | Which hydrocarbon reacts                                                                                                                                                                                                  | with sodium and liquid NI             | H <sub>3</sub> -                               |                                                      | [CPMT-1998]                    |
|           | [1] CH <sub>3</sub> —CH <sub>2</sub> —C = CH                                                                                                                                                                              | [2] $CH_3 - C \equiv C - CH_3$        | [3] CH <sub>3</sub> —CH=CH—CH <sub>3</sub>     | [4] CH <sub>3</sub> —CH <sub>2</sub> —               | $-CH = CH_2$                   |
| 74        | Acetylene can be prepared                                                                                                                                                                                                 | d from -                              |                                                |                                                      | [CPMT-1998]                    |
|           | [1] Potassium fumarate                                                                                                                                                                                                    | [2] Calcium carbide                   | [3] Ethylene bromide                           | [4] All of the ab                                    | oove                           |
| 75        | An unknwn compound A has molecular formula $C_4H_6$ . When A is treated with exces of $Br_2$ a new substance E with formula $C_4H_6Br_4$ is formed. A forms a white ppt. with ammoical silver nitrate solutin. A may be - |                                       |                                                |                                                      |                                |
|           | [1] But-1-yne                                                                                                                                                                                                             | [2] But-2-yen                         | [3] But-1-ene                                  | [4] But-2-ene [                                      | MPPMT-1998]                    |
| 76        | In the reaction $CH_3$ — $C = 0$                                                                                                                                                                                          | $C-CH_3 \xrightarrow{(i)X} CH_3-C-C$  | –C—CH <sub>3</sub> , X is -                    |                                                      | [MPPET-1998]                   |
|           | [1] HNO <sub>3</sub>                                                                                                                                                                                                      | [2] O <sub>2</sub>                    | [3] O <sub>3</sub>                             | [4] KMnO <sub>4</sub>                                |                                |
| 77        | The compound formed by                                                                                                                                                                                                    | the reaction of simplest a            | lkyne with excess of bron                      | nine is -                                            | [RPMT-1998]                    |
|           | [1] Acetylene dibromide [2] Acetylene tetrabromide                                                                                                                                                                        |                                       |                                                |                                                      |                                |
|           | [3] Vinly bromie                                                                                                                                                                                                          |                                       | [4] All these above                            | <b>)</b>                                             |                                |
| 78        | Number of $\sigma$ & $\pi$ bonds in                                                                                                                                                                                       | compound $(CH_3)_2CHC \equiv C$       | E—CH <sub>3</sub> is -                         |                                                      | [RPMT-1998]                    |
|           | [1] 13, 3                                                                                                                                                                                                                 | [2] 14, 1                             | [3] 14, 2                                      | [4] 15, 2                                            |                                |
| 79        | Which compound is forme                                                                                                                                                                                                   | ed by the reaction of one n           | nole acetylene and two m                       | ole hypo chlorou                                     | ıs acid -                      |
|           | [1] Chloral                                                                                                                                                                                                               | [2] Kichloro acetaldehyd              | e [3] Dichloro acetone                         | [4] Both 1 & 2                                       | [RPMT-1998]                    |
| 80        | PVC is the polymer of -                                                                                                                                                                                                   |                                       | 0                                              |                                                      | [RPMT-1998]                    |
|           | [1] Vinly cyanide                                                                                                                                                                                                         | [2] Vinly acetate                     | [3] Vinyl chloride                             | [4] Ethylene                                         |                                |
| 81        | When acetylene is hydrated in the pressure of 42% H <sub>2\</sub> SO <sub>4</sub> containing mecruric sulphate at 330-370, the product obtained is - <b>[AFMC-94,RPMT-1998]</b>                                           |                                       |                                                |                                                      |                                |
|           | [1] Acdetone                                                                                                                                                                                                              | [2] Acetaldehyde                      | [3] Isoroply                                   | [4] n-Proply ald                                     | lehyde                         |
| 82        | The compound fromed by                                                                                                                                                                                                    | ethyne and HBr will be -              |                                                |                                                      | [RPMT-1998]                    |
|           | [1] Ethylene bromide                                                                                                                                                                                                      | [2] Bromoethane                       | [3] Ethylidene bromide                         | [4] Vinyl bromi                                      | de                             |
| 83        | Functional group isomer of                                                                                                                                                                                                | of 1-butyne is -                      |                                                |                                                      | [RPMT-1998]                    |
|           | [1] 2-Butyne                                                                                                                                                                                                              | [2] 2-Butene                          | [3] 1-Butene                                   | [4] 1,3-Butadie                                      | ne                             |
| 84        | Mustard gas is given by the reaction of - [RPET-1998                                                                                                                                                                      |                                       |                                                |                                                      |                                |
|           | $[1] C_2H_4 \& S_2CI_2$                                                                                                                                                                                                   | $[2] C_2H_4 & H_2S$                   | $\mathrm{[3]}~\mathrm{C_{2}H_{4}~\&~CH_{3}SH}$ | [4] C <sub>2</sub> H <sub>4</sub> & H <sub>2</sub> S | $O_{\scriptscriptstyle{4}}$    |
| 85        | Which one have highest n                                                                                                                                                                                                  | nelting point -                       |                                                |                                                      | [RPET-1998]                    |
|           | [1] C <sub>2</sub> H <sub>6</sub>                                                                                                                                                                                         | [2] $C_{3}H_{5}$                      | [3] CH <sub>4</sub>                            | $[4] C_4 H_{10}$                                     |                                |
| 39        | Indicate the expected struction (D <sub>2</sub> O) -                                                                                                                                                                      | cture of the organic product          | when ethylmagnesium bro                        | omide is treated w                                   | vith heavy water<br>(DCE-1994) |
|           | $[1] C_2 H_5 - C_2 H_5$                                                                                                                                                                                                   | [2] C <sub>2</sub> H <sub>5</sub> OD  | $[3] C_2H_6$                                   | [4] C <sub>2</sub> H <sub>5</sub> D.                 |                                |
| 40        | Which set of proudcts is e                                                                                                                                                                                                | expected on reductive ozor            | nolysis of the following dic                   | olefin -                                             | (DCE-1994)                     |

[2]  $CH_3CH = C(CH_3)CHO$ ;  $CH_3$ [1]  $CH_3CHO$ ;  $CH_3CICH = CH_2$ 

[3] CH<sub>2</sub>CHO; CH<sub>2</sub> COCHO; CH<sub>2</sub>O [4] CH<sub>2</sub>CHO; CH<sub>2</sub>COCH<sub>3</sub>; CH<sub>2</sub>O

41 The reagent used for the conversion, (DCE-1994)

CH<sub>3</sub>CH<sub>2</sub>COOH → CH<sub>3</sub>CH<sub>2</sub>CH<sub>3</sub> is -

[1] LiAlH<sub>4</sub> [2] Soda-lime

[3] Red P and concentrated HI [4] Amalgamated zinc and concentrated HCI

42 Petrol for aviation purposes must contain -(DCE-1994)

[1] Straight chain hydrocarbons [2] Aromatic hydrocarbons

[3] Okefubec gtdicarvibs [4] Highly branched chain paraffins.

43 Bezen on treatment with a mixture of conc. HNO3 and conc. H2SO4 at 100°C gives -(DCE-1994)

[4] o-Dubutrobenzene [1] Nitrobenzene [2] m-Dinitrobenzene [3] p-Dinitrobenezne

45 Crude naphtha is a mixture of -(AFMC-1994)

[4] Alkyl halides [1] Alkanes [2] conjugated dienes [3] Alkynes

46 A liquid hydrocabrbon is converted into a misture of gaseous hydrocarbons by -(AFMC-1994)

[2] Hydrolysis [3] Oxidation [4] Reduction [1] Cracking

47 The first product obtained during fractional distillation of petroleum is (AFMC-1994)

[3] Disesel [1] Petroleum ether [2] Kerosene [4] Gasoline

48 Fischer-Tropsch process is used in manufacture of -(AFMC-1994)

[3] Ethanol [1] Synthetic petrol [2] Benzene [4] Ethanoic acid

49 In an industrual process, coke is heated with quicklime in an electric furnace and the colled product is then (AFMC-1994)

treated with water to product -

[1] Acetylene [3] Ethane [2] Ethylene [4] Methane

Which on of the frollowing statements is not true for natural gas -**50** (KCET-1994)

[1] It si a mixture of gaseous hydrocarbons [2] It is a fuel

[3] It is used in the manufacture of fertillzer [4] it is a mixture of CO and H<sub>2</sub>

Petroleum refining is -51 (KCET-1994)

[1] Distillation of etroleum to get different fractions

[2] Obtaining aromatic compounds from aliphatic compounds

[3] Cracking of petroleum to get gaseous hydrocarbons

[4] Purification of petroleum.

**52** Toluene reacts with Cl<sub>2</sub> in the presence of light to give -(MLNR-1994)

[1] Benzyl chloride [2] benzoly chloride [3] p-Chlorotoluene [4] o-Chlorotoluene

53 The compound which reacts with HBr obeying Markownikoff's rule is -(MLNR-1994)

54 (JIPMER-1994) Coal-tar is a main source of -

HYDROCARBONS

|           | [1] Aromatic compounds                                                                                                                                                                                   | [2] Aliphatic compounds                                         | [3] Cycloalkanes                             | [4] Heterocyclide compounds                 |  |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------|---------------------------------------------|--|
| 57        | Method of converting high                                                                                                                                                                                | boiling hydrocarbons into                                       | low boiling hydrocarbons                     | is - <b>(EAMCET-1994)</b>                   |  |
|           | [1] Reforming                                                                                                                                                                                            | [2] Cracking                                                    | [3] Isomerization                            | [4] Inversion                               |  |
| 58        | Which of the following s solution-                                                                                                                                                                       | ubstances gives an expl                                         | osive substance when to                      | reated with ammonical AgNO (EAMCET Med1994) |  |
|           | [1] Ethane                                                                                                                                                                                               | [2] Acetylene                                                   | [3] Ethylene                                 | [4] Propane                                 |  |
| 59        | Isopropyl bromide on Wurtz reaction gives - (BHU-19                                                                                                                                                      |                                                                 |                                              |                                             |  |
|           | [1] Hexane                                                                                                                                                                                               | [2] Propane                                                     | [3] 2, 3-Dimethylbutane                      | [4] neo-Hexane                              |  |
| 60        | In the reaction                                                                                                                                                                                          |                                                                 |                                              | (BHU-1994)                                  |  |
|           | $C_6H_5CH_3 \xrightarrow{Oxidation} A \xrightarrow{N}$                                                                                                                                                   | $\xrightarrow{\text{laOH}} B \xrightarrow{\text{Sodualime}} C,$ | the product C is -                           |                                             |  |
|           | [1] C <sub>6</sub> H <sub>5</sub> OH                                                                                                                                                                     | [2] C <sub>6</sub> H <sub>6</sub>                               | [3] C <sub>6</sub> H <sub>5</sub> COONa      | [4] C <sub>6</sub> H <sub>5</sub> ONa       |  |
| 61        | Mono sodium acetylide re                                                                                                                                                                                 | acts with an alkyl halide to                                    | o form -                                     | (BHU-1994)                                  |  |
|           | [1] An alkane                                                                                                                                                                                            |                                                                 | [2] An alkene                                | G                                           |  |
|           | [3] An unsymmetric alkyn                                                                                                                                                                                 | е                                                               | [4] An symmetric higher                      | alkyne                                      |  |
| 62        | A compound $X(C_5H_8)$ reacts with ammoniacal AgNO <sub>3</sub> to give a white precipitate, and on oxidation with hot alkaline KMnO <sub>4</sub> gives the acid, $(CH_{34})_2$ CHCOOH. Therefore X is - |                                                                 |                                              |                                             |  |
|           | [1] CH <sub>2</sub> = CHCH = CHCH <sub>3</sub>                                                                                                                                                           | [2] CH <sub>3</sub> CH=CHCH <sub>2</sub> CH <sub>3</sub>        | [3] I(CH <sub>3</sub> ) <sub>2</sub> CH—C=CH | [4] $(CH_3)_2C = C = CH_2$                  |  |
| 64        | When petroleum is heated                                                                                                                                                                                 | d gradually, the first batch of                                 | of vapours evolved will be                   | rioch in - <b>(Pb. CET-1994)</b>            |  |
|           | [1] Kerosene                                                                                                                                                                                             | [2] Petroleum ether                                             | [3] Diesel                                   | [4] Lubricating oil                         |  |
| 70        | Baeyer's reagent is -                                                                                                                                                                                    |                                                                 | $\mathbf{O}$                                 | (BHU-1995)                                  |  |
|           | [1] Saturated KMnO <sub>4</sub> solution [2] Neutral KMnO <sub>4</sub> solution                                                                                                                          |                                                                 |                                              |                                             |  |
|           | [3] Alkaline KMnO <sub>4</sub> solution [4] Acidic KMnO <sub>4</sub> solution.                                                                                                                           |                                                                 |                                              |                                             |  |
| 71        | Complete combustion of C                                                                                                                                                                                 | CH <sub>4</sub> gives -                                         |                                              | (BHU-1995)                                  |  |
|           | [1] CO <sub>2</sub> + H <sub>2</sub> O                                                                                                                                                                   | [2] CO <sub>2</sub> + H <sub>2</sub>                            | [3] COCI <sub>2</sub>                        | [4] CO + CO <sub>2</sub> + H <sub>2</sub> O |  |
| <b>72</b> | Liquified petroleum gas (L                                                                                                                                                                               | PG) mostly contains -                                           |                                              | (KCET-1995)                                 |  |
|           | [1] Methane                                                                                                                                                                                              | [2] Ethane                                                      | [3] Butene                                   | [4] Propane                                 |  |
| 74        | Tetraethyl-lead is a -                                                                                                                                                                                   |                                                                 |                                              | (MLNR-1995)                                 |  |
|           | [1] Solvent                                                                                                                                                                                              | [2] Petroleum additive                                          | [3] Oxidising agent                          | [4] Fire extinguisher.                      |  |
| 76        | Acetylene reacts with HOCI to form - (EAMCET-199                                                                                                                                                         |                                                                 |                                              |                                             |  |
|           | [1] Dichloroacetaldehyde                                                                                                                                                                                 | [2] Ethylene chlorohydrir                                       | [3] Chloroacetaldehyde                       | [4] Acetaldehyde.                           |  |
| 78        | A war gas Lewisite is form                                                                                                                                                                               | ned by reaction of arsenic                                      | chloride with -                              | (AFMC-1996)                                 |  |
|           | [1] CH <sub>4</sub>                                                                                                                                                                                      | $[2] C_{6}H_{6}$                                                | $[3] C_2 H_2$                                | $[4] C_2 H_4$                               |  |
| 79        | Major constituent of light                                                                                                                                                                               |                                                                 |                                              | (AFMC-1996)                                 |  |
|           | [1] Benzene                                                                                                                                                                                              | [2] Phenol                                                      | [3] Aniline                                  | [4] Antheracene                             |  |
| 87        | The product formed by the action of chlorine on ethene in saturated solution of KBr is/are -                                                                                                             |                                                                 |                                              |                                             |  |
|           | [1] CICH <sub>2</sub> Ch <sub>2</sub> CI + CICH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> Br                                                                                                          |                                                                 | [2] CICH <sub>2</sub> CH <sub>2</sub> CI     | (Pb. CET-1996)                              |  |
|           | [3] CICH,Ch,CI + BrCH,CH,CI                                                                                                                                                                              |                                                                 | [4] CICH, CH, CI + BrCH,                     | CH2Br + CICH¸CH¸Br                          |  |

| 88  | The order of reactivity of halogens in aliphatic substitution reactions is - (Pb. CET-199             |                                                                                                                       |                                                               |                                                      |                   |  |  |
|-----|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|------------------------------------------------------|-------------------|--|--|
|     | [1] $Br_2 > Cl_2 > F_2$                                                                               | [2] $Cl_2 > Br_2 > F_2$                                                                                               | [3] $F_2 > Cl_2 > Br_2$                                       | [4] $F_2 > Nr_2$                                     | > Cl <sub>2</sub> |  |  |
| 89  | In which of the following                                                                             | molecules hydrogen is mo                                                                                              | est acidic -                                                  |                                                      | (Pb. CET-1996)    |  |  |
|     | [1] Acetylene                                                                                         | [2] Methane                                                                                                           | [3] Ethane                                                    | [4] Ethylene                                         |                   |  |  |
| 90  | When n-propyl iodide is                                                                               | heated with alcoholic KOH                                                                                             | one of the produts is -                                       |                                                      | (DCE-1996)        |  |  |
|     | [1] Propene $(C_3H_6)$                                                                                | [2] Cyclcopropane (C <sub>3</sub> H <sub>6</sub>                                                                      | <sub>5</sub> ) [3] C <sub>3</sub> H <sub>4</sub>              | [4] C <sub>3</sub> H <sub>8</sub>                    |                   |  |  |
| 91  | When propene is treated                                                                               | with HBr in the dark and in                                                                                           | •                                                             |                                                      |                   |  |  |
|     | [1] 1=Bromopropane                                                                                    | [2] 2-Bropropane                                                                                                      | [3] 1, 2-Dibromopropar                                        |                                                      |                   |  |  |
| 92  | -                                                                                                     | H, os treated with cuprous                                                                                            |                                                               |                                                      | -                 |  |  |
| 95  | [1] RC = CCu                                                                                          | [2] CuC≡CH from calcium carbide take                                                                                  | [3] CuC≡CCu                                                   | [4] RC=CR                                            | (DCE-1996)        |  |  |
| 33  |                                                                                                       | Formation of polyethene from calcium carbide takes palce as follows - $CaC_2 + 2H_2O \rightarrow Ca(OH)_2 + C_2H_2$ ; |                                                               |                                                      |                   |  |  |
|     | 2 2                                                                                                   | $nC_{2}H_{4}\to (-CH_{2}-CH_{5}$                                                                                      | —),                                                           |                                                      |                   |  |  |
|     | 2 2 2 2                                                                                               | e obtained from 64 kg of Ca                                                                                           |                                                               |                                                      | (AIIMS-1997)      |  |  |
|     | [1] 7 kg                                                                                              | [2] 14 kg                                                                                                             | [3] 21 kg                                                     | [4] 28 kg                                            |                   |  |  |
| 96  | 1-Butyne reacts with cold                                                                             | d alkaline KMnO <sub>4</sub> to yield -                                                                               |                                                               |                                                      | (AIIMS-1997)      |  |  |
|     | [1] CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> COOH                                              | [2] CH <sub>3</sub> CH <sub>2</sub> COOH                                                                              | [3] CH <sub>3</sub> CH <sub>2</sub> COOH + CO                 | O <sub>2</sub> [4] CH <sub>3</sub> CH <sub>2</sub> C | OOH + HCOOH       |  |  |
| 97  | Which of the following ap                                                                             | oplies to the reaction                                                                                                | 1                                                             |                                                      | (AMU-1997)        |  |  |
|     | CH <sub>3</sub> —CHBr—CH <sub>2</sub> CH <sub>3</sub> —                                               | alc.KOH                                                                                                               |                                                               |                                                      |                   |  |  |
|     | (A) CH <sub>3</sub> CH = CHCH <sub>3</sub> (ma                                                        |                                                                                                                       | (B) CH <sub>2</sub> = CH - CH <sub>2</sub> CH <sub>3</sub>    | •                                                    |                   |  |  |
| 98  | [1] Markovnikov's rule                                                                                | [2] Saytzeff's rule<br>omers will have the highest                                                                    | [3] Kharash effect                                            | [4] Hofmann                                          | (AMU-1997)        |  |  |
| 30  | William office following iso                                                                          | iners will have the highest                                                                                           |                                                               |                                                      | (ANO-1991)        |  |  |
|     | [1] CH <sub>3</sub> —CH <sub>2</sub> —CH <sub>2</sub> —CH <sub>2</sub>                                | -CH <sub>2</sub> -CH <sub>3</sub>                                                                                     | [2] CH <sub>3</sub> —CH—CH <sub>2</sub> —C<br>CH <sub>3</sub> | CH <sub>2</sub> —CH <sub>3</sub>                     |                   |  |  |
|     |                                                                                                       |                                                                                                                       | CH,                                                           |                                                      |                   |  |  |
|     | [3] CH —CH—CH—CH                                                                                      |                                                                                                                       | °   141 CH — CH— CH — C                                       | CH                                                   |                   |  |  |
|     | [3] $CH_3$ — $CH$ — $CH$ — $CH_3$ $CH_3$ $CH_3$ $C_3H_8 + Cl_2$ $\xrightarrow{\text{Light}}$ $C_3H_7$ |                                                                                                                       | [4] CH <sub>3</sub> —CH—CH <sub>2</sub> —C                    | 51 1 <sub>3</sub>                                    |                   |  |  |
|     | 3                                                                                                     |                                                                                                                       | _ · · · 3                                                     |                                                      |                   |  |  |
| 105 | $C_3H_8 + Cl_2 \xrightarrow{Light} C_3H_7$                                                            | CI + HCI                                                                                                              |                                                               |                                                      | (AFMC-1997)       |  |  |
|     | The above reaction is an example of -                                                                 |                                                                                                                       |                                                               |                                                      |                   |  |  |
|     | [1] Elimination                                                                                       | [2] Substitution                                                                                                      | [3] Addition                                                  | [4] Rearrang                                         | ement             |  |  |
| 106 |                                                                                                       | odium in the presence of c                                                                                            |                                                               |                                                      | (AFMC-1997)       |  |  |
| 100 |                                                                                                       | •                                                                                                                     |                                                               |                                                      | (AFMC-1991)       |  |  |
| 400 | [1] Pentene                                                                                           | [2] Propyne                                                                                                           | [3] Butane                                                    | [4] Butene                                           | (DIIII 4007)      |  |  |
| 109 |                                                                                                       | chromyl chloride produces                                                                                             |                                                               |                                                      | (BHU-1997)        |  |  |
|     | [1] benzoic acid                                                                                      | [2] Benzaldehyde                                                                                                      | [3] Cghlorobenzene                                            | [4] None of t                                        |                   |  |  |
| 110 | When ethylbromide and n-propyl bromide is allowed to react with sodium, in ether, they form -         |                                                                                                                       |                                                               |                                                      | n -               |  |  |
|     | [1] Single alkane                                                                                     |                                                                                                                       | [2] Mixture of two alkanes                                    |                                                      | (BHU-1997)        |  |  |
|     | [3] Mixture of three alkanes                                                                          |                                                                                                                       | [4] Mixture of four alka                                      | [4] Mixture of four alkanes                          |                   |  |  |
| 183 | A salt producting hydorca                                                                             | arbon among the compoun                                                                                               | nd is -                                                       |                                                      | (KCET-2002)       |  |  |
|     | [1] Ethyne                                                                                            | [2] Ethene                                                                                                            | [3] Methane                                                   | [4] Ethane                                           |                   |  |  |
| 184 | Octane number is zero b                                                                               | ру -                                                                                                                  |                                                               |                                                      | (MP PET-2002)     |  |  |

|                                                                   | [1] Isoheptane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | [2] n-Heptane                                                                                                                                                              | [3] Isoctane                                                                                                                                                     | [4] n-Octane                                                                                                                                                                                                           |  |  |
|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 186                                                               | LPG contains -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                            |                                                                                                                                                                  | (BCEE-2002)                                                                                                                                                                                                            |  |  |
|                                                                   | [1] Methane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | [2] Ethane                                                                                                                                                                 | [3] Butane                                                                                                                                                       | [4] None of the above                                                                                                                                                                                                  |  |  |
| 187                                                               | Wurtz reaction involves the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | e interaction of alkyl halide                                                                                                                                              | es in dry ether with -                                                                                                                                           | (MP PET-2002)                                                                                                                                                                                                          |  |  |
|                                                                   | [1] Sodum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [2] Zinc                                                                                                                                                                   | [3] Copper                                                                                                                                                       | [4] Platinum                                                                                                                                                                                                           |  |  |
| 188                                                               | Which of the following has                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | lowest octane number -                                                                                                                                                     |                                                                                                                                                                  | (MP PET-2002)                                                                                                                                                                                                          |  |  |
|                                                                   | [1] iso-octane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | [2] n-Heptane                                                                                                                                                              | [3] n-Hexane                                                                                                                                                     | [4] n-nonane                                                                                                                                                                                                           |  |  |
| 189                                                               | The process in which higher is called -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | er hydrocarbons are broke                                                                                                                                                  | n down intop lower hydrod                                                                                                                                        | carbhons by controlled pyrolysis (MP PET-2002)                                                                                                                                                                         |  |  |
|                                                                   | [1] Hydrolysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | [2] Cracking                                                                                                                                                               | [3] Oxidation                                                                                                                                                    | [4] Reduction                                                                                                                                                                                                          |  |  |
| 190                                                               | Ethane is formed by the rea as -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | action of methyliodide and                                                                                                                                                 | sodium metal in dry ether                                                                                                                                        | solution. The reaction is known (MP PMT-2002)                                                                                                                                                                          |  |  |
|                                                                   | [1] Clemmensen reduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | [2] Kolbe's reaction                                                                                                                                                       | [3] Wurtz reaction                                                                                                                                               | [4] Cannizzaro reaction                                                                                                                                                                                                |  |  |
| 191                                                               | Which of these will not rea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | act with acetylene -                                                                                                                                                       |                                                                                                                                                                  | (AIEEE-2002)                                                                                                                                                                                                           |  |  |
|                                                                   | [1] NaOH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | [2] ammoniacal AgNO <sub>3</sub>                                                                                                                                           | [3] Na                                                                                                                                                           | [4] HCI                                                                                                                                                                                                                |  |  |
| 192                                                               | What is the product formed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | d when acetylene reacts w                                                                                                                                                  | vith hypochlorous acid -                                                                                                                                         | (AIEEE-2002)                                                                                                                                                                                                           |  |  |
|                                                                   | [1] CH <sub>3</sub> COCI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | [2] CICH <sub>2</sub> CHO                                                                                                                                                  | [3] Cl <sub>2</sub> CHCHO                                                                                                                                        | [4] CICH <sub>2</sub> COOH.                                                                                                                                                                                            |  |  |
| 193                                                               | For the reaction, -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                            |                                                                                                                                                                  | (Orissa JEE-2002)                                                                                                                                                                                                      |  |  |
| $CH_3$ — $CH \equiv CH_2 + HOCI \rightarrow A$ , The product A is |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                            |                                                                                                                                                                  |                                                                                                                                                                                                                        |  |  |
|                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                            |                                                                                                                                                                  | [2] CH <sub>3</sub> —CH(OH)—CH <sub>2</sub> Cl                                                                                                                                                                         |  |  |
|                                                                   | [1] CH <sub>3</sub> —CHCI—CH <sub>2</sub> OH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                            | [2] CH <sub>3</sub> —CH(OH)—CH <sub>2</sub> C                                                                                                                    |                                                                                                                                                                                                                        |  |  |
|                                                                   | [1] CH <sub>3</sub> —CHCI—CH <sub>2</sub> OH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ~ (                                                                                                                                                                        | OH I                                                                                                                                                             | :I                                                                                                                                                                                                                     |  |  |
|                                                                   | [1] CH <sub>3</sub> —CHCI—CH <sub>2</sub> OH [3] CH <sub>3</sub> —CH <sub>2</sub> —CH <sub>2</sub> —COCI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .: \C                                                                                                                                                                      | 2                                                                                                                                                                | :1                                                                                                                                                                                                                     |  |  |
| 194                                                               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ure of -                                                                                                                                                                   | OH I                                                                                                                                                             | (Orissa JEE-2002)                                                                                                                                                                                                      |  |  |
| 194                                                               | [3] CH <sub>3</sub> —CH <sub>2</sub> —CH <sub>2</sub> —COCI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ure of -                                                                                                                                                                   | OH  [4] CH <sub>3</sub> —C—CH <sub>3</sub> CI                                                                                                                    |                                                                                                                                                                                                                        |  |  |
| 194                                                               | [3] CH <sub>3</sub> —CH <sub>2</sub> —CH <sub>2</sub> —COCI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | [2] Cosmetics                                                                                                                                                              | OH  [4] CH <sub>3</sub> —C—CH <sub>3</sub> CI  [3] Non-stick pans                                                                                                | (Orissa JEE-2002)                                                                                                                                                                                                      |  |  |
|                                                                   | [3] CH <sub>3</sub> —CH <sub>2</sub> —CH <sub>2</sub> —COCI  PVC is used fror manufact  [1] Types                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | [2] Cosmetics                                                                                                                                                              | OH  [4] CH <sub>3</sub> —C—CH <sub>3</sub> CI  [3] Non-stick pans                                                                                                | (Orissa JEE-2002) [4] Plastic pipes.                                                                                                                                                                                   |  |  |
|                                                                   | [3] CH <sub>3</sub> —CH <sub>2</sub> —CH <sub>2</sub> —COCI  PVC is used fror manufact  [1] Types  Butene-1-may be converte  [1] Pd/H <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <ul><li>[2] Cosmetics</li><li>d to butane by reaction wi</li><li>[2] Zn - HCl</li></ul>                                                                                    | OH  [4] CH <sub>3</sub> —C—CH <sub>3</sub> CI  [3] Non-stick pans th -  [3] Xn - HCI                                                                             | (Orissa JEE-2002) [4] Plastic pipes. (AIEEE-2003)                                                                                                                                                                      |  |  |
| 195                                                               | [3] CH <sub>3</sub> —CH <sub>2</sub> —CH <sub>2</sub> —COCI  PVC is used fror manufact  [1] Types  Butene-1-may be converte  [1] Pd/H <sub>2</sub> On mixing a certain alkane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <ul><li>[2] Cosmetics</li><li>d to butane by reaction wi</li><li>[2] Zn - HCl</li></ul>                                                                                    | OH  [4] CH <sub>3</sub> —C—CH <sub>3</sub> CI  [3] Non-stick pans th -  [3] Xn - HCI                                                                             | (Orissa JEE-2002) [4] Plastic pipes. (AIEEE-2003) [4] Zn - Hg. rms only one monochloroalkane.                                                                                                                          |  |  |
| 195                                                               | [3] CH <sub>3</sub> —CH <sub>2</sub> —CH <sub>2</sub> —COCI  PVC is used fror manufact  [1] Types  Butene-1-may be converte  [1] Pd/H <sub>2</sub> On mixing a certain alkane of the column of the col | <ul><li>[2] Cosmetics</li><li>d to butane by reaction wi</li><li>[2] Zn - HCI</li><li>with chlorine and irradiating</li><li>[2] propane</li></ul>                          | OH  [4] CH <sub>3</sub> —C—CH <sub>3</sub> CI  [3] Non-stick pans th -  [3] Xn - HCI  it with ultraviolet light, it for                                          | (Orissa JEE-2002) [4] Plastic pipes. (AIEEE-2003) [4] Zn - Hg. rms only one monochloroalkane. (AIEEE-2003)                                                                                                             |  |  |
| 195<br>196                                                        | [3] CH <sub>3</sub> —CH <sub>2</sub> —CH <sub>2</sub> —COCI  PVC is used fror manufact  [1] Types  Butene-1-may be converte  [1] Pd/H <sub>2</sub> On mixing a certain alkane of the correct order of reactive  The correct order of reactive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <ul><li>[2] Cosmetics</li><li>d to butane by reaction wi</li><li>[2] Zn - HCI</li><li>with chlorine and irradiating</li><li>[2] propane</li></ul>                          | OH  [4] CH <sub>3</sub> —C—CH <sub>3</sub> CI  [3] Non-stick pans th -  [3] Xn - HCI  it with ultraviolet light, it for                                          | (Orissa JEE-2002) [4] Plastic pipes. (AIEEE-2003) [4] Zn - Hg. rms only one monochloroalkane. (AIEEE-2003) [4] isopentan                                                                                               |  |  |
| 195<br>196                                                        | [3] CH <sub>3</sub> —CH <sub>2</sub> —CH <sub>2</sub> —COCI  PVC is used fror manufact  [1] Types  Butene-1-may be converte  [1] Pd/H <sub>2</sub> On mixing a certain alkane of the correct order of reactive nitrobenzene (III), is -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | [2] Cosmetics d to butane by reaction wi [2] Zn - HCI with chlorine and irradiating [2] propane ity twoards the electrophili [2] I < II > III                              | OH  [4] CH <sub>3</sub> —C—CH <sub>3</sub> CI  [3] Non-stick pans th -  [3] Xn - HCI  git with ultraviolet light, it for  [3] pentane c subsitution of the compo | (Orissa JEE-2002)  [4] Plastic pipes.  (AIEEE-2003)  [4] Zn - Hg.  rms only one monochloroalkane.  (AIEEE-2003)  [4] isopentan  runds, anilin (I), benzene (II) and  (CBSE PMT-2003)                                   |  |  |
| 195<br>196<br>197                                                 | [3] CH <sub>3</sub> —CH <sub>2</sub> —CH <sub>2</sub> —COCI  PVC is used fror manufact  [1] Types  Butene-1-may be converte  [1] Pd/H <sub>2</sub> On mixing a certain alkane of the correct order of reactive nitrobenzene (III), is -  [1] II > III > I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [2] Cosmetics d to butane by reaction wi [2] Zn - HCI with chlorine and irradiating [2] propane ity twoards the electrophili [2] I < II > III is a free radical substituti | OH  [4] CH <sub>3</sub> —C—CH <sub>3</sub> CI  [3] Non-stick pans th -  [3] Xn - HCI  git with ultraviolet light, it for  [3] pentane c subsitution of the compo | (Orissa JEE-2002)  [4] Plastic pipes.  (AIEEE-2003)  [4] Zn - Hg.  rms only one monochloroalkane.  (AIEEE-2003)  [4] isopentan  unds, anilin (I), benzene (II) and  (CBSE PMT-2003)  [4] III > II > I  (CBSE PMT-2003) |  |  |

HYDROCARBONS

|     | ÇH₃                           |                                                       |                                   |           |                    |
|-----|-------------------------------|-------------------------------------------------------|-----------------------------------|-----------|--------------------|
| 199 | IUPAC name of is              | -                                                     |                                   |           | (AIIMS-2003)       |
|     | [1] 3-methyl cyclhexene       |                                                       | [2] 1-methykl cyclohex            | -2-ene    |                    |
|     | [3] 6-methyl cylcohexene      | )                                                     | [4] 1-methyl cyclohex-            | 5-ene     |                    |
| 200 | The ortho/para directing      | group among the following                             | s -                               |           | (AIIMS-2003)       |
|     | [1]—CIIH                      | [2] —CN                                               | [3] —COCH <sub>3</sub>            | [4]—NH    | HCOCH <sub>3</sub> |
| 201 | The treatment of benzen       | e with isobutene in the pres                          | sence of sulphuric acid g         | ives -    | (AIIMS-2003)       |
|     | [1] Isobutyl benzene          | [2] tert-butyl benzene                                | [3] n-Butyl benzene               | [4] No r  | eaction            |
| 202 | Name the alkene with the      | e molecular formula c <sub>10</sub> H <sub>20</sub> - |                                   |           | (Kerala MEE-2003)  |
|     | [1] Dodecene                  | [2] Undecene                                          | [3] Decene                        | [4] Hept  | tene               |
| 203 | In electrophilic substitution | on reaction nitrobenzene is                           | -                                 |           | (Kerala MEE-2003)  |
|     | [1] meta-directing            | [2] ortho-directing                                   | [3] para-directing                | [4] not-  | selective.         |
| 204 | The chemical added to le      | eaded petrol to prevent the                           | deposition of lead in the         | combustic | on chamber is -    |
|     |                               |                                                       |                                   |           | (Kerala MEE-2003)  |
|     | [1] Isoctane                  | [2] Ethylenedibromide                                 | [3] Tetraethyl lead               | [4] Merc  | captan             |
| 205 | Hydrolysis of the ozonide     | e of 1-butene gives -                                 |                                   |           | (Kerala MEE-2003)  |
|     | [1] Ethylene only             |                                                       | [2] Acetaldehyde and formaldehyde |           |                    |
|     | [3] Propionaldehyde and       | formaldehyde                                          | [4] Acetaldehyde and oxalic acid. |           |                    |
| 206 | Alkyl halides react with r    | netallic sodium in dry ether                          | producing -                       |           | (Kerala MEE-2003)  |
|     | [1] Alkanes with same no      | umber of carbon atoms                                 |                                   |           |                    |
|     | [2] Alkanes with double t     | he number of carbon atoms                             | S                                 |           |                    |
|     | [3] Alkanes with triple the   | e number of carbon atoms                              |                                   |           |                    |
|     | [4] Alkenes with double t     | he number ofcarbon atoms                              |                                   |           |                    |
| 207 | Benzoic acid, when heat       | ed with soda lime yields -                            |                                   |           | (Kerala MEE-2003)  |
|     | [1] Benzaldehyde              | [2] Benzene                                           | [3] Toluene                       | [4] Ben   | zyl alcohol        |
|     | MAN                           |                                                       |                                   |           |                    |

## EXERCISE # 3

| 22 | Suitable for preparation of hiher alkanes from a lower alkyl halide is subjected to -                                        |                                                                 |                                                            |                                          |  |  |
|----|------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------|------------------------------------------|--|--|
|    | [1] Recudtion                                                                                                                |                                                                 | [2] Hoffmann bromamide reaction                            |                                          |  |  |
|    | [3] Hunsdiecker reaction                                                                                                     |                                                                 | [4] Wurtz reaction                                         | [4] Wurtz reaction                       |  |  |
| 23 | The organic reaction product from the reaction of methyl magnesium bromide and ethyl alcohol is -                            |                                                                 |                                                            |                                          |  |  |
|    | [1] Methane                                                                                                                  | [2] Ethane                                                      | [3] Propane                                                | [4] Butane                               |  |  |
| 24 | Aqueous solution of which compound gave ethane on electrolysis -                                                             |                                                                 |                                                            |                                          |  |  |
|    | [1] Acetic acid                                                                                                              | [2] Acetamide                                                   | [3] Potassium acertate                                     | [4] Ethyl acetate                        |  |  |
| 25 | In the complete combus                                                                                                       | stion of $C_nH_{2n+2}$ , the number                             | r of oxygen moles required i                               | s -                                      |  |  |
|    | [1] n/2O <sub>2</sub>                                                                                                        | $[2] \left(\frac{n+1}{2}\right) O_2$                            | $[3] \left(\frac{3n+1}{2}\right) O_2$                      | $[4] \left(\frac{n+2}{2}\right) O_2$     |  |  |
| 26 | The catalyst used to convert alkanes containing 6 to 10 carbon atoms into benzene and ists homologous at nearly 600° C are - |                                                                 |                                                            |                                          |  |  |
|    | [1] Cr <sub>2</sub> O <sub>3</sub> and Al <sub>2</sub> O <sub>3</sub>                                                        | [2] Cr <sub>2</sub> O <sub>3</sub> and AlCl <sub>3</sub>        | [3] $\rm H_2SO_4$ and $\rm HF$                             | [4] BF <sub>3</sub>                      |  |  |
| 27 | Which sodium salt will                                                                                                       | Which sodium salt will be heated soda lime to obtain propane    |                                                            |                                          |  |  |
|    | [1] CH <sub>3</sub> —CH <sub>2</sub> —C—C Na®                                                                                |                                                                 | [2] CH <sub>3</sub> —CH <sub>2</sub> —CH <sub>2</sub> —C   | C—O°Na°<br>D                             |  |  |
|    | [3] (CH <sub>3</sub> ) <sub>2</sub> CH—C—O°N:                                                                                | a°                                                              | [4] 2 <sup>nde</sup> and 3 <sup>re</sup> both              |                                          |  |  |
| 28 | Alkyl halides on reducti                                                                                                     | Alkyl halides on reduction with Zn-Cu couple and alcohol give - |                                                            |                                          |  |  |
|    | [1] Alkanes                                                                                                                  | [2] Alkenes                                                     | [3] Alkynes                                                | [4] Cyclic compounds                     |  |  |
| 29 | The most volatile alkane is -                                                                                                |                                                                 |                                                            |                                          |  |  |
|    | [1] n-pentane                                                                                                                | [2] isopentane                                                  | [3] neopentane                                             | [4] n-hexane                             |  |  |
| 30 | Wurtz reaction is bext used for making -                                                                                     |                                                                 |                                                            |                                          |  |  |
|    | [1] Unbranched alkanes                                                                                                       |                                                                 | [2] symmetrical alkanes                                    | [2] symmetrical alkanes                  |  |  |
|    | [3] Unsymmetrical alkanes                                                                                                    |                                                                 | [4] n-Alkanes with odd.                                    | [4] n-Alkanes with odd. number of carbon |  |  |
| 31 | Whcih sodium salt will be heated with NaOH + CaO to obtain isobutane -                                                       |                                                                 |                                                            |                                          |  |  |
|    | [1] CH <sub>3</sub> —CH <sub>2</sub> —C—O'Na <sup>®</sup>                                                                    |                                                                 | [2] CH <sub>3</sub> —CH—C—O'Na"<br>CH <sub>3</sub> O       |                                          |  |  |
|    | [3] (CH <sub>3</sub> ) <sub>3</sub> CH—C—O°N                                                                                 | a°                                                              | [4] (CH <sub>3</sub> ) <sub>2</sub> CH—CH <sub>2</sub> —C- | –O°Na°                                   |  |  |
| 32 | What are the gases evloved at anode during kolbe synthesis -                                                                 |                                                                 |                                                            |                                          |  |  |
|    | [1] Hydrocarbons                                                                                                             | [2] CO <sub>2</sub>                                             | [3] Both                                                   | [4] None                                 |  |  |
| 33 | Action of RMgX with vinyl chloride gives -                                                                                   |                                                                 |                                                            |                                          |  |  |
|    | [1] Alkane                                                                                                                   | [2] Alkyne                                                      | [3] Alkene                                                 | [4] All                                  |  |  |

| 34 | Which alkene shows geometrical isomerism -                                                |                                                            |                                        |                                      |  |
|----|-------------------------------------------------------------------------------------------|------------------------------------------------------------|----------------------------------------|--------------------------------------|--|
|    | [1] Cab = Cae                                                                             | [2] Cab = Cab                                              | [3] Cab = Cbd                          | [4] All                              |  |
| 35 | The relative stability of the compounds -                                                 |                                                            |                                        |                                      |  |
|    | CH <sub>3</sub> —C = C—CH <sub>3</sub><br>CH <sub>3</sub> CH <sub>3</sub>                 | CH <sub>3</sub> —C = CH—CH <sub>3</sub><br>CH <sub>3</sub> | $CH_3$ $C = C$ $CH_3$                  | $CH_3$ $C = CH_3$                    |  |
|    | (i)                                                                                       | (iii)                                                      | (iii)                                  | (iv)                                 |  |
|    | $CH_3$ — $CH = CH_2$                                                                      | $CH_2 = CH_2$                                              |                                        |                                      |  |
|    | (v)                                                                                       | (vi)                                                       |                                        |                                      |  |
|    | [1] i > ii > iii > iv > v > v                                                             | i                                                          | [2] vi > v> iv > iii > ii >            | ·i                                   |  |
|    | [3] $i > iii > v > ii > iv > v$                                                           | i                                                          | [4] ii > i > iv > iii > v >            | · vi                                 |  |
| 36 | The reaction of an alkene with per acids to form an epoxide is khnown after the name of - |                                                            |                                        |                                      |  |
|    | [1] Baeyer                                                                                | [2] Brown                                                  | [3] Prileshchiaev                      | [4] Kharasch                         |  |
| 37 | Cis-2-Butene cannot be o                                                                  | changed to trans-2-butene                                  | dbecause -                             | •                                    |  |
|    | [1] Cis isomer has two hydrogen atoms on the same side of the $\pi$ bond                  |                                                            |                                        |                                      |  |
|    | [2] Trans isomer has two hydrogen atoms on he opposite of the $\pi$ bond                  |                                                            |                                        |                                      |  |
|    | [3] Of hindered rotation a                                                                | bout the carbon-carbon do                                  | uble bond                              |                                      |  |
|    | [4] The transformation do                                                                 | es not required energy                                     | 70,                                    |                                      |  |
| 38 | Addistion of hypohalous                                                                   | acid to ethene leads to the                                | e formation of -                       |                                      |  |
|    | [1] Halocarbons                                                                           | [2] Halohydrin                                             | [3] Haloalkyne                         | [4] Halohydrates                     |  |
| 39 | Acetylene can be prepare                                                                  | ed from -                                                  |                                        |                                      |  |
|    | [1] Potassium fumarate                                                                    | [2] Calcium carbide                                        | [3] Ethylene bromide                   | [4] All                              |  |
| 40 | Which fone of the following                                                               | ng compounds does not fo                                   | orm an ozonide -                       |                                      |  |
|    | [1] Ethene                                                                                | [2] Propyne                                                | [3] Propene                            | [4] Propane                          |  |
| 41 | Mesitylene is obtained by                                                                 | y the polymerisation of -                                  |                                        |                                      |  |
|    | [1] Propyne                                                                               |                                                            | [3] Pronene                            | [4] None of these                    |  |
| 42 | Idetify X in the reaction C                                                               | $CH_2 = CH_2 + H_2SO_4 \rightarrow inte$                   | rmediate <del>boil </del> X -          |                                      |  |
|    | [1] CH <sub>3</sub> OH                                                                    | [2] CH <sub>3</sub> CH <sub>2</sub> OH                     | [3] ?CH <sub>3</sub> COCH <sub>2</sub> | [4] CH <sub>3</sub> OCH <sub>3</sub> |  |
| 43 | The catalyst used in Zieg                                                                 | ler proccess for polyethyle                                | ene manufacture -                      |                                      |  |
|    | [1] Consists of aluminium triethyl and titanium tetrachloride                             |                                                            |                                        |                                      |  |
|    | [2] Consists of aluminium chloride and titanium dioxide                                   |                                                            |                                        |                                      |  |
|    | [3] Is vanadium pentoxide                                                                 | 9                                                          |                                        |                                      |  |
|    | [4] Is finely divided nicke                                                               | l                                                          |                                        |                                      |  |
| 44 | Conversion of CH <sub>4</sub> to CH                                                       | I <sub>3</sub> Cl is an example of                         | reaction -                             |                                      |  |
|    | [1] Free radical substituti                                                               | on                                                         | [2] Fre radical addition               |                                      |  |
|    | [3] Electrophilic substitut                                                               | ion                                                        | [4] Nucleophilic substit               | ution                                |  |
|    |                                                                                           |                                                            |                                        |                                      |  |

34

| HY | DROCARBONS                                                                                                    |                                                                   |                                         |                                   |  |  |
|----|---------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------|-----------------------------------|--|--|
| 45 | Baeyer's reagent is used                                                                                      | l in the laboratory for -                                         |                                         |                                   |  |  |
|    | [1] Reduction process                                                                                         | [2] Oxidation process                                             | [3] Detection of glucose                | [4] Detection of double bond      |  |  |
| 46 | 1-Chlorobutane, on reaction with alcoholic potash (KOH), gives -                                              |                                                                   |                                         |                                   |  |  |
|    | [1] 1-Butene                                                                                                  | [2] 1-Butanol                                                     | [3] 2-Butene                            | [4] 2-Butanol                     |  |  |
| 47 | A compound is treated w                                                                                       | rit NaNH <sub>2</sub> to give sodium sa                           | alt. Identify the compound              | -                                 |  |  |
|    | [1] C <sub>2</sub> H <sub>2</sub>                                                                             | [2] $C_6H_6$                                                      | [3] C <sub>2</sub> H <sub>6</sub>       | [4] C <sub>2</sub> H <sub>4</sub> |  |  |
| 48 | Whcih one of the following                                                                                    | Whiih one of the following is used to make 'non-stick' cookware - |                                         |                                   |  |  |
|    | [1] Polystyrene                                                                                               | [2] Polytetrafluoroehyler                                         | ne [3] Poly-ethylene                    | [4] None of these                 |  |  |
| 49 | The complete combustion                                                                                       | The complete combustion of CH <sub>4</sub> gives -                |                                         |                                   |  |  |
|    | [1] CO <sub>2</sub> + H <sub>2</sub> O                                                                        | [2] CO <sub>2</sub> + H <sub>2</sub>                              | [3] CO <sub>2</sub> + COCl <sub>2</sub> | [4] CO + H <sub>2</sub> O         |  |  |
| 50 | Which hydrocarbon are r                                                                                       | not formed by teh wurtz rea                                       | action fo ethyl iodide and n            | -proply iodide -                  |  |  |
|    | [1] n-Butane                                                                                                  | [2] n-Heptane                                                     | [3] n-pentane                           | [4] n-Hexabe                      |  |  |
| 51 | Which product is not form                                                                                     | m in chlorination of CH <sub>4</sub> -                            |                                         | 69                                |  |  |
|    | [1] CH <sub>3</sub> —CI                                                                                       | [2] CH <sub>3</sub> —CH <sub>3</sub>                              | [3] Cl <sub>2</sub>                     | [4] None                          |  |  |
| 52 | What is the required volu                                                                                     | ime of $O_2$ (lit.) for the comp                                  | olete combustion of 60 gm               | ethane -                          |  |  |
|    | [1] 6.12                                                                                                      | [2] 7.8                                                           | [3] 15.68                               | [4] 22.4                          |  |  |
| 53 | In nitration propane & hig                                                                                    | In nitration propane & higher alkane shwos -                      |                                         |                                   |  |  |
|    | [1] Frec radical substituti                                                                                   | on [2] Ionic mechanism                                            | [3] Both                                | [4] None                          |  |  |
| 54 | Methane cannot fromed I                                                                                       | by -                                                              |                                         |                                   |  |  |
|    | [1] CoCl <sub>2</sub>                                                                                         | [2] CS <sub>2</sub>                                               | [3] CHCl <sub>3</sub>                   | [4] CCI <sub>2</sub>              |  |  |
| 55 | Reaction of isobutylene and conc $H_2SO_4 + SO_3$ gives -                                                     |                                                                   |                                         |                                   |  |  |
|    | [1] 2-Methyl propane-2-sulphonic acid [2] -butyl sulphon                                                      |                                                                   |                                         | I                                 |  |  |
|    | [3] Both                                                                                                      | ~0,                                                               | [4] None                                |                                   |  |  |
| 56 | Which compound does not give alkane on reduction bhy Red P + HI -                                             |                                                                   |                                         |                                   |  |  |
|    | [1] Alcohol                                                                                                   | [2] Aldehyde & Ketone                                             | [3] Acid                                | [4] Acid derivatives              |  |  |
| 57 | The reaction of perbenzoic acid at $\beta$ -butylene gives -                                                  |                                                                   |                                         |                                   |  |  |
|    | [1] 2,3-Butanediol                                                                                            |                                                                   | [3] 2,3-epoxpropane                     | [4] 2,3-Epoxybutane               |  |  |
| 58 | $CH_2 = CH_2 \xrightarrow{Br_2} A$                                                                            | $(i)Alc.KOH \longrightarrow B \xrightarrow{+2HX} C in$            | reaction C is -                         |                                   |  |  |
|    | [1] Vis di halide                                                                                             | [2] Zem di halide                                                 | [3] Zem di bromide                      | [4] $\alpha,\omega$ - di halide   |  |  |
| 59 | Dimerisation of isobutyl;ene by conc $\mathrm{H_2SO_4}$ gives two conmpound. What the relation bitween them - |                                                                   |                                         |                                   |  |  |
|    | [1] Functional isomers                                                                                        | [2] Position isoomers                                             | [3] Tautomers                           | [4] Chain isomers                 |  |  |
| 60 | What the main product o                                                                                       | f addition of "tidon reagent                                      | " at $lpha$ - butylene -                |                                   |  |  |
|    | [1] 2-Chloro-1-nitrosopropane [2] 1-Chloro-2-nitrosobutane                                                    |                                                                   |                                         |                                   |  |  |
|    | [3] 2-chloro-1-nitrosobutane [4] Butane nitrosochioride                                                       |                                                                   |                                         |                                   |  |  |
| 61 | What type of compound form by the reaction of diazomethane at methyl ethylene -                               |                                                                   |                                         |                                   |  |  |
|    | [1] saturated acylic                                                                                          | [2] Saturated homocycl                                            | ic [3] Homocyclic aromatic              | c [4] Unsaturated homocyclic      |  |  |

| 62        | The application of ethlene are -                                                                                                 |                                   |                                          |                                                 |  |
|-----------|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|------------------------------------------|-------------------------------------------------|--|
|           | [1] Cracking                                                                                                                     | [2] Isomerisation                 | [3] Substitution                         | [4] Elimination                                 |  |
| 63        | The application of ethlene are -                                                                                                 |                                   |                                          |                                                 |  |
|           | [A] Formation of Mustare                                                                                                         | d gas                             | [B] Repening of Fruits                   |                                                 |  |
|           | [C] Formation of Lewisite                                                                                                        |                                   | [D] Fornation of Glycol                  |                                                 |  |
|           | [1] ABD                                                                                                                          | [2] ABC                           | [3] ACD                                  | [4] BCD                                         |  |
| 64        | Which reagent are not suitable for differentiation of ethane & ethene -                                                          |                                   |                                          |                                                 |  |
|           | [1] Baeyer reagen                                                                                                                |                                   | [2] Conc. H <sub>2</sub> SO <sub>4</sub> |                                                 |  |
|           | [3] Br <sub>2</sub> solution                                                                                                     |                                   | [4] Ammonical cuproous chloride          |                                                 |  |
| 65        | $CH_2 = CH_2 + H_2O \frac{PdCl_2}{ClCl_2}$                                                                                       | → X, in reaction X is -           |                                          |                                                 |  |
|           | [1] Acetic acid                                                                                                                  | [2] Ethylene glycol               | [3] Ethanal                              | [4] Ethylene oxide                              |  |
| 67        | Which of the compound                                                                                                            | are not used in the "Oxo e        | raction" of olefins -                    | ~O`                                             |  |
|           | [1] HCHO                                                                                                                         | [2] CO                            | [3] Co                                   | [4] H <sub>2</sub>                              |  |
| 68        | Which olefine is formed on the heating Dimethyl n-propylamine oxide at $150^{\circ}\mathrm{C}$ -                                 |                                   |                                          |                                                 |  |
|           | [1] Ethene                                                                                                                       | [2] Ethyl ethylene                | [3] Methyl ethylene                      | [4] Sym. Dimethyl ethylene                      |  |
| 69        | Which compound is formed by the oxidation of SeO <sub>2</sub> on ethyl ethylene -                                                |                                   |                                          |                                                 |  |
|           | [1] 2-butene-1-ol                                                                                                                | [2] 3-butene-2-ol                 | [3] 1-butnen-1-ol                        | [4] 3-butene-1-ol                               |  |
| 70        | Koch reaction on proper                                                                                                          | e give -                          | 2                                        |                                                 |  |
|           | [1] Iso velaric acid                                                                                                             | [2] Isobutyric acid               | [3] Propeonic acid                       | [4] None of these                               |  |
| 71        | Total no. of C-atom in a simplest hydrocarbon molecule containing three acetylenic H-atom -                                      |                                   |                                          |                                                 |  |
|           | [1] 4                                                                                                                            | [2] 5                             | [3] 6                                    | [4] 7                                           |  |
| 72        | Which of the following is formed by the kolbey's electrolysis of the mixture of potassium salt of maleic acid and fumaric acid - |                                   |                                          |                                                 |  |
|           | [1] $C_2H_4 + C_2H_2 + CO_2$                                                                                                     | $[2] C_2 H_2 + C_2 H_4$           | [3] $C_2H_2 + CO_2$                      | $[4] C_{2}H_{4} + CO_{2}$                       |  |
| 73        | Which of the unsaturated compound react with sodamide -                                                                          |                                   |                                          |                                                 |  |
|           | [1] 2-butyne                                                                                                                     | [2] 1-butene                      | [3] 2-buteen                             | [4] 1-butyne                                    |  |
| 74        | In Whol's Ziegler reaction which group is subsituted by the allylic hydrrogen atom of alkene -                                   |                                   |                                          |                                                 |  |
|           | [1] —OH                                                                                                                          | [2] —NH <sub>2</sub>              | [3] —Br                                  | [4]—COOH                                        |  |
| <b>75</b> | The formula of war gas                                                                                                           | Lewisite is -                     |                                          |                                                 |  |
|           | [1] $Cl_2As$ — $CH = CH_2$                                                                                                       | [2] Cl <sub>2</sub> As —CH = CHCl | [3] $(Cl-Ch = CH)_2 AsCl$                | [4] CICH = CH - Ash <sub>2</sub>                |  |
| <b>76</b> | Reagent can apply for the formation of chloroprene from acetylene -                                                              |                                   |                                          |                                                 |  |
|           | $[1] CI(NH_3)_2$ and HCI                                                                                                         | [2] $Ci_2Cl_2$ and $O_2$          | [3] Ni(CO) <sub>4</sub>                  | $[4] \operatorname{Ni(CO)}_4$ and $(C_6H_5)_3P$ |  |
| 77        | $CH \equiv CH + CO + H_2O \xrightarrow{Ni(CO)_s}$ Product, for this reaction which statement is faise -                          |                                   |                                          |                                                 |  |
|           | [1] The product of reaction is a $\alpha$ , $\beta$ -unsaturated acid                                                            |                                   |                                          |                                                 |  |
|           | [2] In reaction the addition of Hydorgen and carboxylic group at $\pi$ bond                                                      |                                   |                                          |                                                 |  |
|           | [3] The product name in this reaction is acrylic acid                                                                            |                                   |                                          |                                                 |  |
|           | [4] The product react with ethyl alcohol give ethyl butanoate                                                                    |                                   |                                          |                                                 |  |

### **HYDROCARBONS**

Grignard's reagent gives alkane with -**78** 

[1] H<sub>2</sub>O

[2] C<sub>2</sub>H<sub>5</sub>OH

[3] C<sub>2</sub>H<sub>5</sub>NH<sub>2</sub>

[4] AII

**79** n-heptane on reaction with chromium oxide, then dehydorgenation followed by cyclisation gives -

[1] 1-heptene

[2] Benzene

[3] o-xylene

[4] Methyl benzene

 $A \xrightarrow{\quad Electrolysis \quad } B \xrightarrow{\quad CH_sOH \quad } Methylal, \ [A] \ is \ -$ 80

[1] Potassium fomate

[2] Potassium acetate

[3] Sodium sucinate

[4] Sodium fumarate

Which of the following reagent converts the propene to 1-propanol -81

[1] H<sub>2</sub>O, H<sub>2</sub>SO<sub>4</sub>

[2] aqueous KOH

[3] MgSO<sub>4</sub>, NaBH<sub>4</sub>/H<sub>2</sub>O [4] B<sub>2</sub>H<sub>6</sub>, H<sub>2</sub>O<sub>2</sub>, OH<sup>-</sup>

82 Acetylene can be formed by -

[1] Fumaric acid

[2] Malic acid

[3] Succinic acid

The product of the following reaction  $CH_3$ —C— $CH = <math>CH_2$ 83

84 Review the following reactions and choose reactions which are completed by free redicall mechanism -

$$[1] \begin{array}{c} CH_3 - C = CH_2 \\ CH_3 \\ CH_3 \end{array} \xrightarrow{HBF} \begin{array}{c} CH_3 - C - CH_3 \\ CH_3 \\ CH_3 \end{array}$$

[2] 
$$CH_3$$
—  $CH = CH_2 \xrightarrow{(Peroxide)} CH_3$ — $CH_2$ — $CH_2$ Br

[3] 
$$CH_3CH = CH_2 \xrightarrow{CH_2N_2} CH_2$$

[4] 
$$Ch_4 + Cl_2 \xrightarrow{\text{(Light)}} CH_3CI + HCI$$

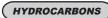
85 When CH<sub>3</sub>CH<sub>2</sub>Br reacts with sodium acetylide, the main product is -

[1] 1-Butane

[2] 1-Butene

[3] 1-Butyne

[4] 3-Butane


The catalytic hydorgenation of alkene and alkyne is called as -1

[1] Rosenmund reaction

[2] Sabtier-Senderen's reaction

[3] Clemenson reduction

[4] Wolf-Kirhner reduction



| Q.2  | Acetone gives the followin                                                                                          | g alkane on clemmensen re              | eduction -                                             |                                   |  |  |
|------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------|-----------------------------------|--|--|
|      | [1] Ethane                                                                                                          | [2] Propane                            | [3] hexane                                             | [4] Butane                        |  |  |
| Q.3  | Which of the following statement is correct about alkenes -                                                         |                                        |                                                        |                                   |  |  |
|      | [1] They are coloured and soluble in water                                                                          |                                        |                                                        |                                   |  |  |
|      | [2] Their boiling point decr                                                                                        | eses with the incrementin m            | nolecular weight                                       |                                   |  |  |
|      | [3] They are colourless, or                                                                                         | douries and tasteless                  |                                                        |                                   |  |  |
|      | [4] None                                                                                                            |                                        |                                                        |                                   |  |  |
| Q.4  | What would be the product when mehane react with fluorine -                                                         |                                        |                                                        |                                   |  |  |
|      | [1] CH <sub>3</sub> F                                                                                               | [2] CF <sub>4</sub>                    | [3] Carbon black                                       | [4] No reaction                   |  |  |
| Q.5  | In netration of propane the                                                                                         | e main product will be -               |                                                        |                                   |  |  |
|      | [1] 1-nitro propane                                                                                                 |                                        | [2] 2-nitro propnae                                    |                                   |  |  |
|      | [3] 1 and 2                                                                                                         |                                        | [4] 1-nitro propane +2-nitro +                         | nitor methane + nitro ehtane      |  |  |
| Q.6  | Reaction species of sulphonation of alkane will be -                                                                |                                        |                                                        |                                   |  |  |
|      | [1] 80                                                                                                              | 121 SO +                               | [3] HSO                                                | [4] + +                           |  |  |
|      | [1] SO <sub>3</sub>                                                                                                 | [2] SO <sub>3</sub> <sup>+</sup>       | [3] HSO <sub>3</sub>                                   | [4] HSO <sub>3</sub>              |  |  |
| Q.7  | $C_2H_6 + SO_2 + CI_2 \xrightarrow{uvlight}$ product in this reaction product will be                               |                                        |                                                        |                                   |  |  |
|      | [1] C <sub>2</sub> H <sub>4</sub>                                                                                   | [2] CH <sub>3</sub> CH <sub>2</sub> CI | [3] CH <sub>3</sub> CH <sub>2</sub> SO <sub>2</sub> Cl | [4] C <sub>2</sub> H <sub>2</sub> |  |  |
| Q.8  | Product of the Wolff-kishn                                                                                          | er reduction is -                      |                                                        |                                   |  |  |
|      | [1] Alkene                                                                                                          | [2] Alkyne                             | [3] Alkane                                             | [4] Amine                         |  |  |
| Q.9  | The reaction $2C_nH_{2n+2} + 10O_2 \rightarrow 6CO_2 + 8H_2O$ is true for the alkane -                              |                                        |                                                        |                                   |  |  |
|      | [1] Butane                                                                                                          | [2] Ethane                             | [3] Propane                                            | [4] All of the above              |  |  |
| Q.10 | Reed reaction is used in the formation of -                                                                         |                                        |                                                        |                                   |  |  |
|      | [1] Detergent                                                                                                       | [2] Saop                               | [3] Both of the above                                  | [4] None of these                 |  |  |
| Q.11 | n-octane by isomerisation gives -                                                                                   |                                        |                                                        |                                   |  |  |
|      | [1] Triptane                                                                                                        | [2] n-butane                           | [3] Iso-octane                                         | [4] Iso-octane                    |  |  |
| Q.12 | By which of the following statements is incorrect about the homologous series of alkenes -                          |                                        |                                                        |                                   |  |  |
|      | [1] Dehydrogenation                                                                                                 | [2] Dehydration                        | [3] Decarboxylation                                    | [4] Polymerisation                |  |  |
| Q.13 | A mixture of ethyl iodide and n-propyl iodide is subjected to Wurtz reaction. he hydrocarbon that not be formed is- |                                        |                                                        |                                   |  |  |
|      | [1] n-Butane                                                                                                        | [2] n-Heptane                          | [3] n-Pentane                                          | [4] n-hexane                      |  |  |
| Q.14 | Suitable for preparation of higher alanes from a lower alkyl halide is subjected to -                               |                                        |                                                        |                                   |  |  |
|      | [1] Reduction                                                                                                       |                                        | [2] hoffmann bromamide read                            | ction                             |  |  |
|      | [3] Hunsidiecker reaction                                                                                           |                                        | [4] Wurtz reaction                                     |                                   |  |  |
|      |                                                                                                                     |                                        |                                                        |                                   |  |  |

# EXERCISE # 4

- 1. Write structural formula for the five isomeric hexanes and name them by the IUPAC system.
- 2. Write the structures and identify all the 1°, 2°, 3° and 4° C's in (a) 2,2-dimethylpentane, and (b) 1-bromo-2-dimethylpentane.
- 3. Give the condensed formulas for the alkanes (a)  $C_8H_{18}$  and  $C_{11}H_{24}$  with the greatest number of methyl groups.
- 4. Derive the structural formulas and give the IUPAC names for all dibromo derivatives of propane.
- 5. What effect does branching of an alkane chain have on the melting point (mp)?
- **6.** Why are alkanes said to be hydrophobic.
- 7. Write the sructure of all the alkenes tht can be hydrogenated to form 2-methylpentane.
- **8.** Why is the Wartz synthesis not a good method for preparing propane?
- **9.** Prepare butane from chlorothane using the corey-House synthesis.
- 10. Write a balanced equation for the reaction of chlorine with an excess of methane
- 11. Why is light or heat necessary to initiate the chlorination reaction?
- **12.** Compare the reactivity of the halogens towards alkanes.
- **13.** When sulfuryl chloride is used to chlorinate an alkane, an organic peroxide, ROOR is used as an initiato. So<sub>2</sub> is also a product. Write a cechanism for the chlorination, including the role of the peroxide.
- **14.** Which isomers of C<sub>₄</sub>H<sub>₀</sub>Br yield only a single alkene on dehydrohalogenation? Give the stuctures of the alkenes.
- **15.** Give the alkenes fromed from acid-catalyzed dehydration of :

(c)  $(CH_3)_3CCH_2OH$ 

- **16.** Compare account for the products formed by dehydration of (a) and (b)
- 17. Write structural formulas for the compoundswhich yield the following products on reductive ozonolysis:
  - (a) Two moles of O = C(CH<sub>2</sub>)CH<sub>2</sub>CH<sub>3</sub>

(b) 
$$H_2C = O + O = CHCH(CH_2)CH(CH_2)$$

(c)  $O = CHCH_2CH_2CH=O$ 

(d) 
$$(C_2H_5)_2C = O + O = CHCH = O = O = CHCH_2CH_3$$

- (e) Two moles O = CHCH<sub>2</sub>CH =O
- **18.** (a) Compare the products from the addition of HBr to propene in (i) the absence and (ii) the presence of O<sub>2</sub> or peroxides, ROOR.
  - (b) What is the essential mechanistic difference between these two reactions?
- **19.** Give the products of the reaction of cyclohexene in CCl<sub>4</sub> with (a) sulfuryl chloride, Cl<sub>2</sub>SO<sub>2</sub>, (b) t-butyl hypochlorite, Me<sub>2</sub>COCl, adn (c) N-bromosuccinimide (NBS).

#### N-Bromosucinimide

- **20.** From propene, prepare (a) 2-chlorpropane, (b) 1-chloropropane, (c) Hexane, (d) 2-methylpentame, and (e) 2,3-dimethylbutane, Later synthese can use products made earlier.
- **21.** Devise a synthesis of (a) 3-Bromocyclopentene and (b) 3,5-dibromocylcopentene from cyclopentanol.
- **22.** From PrOH. prepare (a) 1,2,3-trichloropropane, (b) 1,3-dibromo-2-chloropropane, (c) 1-bromo-2-chloro-3-iodopropane, (d) 1,1,2-tribromopropane, and (e) BrCH<sub>2</sub>CHOHCH<sub>2</sub>CI.
- 23. Supply a structural formul for  $C_6H_{10}$  which reacts with hot KMnO<sub>4</sub> to form adipic acid, HOOC(CH<sub>2</sub>)<sub>4</sub>COOH.
- 24. (a) Give the structural formulas for the seven alkynes of the formula  $C_6H_{10}$ .
  - (b) Give the IUPAC an derived name for each isomer.
  - (c) Which isokers in (a) are terminalalkynes?
- 25. Write the structural formula for an alkyne hydrocarbon having the fewest number of C's which has geometric isomers, and give the IUPAC name for both geometric isomers.
- **26.** Give a simple (test trube) reaction to distinguish 1-butyne from 2-butyne.
- 27. Write equations for the preparation of (a) HC = CH and (b) DC = CD

### SOLVED EXAMPLES

Ex-1 Which of the following compounds will form a hydrocarbon on reaction with a Grignard reagent -

|      | [1] CH <sub>3</sub> CH <sub>2</sub> OH                                                                                                                                                   | [2] CH <sub>3</sub> CHO                      | [3] CH <sub>3</sub> COCH <sub>3</sub> | [4] CH <sub>3</sub> CO <sub>2</sub> CH <sub>3</sub> |  |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|---------------------------------------|-----------------------------------------------------|--|
| Sol. | (3) Self exlanatory equestion.                                                                                                                                                           |                                              |                                       |                                                     |  |
| Ex-2 | Methane is formed when -                                                                                                                                                                 |                                              |                                       |                                                     |  |
|      | [1] Sodium acetate is hea                                                                                                                                                                | ated with soda-lime                          | [2] Iodomethane is redu               | uced                                                |  |
|      | [3] Aluminium carbide re                                                                                                                                                                 | acts with water                              | [4] All.                              |                                                     |  |
| Sol. | (4) $CH_3COONa + NaOH \xrightarrow{CaO} CH_4 + Na_2CO_3$                                                                                                                                 |                                              |                                       |                                                     |  |
|      | $CH_3I + 2[H] \rightarrow CH_4 + HI$                                                                                                                                                     |                                              |                                       |                                                     |  |
|      | $Al_4C_3 + 12H_2O \rightarrow 2Al(OH)_3 + 3CH_4$                                                                                                                                         |                                              |                                       |                                                     |  |
| Ex-3 | If n is the number of carbon atoms in the potasium salt of a carboxylic acid, then the alkane formed on electrolysis of aqueous solution of this salt would have carbon atoms equal to - |                                              |                                       |                                                     |  |
|      | [1] n                                                                                                                                                                                    | [2] n - 1                                    | [3] 2n - 1                            | [4] 2(n - 1)                                        |  |
| Sol. | (4) $2RCOO^- \rightarrow R-R + 2$                                                                                                                                                        | 2CO <sub>2</sub> + 2e <sup>-</sup>           |                                       |                                                     |  |
|      | R—R has 2(n—1) carbon                                                                                                                                                                    | atoms.                                       |                                       |                                                     |  |
| Ex-4 | Ethne can be prepared in                                                                                                                                                                 | a single step from -                         |                                       |                                                     |  |
|      | [1] Calcium carbide                                                                                                                                                                      | [2] Ethylidene bromide                       | [3] Ethylene bromide                  | [4] All of these                                    |  |
| Sol. | (4) $CaC_2 + 2H_2O Ca(OH)_2 + C_2H_2$                                                                                                                                                    |                                              |                                       |                                                     |  |
|      | $CH_3CHBr_2 + 2KOH(alc.) \rightarrow HC \equiv CH + 2KBr + 2H_2O$                                                                                                                        |                                              |                                       |                                                     |  |
|      | $BrCH_2CH_2Br + 2KOH(alc.) \to HC \equiv CH + 2KBr + 2H_2O$                                                                                                                              |                                              |                                       |                                                     |  |
| Ex-5 | 2,3-Dibromobutane, when                                                                                                                                                                  | n heat with zinc dust, yield                 | ls -                                  |                                                     |  |
|      | [1] 2-Butene                                                                                                                                                                             | [2] 2-Butyne                                 | [3] 1-Butene                          | [4] Butane.                                         |  |
| Sol. | (1) Heating with zinc dust                                                                                                                                                               | brings about dehalogenati                    | on of 2, 3-dibromobutane.             |                                                     |  |
| Ex-6 | An aqueous solution of po                                                                                                                                                                | otassium salt of fumaric aci                 | d is electrolysed. The hyd            | rocarbon produced at anode is -                     |  |
|      | [1] Ethane                                                                                                                                                                               | [2] Ethene                                   | [3] Methane                           | [4] Ethyne                                          |  |
| Sol. | CHCOOK (4)    + 2H <sub>2</sub> O _                                                                                                                                                      | CH  Electrolysis      + 2CO <sub>2</sub> + H | <sub>2</sub> + 2KOH                   |                                                     |  |
|      | Potasium fumarate                                                                                                                                                                        | Acetylene                                    |                                       |                                                     |  |
| Ex-7 | 2-Pentyne can be conver                                                                                                                                                                  | ted into trans-pent-2-ene b                  | y reaction with -                     |                                                     |  |
|      | [1] H <sub>2</sub> /Ni                                                                                                                                                                   | [2] H <sub>2</sub> /Lindlar's catalyst       | [3] Na/Liq : NH <sub>3</sub>          | [4] Zn/HCI.                                         |  |
| Sol. | (3) Sodium in the presned                                                                                                                                                                | ce of liquid ammonia conve                   | erts alkynes to correspond            | ling cis-alkenes.                                   |  |
| Ex-8 | How many different isomeric compounds having molecular formula $C_{_5}H_{_{11}}Br$ on reaction with Mg, Followed by hydrolysis can yield pentane -                                       |                                              |                                       |                                                     |  |
|      | [1] 4                                                                                                                                                                                    | [2] 2                                        | [3] 3                                 | [4] 5                                               |  |
|      |                                                                                                                                                                                          |                                              |                                       |                                                     |  |

- Ex-9 Which of the following comounds has the highest melting point -
  - [1] n-Butane
- [2] n-Pentane
- [3] n-Hexane
- [4] n-Heptane

- Sol. (4) n-Octane has the longest chain of carbon atoms.
- Ex-10 Which of the following compounds has the highest boiling point -
  - [1] Ethene
- [2] Propene
- [3] cis-2-Butene
- [4] trans-2-Butene
- Sol. (3) cis-Isomer has higher boiling point than trans due to its greater polarity.
- **Ex-11** The density of a hydrocarbon at N.T.P. 2.5 gram/lit.what is hydrocarbon.
- **Sol.** Density of 1 lit. hydrocarbon = 2.5 gram/lit

∴ Mol. wt. of H.C. = 
$$2.5 \times 22.4 = 56$$

After mol. wt. we calculate the molecular formula

$$C_n H_{2n+2} = \text{mol. wt. (Alkane) or } 14n+2 = \text{mol. wt.}$$

$$C_n H_{2n} = \text{mol. wt. (Alkyne) or } 14n = \text{mol. wt.}$$

$$C_n H_{2n-2} = \text{mol. wt. (Alkane) or } 14n-2 = \text{mol. wt.}$$

with the help of above three formulae, we can dentify the given H.C. 14n = 56 (Alkene)

- ∴ Hydrocarbon is C<sub>4</sub>H<sub>8</sub>
- **Ex-12** 8 C.C. of gaseous hydrocation requires 40 C.C. of O<sub>2</sub> for compelt combustion which is H.C.
- **Sol.** Vol. of H.C. = 8 C, C. Vol. of  $O_2$  = 40 c.c.

Formula No. 1 
$$\frac{8}{40} = \frac{2}{3n-1}$$
 (for alkane)

$$\frac{1}{10} = \frac{2}{3n+1}$$
 or  $3n+1=10$ 

$$3n = 10 - 1 = 9 n = 3$$

The value of n comes in whole number from 1st formula it means hydrocabon in Alkane and it is of 3C atom.

- Ex-13 10 ml of a mixture of CH<sub>4</sub> and C<sub>3</sub>H<sub>8</sub> requires 41 ml. of oxygen for complete combustion. What is the vol. of CH<sub>4</sub> and C<sub>3</sub>H<sub>8</sub> in the mixture.
- **Sol.** Suppose the volume of  $CH_4$  in  $(CH_4 + C_3H_8)$  mix = x C.C.

= Vole. of 
$$C_3H_8$$
 will be 1- -  $\times$  C.C

For CH<sub>4</sub>

∴ 1 Vol. of CH<sub>4</sub> requires 2 vol. of O<sub>2</sub> for complete combustion

For C<sub>3</sub>H<sub>8</sub>

$$C_{3}H_{8} + 5O_{2} \rightarrow 3CO_{2} + 4H_{2}O$$

∴ 1 vol. of C<sub>3</sub>H<sub>8</sub> requires 5 ml of O<sub>2</sub> for complete combustion

$$\therefore$$
 (10 – x) C.C. of C<sub>3</sub>H<sub>8</sub> requires 5 (10 – x) C.C. of O<sub>2</sub>

Total Vol. of  $O_2 = 2x + 5 (10 - x)$  it is equivalent to 41

(According to question)

Ans. Vol. of  $CH_4$  is 3 c.c. and Vol. of  $C_3H_8$  of 7 C.C.

- Ex-14 If 5 gm C<sub>2</sub>H<sub>5</sub>I reacts with Na (Metallic) in presence of ether, and the yield is 60% then how many grams of n-butane will you get.
- **Sol.**  $2C_2H_5I + 2Na \rightarrow C_4H_{10} + 2NaI$

Mol. wt. of 
$$C_2H_5I = 24 + 5 + 127 = 156$$

Mol. wt. of 
$$C_4H_{10} = 48 + 10 = 58$$

Two molecule of C<sub>2</sub>H<sub>5</sub>I are taking part in above reaction

- $\therefore$  We get 58 gm. of C<sub>4</sub>H<sub>10</sub> from 2 × 156 gm of C<sub>2</sub>H<sub>5</sub>I
- $\therefore$  We get  $\frac{58}{2\times156}$  gm. of C<sub>4</sub>H<sub>10</sub> from 1 gm of C<sub>2</sub>H<sub>5</sub>I
- .. We get  $\frac{58\times5}{2\times156}$  gm. of  $C_4H_{10}$  from 5 gm of  $C_2H_5I$  yield in 60%

So the quantity of  $C_4H_{10}$  will be  $\frac{58 \times 5}{2 \times 156} \times gm = 0.55$  gm.

- Ex-15 How much propanol is required for, dehydration to get 2.24 lit. of Propene at N.T.P. if yield is 100%
- $\textbf{Sol.} \hspace{0.5cm} \textbf{C}_{3}\textbf{H}_{8}\textbf{O} + \textbf{H}_{2}\textbf{SO}_{4} \rightarrow \textbf{C}_{3}\textbf{H}_{6} + \textbf{H}_{2}\textbf{O} + \textbf{H}_{2}\textbf{SO}_{4}$

Molecular wt. of propanol = 60

from the quation given above we can see that from dehydration of 1 mole or 60 gram of propanol we get 1 mole (22.4 lit.) of propene as product.

- ∴ 22.4 lit. of C<sub>3</sub>H<sub>6</sub> can be get from dehydration fo 60 gm of propanol.
- $\therefore$  1 lit. of propene can be get from dehydration of  $\frac{60}{22.4}$  gm of proponol

- $\therefore$  2.24 lit. of propene can be get from dehydration of  $\frac{60}{22.4} \times 2.24$  gm of propanol = 6 gm. Ans.
- **Ex-16** 90 ml of oxygen is required for complet combustion of unsatuarated 20 ml gaseous hydrocarbon, hydrocarbon is
- **Sol.** Following two formulae can be used for solution of the above problem.

$$\frac{\text{Volume of Hydrocarbon}}{\text{Volume of O}_2} = \frac{2}{3n}$$
 (for Alkene)

$$\frac{\text{Volume of Hydrocarbon}}{\text{Volume of O}_2} = \frac{2}{3n-1}$$
 (for Alkyne)

By putting the values in above formulae we can find the hydrocarbon for which n is natural number

$$\frac{20}{90} = \frac{2}{3n}$$
 n = 3 So hydrocarbon is alkene  $[C_3H_6]$ 

- Ex-17 How many mole oxygen is required for complete combustion of 1 mole of Alkene.
- **Sol.**  $2C_nH_{2n} + 3nO_2 \rightarrow 2nCO_2 + 2nH_2O$

keeping in mind, the above equation

- $\cdot$  for 2 mole of alkene, 3n mole of  $O_2$  is required for combustion
- $\therefore$  for 1 mole of alkene,  $\frac{3n}{2}O_2$  mole of  $O_2$  is required for combustion.
- = 1.5n mole of  $O_2$
- **Ex-18** 30 ml mixture of ethylene and Butylene is burnt in presence of oxygen then 150 ml of oxygen is required, what is the volume of Ethylene & Butylene is mixture.
- **Sol.** Let the volume of  $C_2H_4 = x$  ml

So volume of Butylene = (30 - x) ml

For C<sub>2</sub>H<sub>4</sub>

$$C_2H_4 + 3O_2 \rightarrow 2CO_2 + 2H_2O$$

from equation

- ·· for 1 volume C<sub>2</sub>H<sub>4</sub>, 3 volume of O<sub>2</sub> is required
- $\cdot \cdot \cdot$  for x ml vol. of  $C_2H_4$ , 3x ml volume of  $O_2$  is require.

For C<sub>4</sub>H<sub>o</sub>

$$C_4H_8 + 6O_2 \rightarrow 4CO_2 + 4H_2O$$

- $\cdot$  for 1 volume  $C_4H_8$ , 6 volume of  $O_2$  is required
- $\cdot$  for (30 x) ml " " , 6 (30 x) ml of O<sub>2</sub> is required



Total volume of  $O_2 = 3x + 6 (30 - x) \text{ ml} = 150 \text{ ml (given)}$ 

x = 10

· Volume of C<sub>2</sub>H<sub>4</sub> in mixture is 10 ml

· Volume of C<sub>2</sub>H<sub>4</sub> in mixture is 20 ml

Ex-19 The density of one hydrocarbon at N.T.P. in 1.964 gm/lit. Which hydrocarbon is this.

Mol. wt. of Hydrocarbon Ans.

= density of 1 lit. x 22.4

 $= 1.964 \times 22.4$ 

= 44

www.ireeiitcoachino.com