Solved Example

- Ex.1 For the preparation of 2-propanol, methyl magnesium chloride will react with the following reagent
 - [1] Oxirane
- [2] Ethanal
- [3] Methanal
- [4] Propanal
- Sol. [2] Alkyl magnesium halides on reacting with aldehydes other than formaldehyde give secondary alcohol.

Methyl magnesium chloride will react with CH2CHO (Ethanal)

- **Ex.2** In Zerewittnoff's method Grignard's reagent reacts with the following
 - [1] A primary amine

[2] a primary alcohol

[3] Acetylene

[4] All of above

- **Sol.** [4] In Zerewitinoff method, Grignard's reagent reacts with the compounds containing active H–atom because it is a method to estimate active H–atom in compounds.
- Ex.3 The compound formed by reaction of 1,1–dichloropropane with Zn can also be prepared by the following reaction
 - [1] 3, 4-Dibromohexane with zinc

[2] 3-Bromohexane with alcoholic KOH

[3] both of the above

[4] None of above

Sol. [3] 1,1-Dichloro propane on reacting with Zn gives 3-hexene

$$\mathsf{CH_3CH_2CHCl_2} + \mathsf{Zn} + \mathsf{Cl_2CHCH_2CH_3} \rightarrow \mathsf{CH_3} - \mathsf{CH_2} - \mathsf{CH} = \mathsf{CH} - \mathsf{CH_2} - \mathsf{CH_3}$$

3-Hexene

Choice [1] and [2] also give 3-hexene

$$CH_3$$
— CH_2 — CH — CH — CH_2 CH_3 + Zn \longrightarrow CH_3 CH_2 - CH = CH - CH_2 CH_3

- **Ex.4** Which of the following compounds gives iodoform with I₂ + NaOH
 - [1] CH₂CH₂OH
- [2] CH₂CH₂CH₂OH
- [3] CH₃OH

[4] CH₃COOH

Sol. [1] The compounds having following types of structure

(R=H or alkyl) give iodoform with I₂ + NaOH

Ex.5 Identify Z in the following reaction sequence

$${\rm C_2H_5I} \xrightarrow{\rm alc.\; KOH} {\rm X} \xrightarrow{\rm Br_2} {\rm Y} \xrightarrow{\rm KCN} {\rm Z}$$

[2] CH₃CH₂-CN

[4] BrCH = CHCN

Sol. [3]
$$C_2H_5I \xrightarrow{alc.KOH} CH_2=CH_2 \xrightarrow{Br_2} CH_2 \xrightarrow{CH_2} CH_2 \xrightarrow{2KCN} CH_2 \xrightarrow{CH_2} CH_2$$

Br Br CN CN

Ex.6 The following compound is obtained when CH₂CH₂CHBr₂ is boiled with aqueous caustic potash -

[4] None of these

Sol. [3]
$$CH_3-CH_2CHBr_2 \xrightarrow{Aqueous\ KOH} CH_3CH_2CH \xrightarrow{OH} \xrightarrow{-H_2O} CH_3CH_2CHO$$

Ex.7 Which of the following properties is not common for ethylene chloride and ethylidene chloride

[1] Both are dihalogen derivatives

- [2] Both are positional isomers
- [3] Both give same product on reacting with alcoholic caustic potash
- [4] Both react with aqueous caustic potash and given the same product

Sol. [4] Both react with aqueous Caustic potash and give different products

$$\begin{array}{c|cccc} CH_2 & CH_2 & Aqueous \ KOH & CH_2 & CH_2 \\ & & & & & & \\ CI & CI & OH & OH \\ & & & & \\ Ethylene \ glyco$$

$$CH_3CHCl_2 \xrightarrow{Aqueous \ KOH} CH_3CH(OH)_2 \xrightarrow{-H_2O} CH_3CHO$$

Acetaldehyde

Ex.8 A primary amine is formed when Grignard reagent reacts with the following compound.

- [1] Ammonia
- [2] Methylamine
- [3] Chloramine
- [4] Acetonitrile

Sol. [3] $RMgCl + CINH_2 \rightarrow RNH_2 + MgCl_2$

Ex.9 In the preparation of Grignard reagent iodine crystal is used as

[1] It catalyses the reaction

[2] It exchanges with alkyl halide

[3] It inhibits the reaction

- [4] None of the above
- Sol. [1] Iodine crystal catalyses the reaction

Q.10 With which of the following functional group Grignard reagent gives substituion reaction

$$[4] > C = S$$

Sol. [3]
$$-C = CH + RMgX \rightarrow RH + -C = CMgX$$

Q.11 Which of the following pair will be ideal in the formation of

$$C_{2}H_{5}$$
 CH_{3} — C — OH
 $C_{2}H_{5}$

$$\begin{array}{c} \text{[1] CH}_{3} - \text{C} - \text{C}_{2}\text{H}_{5}, \, \text{C}_{2}\text{H}_{5}\text{MgBr} \\ \text{II} \\ \text{O} \end{array}$$

$$\begin{array}{c} \text{[2]} \, \text{C}_{\text{2}}\text{H}_{\text{5}} - \text{C} - \text{C}_{\text{2}}\text{H}_{\text{5}}, \, \text{CH}_{\text{3}}\text{MgBr} \\ \text{O} \end{array}$$

[4] All the above

Sol. [4] All the pairs given in [1], [2] and [3] are suitable for the synthesis of tertiary alcohol.

Ex.12 CH₃Li + CH₂—CH₂
$$\longrightarrow$$
 $\stackrel{\text{H}^+/\text{H}_2\text{O}}{\longrightarrow}$ A

$$CH_3MgI + CH_2 \longrightarrow H^{+}/H_2O \longrightarrow E$$

The false statement about the product A and B is

- [1] Both are primary alcohols
- [2] Both do not turn blue litmus to red
- [3] The isomer of A and B is symmetrical ether
- [4] Both have the same boiling points
- **Sol.** [3] A and B are nothing but n-propyl alcohol. Its isomer is an unsymmetrical ether [CH₃OCH₂CH₃]

Exercise # 1

Q.1	Which of the following is a colourless gas:										
	[1] Freons	[2] Chloroform	[3] lodoform	[4] Ethanol							
Q.2	Two monochloro deriva	atives are possible for wh	ich of the following:								
	[1] Ethane	[2] n-Butane	[3] Isopentane	[4] Benzene							
Q.3	The following compour	nd is formed by the reacti	on of chloroform with Con	c. HNO ₃ :							
	[1] CHCl ₂ NO ₂	[2] CCI ₃ NO ₂	[3] CHCl ₂ HNO ₃	[4] None of these							
Q.4	Which of the following	is a freon?									
	[1] CCI ₄	[2] CCl ₂ F ₂	[3] CF ₄	[4] CF ₂ Br ₂							
Q.5	The sample of chloroform used as anaesthetic is tested by :										
	[1] Fehling solution		[2] Ammoniacal Cu ₂ Cl ₂								
	[3] AgNO ₃ solution		[4] Boiling with KOH ar	nd then adding AgNO ₃ solution							
Q.6	Phosgene is:			*							
	[1] PH ₃	[2] POCI ₃	[3] CS ₂	[4] COCI ₂							
Q.7	Grignard reagent is prepared by the following reaction:										
	[1] Magnesium and alk	ane	[2] Magnesium and aromatic hydrocarbon								
	[3] Magnesium and alk	kyl halide	[4] Zinc and alkyl halid	е							
Q.8	The compound used a	s fire extinguisher is :									
	[1] Ammonia	[2] Chloroform	[3] Carbon disulphide	[4] Carbon tetrachloride							
Q.9	In the reaction C ₂ H ₅ OH	$H + HX \xrightarrow{ZnX_2} C_2H_5X$	the order of the reactivity	of HX is :							
	[1] HBr > HI > HCl		[3] HI > HBr > HCl								
Q.10	What is the correct ord	der of reactivity of the foll	owing alkyl halides if the h	nalogen atom is same?							
	$[1] (1^{\circ}) > (2^{\circ}) > (3^{\circ})$	$[2] (3^{\circ}) > (1^{\circ}) > (2^{\circ})$	$[3] (3^{\circ}) > (2^{\circ}) > (1^{\circ})$	$[4] (1^{\circ}) > (3^{\circ}) > (2^{\circ})$							
Q.11	The main product of th	e reaction of propane wi	th chlorine at 25°C in the p	presence of sunlight is:							
	[1] 1-Choropropane	[2] 2-Chloropropane	[3] Chloroethane	[4] Chloromethane							
Q.12	Which of the following	compounds is used as re	efrigerant?								
	[1] Acetone	[2] CCI ₄	[3] CF ₄	[4] CCI ₂ F ₂							
Q.13	Which of the following	will give iodoform test?									
	[1] 3-Pentanone	[2] Formaldehyde	[3] Butanone	[4] Benzyl alcohol							
Q.14	Carbon tetrachloride is	s used as fire extinguishe	er under the name :								
	[1] Pyrene	[2] Phosgene	[3] Phosphine	[4] None of these							
Q.15	Compounds A, B and 0	C in the following reaction	n sequence are :								
		C ₂ H ₅ Br AgCN	$\rightarrow A \xrightarrow{H_3O^+} B + C$								
	[1] C ₂ H ₅ CN, C ₂ H ₅ COOH	H, NH ₃	[2] C ₂ H ₅ NC, C ₂ H ₅ NH ₂ , HCOOH								
	[3] C ₂ H ₅ NC, C ₂ H ₅ NHCH	H ₃ , HCOOH	[4] None of these								
Q.16	Which of the following	is a solid at room tempe	rature :								
	[1] Methyl chloride	[2] Chloroform	[3] lodoform	[4] Bromoform							

Q.17	Which of the following sa	imples of chloroform wil	I give white precipitate w	ith silver nitrate ?
	[1] Pure chloroform		[2] Chloroform expose	d to air
	[3] Both of the above		[4] None of the above	
Q.18	Which of the following is	boiled with ethyl chloric	le for the preparation of e	ethyl alcohol?
	[1] Alcoholic KOH	[2] Aqueous KOH	[3] H ₂ O	[4] H ₂ O ₂
Q.19	The product of the reacti	on of ethyl bromide with	n silver nitrite is :	
	[1] Nitroethane		[2] Nitroethane and eth	nyl nitrite
	[3] Ethyl nitrite		[4] Ethane	
Q.20	The compound X in the r	eaction $X + Zn \rightarrow 3-Hex$	xene, is :	
	[1] 3, 4-Dichlorohexane	[2] 1, 1-Dichloropropan	e [3] Both of the above	[4] None of the above
Q.21	The following is obtained	l by heating iodoform wi	th Ag powder :	
	[1] Acetylene	[2] Ethylene	[3] Methane	[4] Ethane
Q.22	The most inert compoun	d is		
	[1] lodoform	[2] Dichloromethane	[3] Dichlorodifluoro	[4] Chloroform
Q.23	The following is not obta	ined by the hydrolysis c	f a gem dihalide?	
	[1] A 1, 2-Diol	[2] An aldehyde	[3] A ketone	[4] None of these
Q.24	1% pure alcohol is added	d to the chloroform use	d in hospitals because :	
	[1] It stops the oxidation	of chloroform		
	[2] The poisonous gas ph	nosgene is not formed		
	[3] Phosgene is formed by	out ethyl alcohol conver	ts it into diethyl carbonat	е
	[4] It is helpful in produci	ng unconsciousness	\mathcal{O}	
Q.25	What is false for alkyl ha	llides?		
	[1] These are completely	soluble in water	[2] These give nucleop	hilic substitution reactions
	[3] These are insoluble in	n water	[4] These are soluble in	n organic solvents
Q.26	The reactivity of alkyl hal	ides depends upon :		
	[1] the nature of halogen	atom	[2] the nature of alkyl g	group
	[3] both of the above	•	[4] None of these	
Q.27	Hunsdicker reaction is a	n example of :		
	[1] Decarboxylation		[2] Debromination	
	[3] Decarboxylation and I	bromination	[4] Bromination	
Q.28	C ₄ H ₉ Br can represent :			
	[1] A 3º bromoalkane			[4] All of the above
Q.29	The reason to keep chlor	roform in the dark brow		
	[1] To stop its oxidation		[2] To stop its decomp	
	[3] To stop the formation of			sis
Q.30	Which of the following m			
_	[1] Ba	[2] AI	[3] Na	[4] Fe
Q.31	CCI ₄ does not give a pre-	ű		
	[1] The formation of a co		[2] The evolution of Cl ₂	
	[3] Chloride ion is not for	med	[4] AgNO ₃ does not give	ve Ag ions

Q.32	In carbylamine test, alcoholic KOH is heated with :											
	[1] Chloroform and silve	er powder	[2] Trihalomethane and	d a primary amine								
	[3] Alkyl halide and a p	rimary amine	[4] Alkyl cyanide and a	a primary amine								
Q.33	At room temperature, iodoform is :											
	[1] A colourless liquid	[2] A violet coloured ga	as [3] A yellow solid	[4] A grey liquid								
Q.34	In the Darzen's proces	s for the preparation of a	lkyl chlorides, alcohol rea	act with:								
	[1] Thionyl chloride in p	pyridine	[2] Sulphuryl chloride i	n pyridine								
	[3] HCl + anhy. ZnCl ₂		[4] None of the above									
Q.35	The final product (Y) of	the following reaction is	:									
		$C_2H_4 \xrightarrow{Br_2} X \xrightarrow{Pd/4}$	$\stackrel{H_2}{\longrightarrow} Y$									
	[1] CH ₃ CH ₂ Br	[2] CH ₃ -CH ₃	[3] C ₂ H ₂	[4] C ₂ H ₄ Br ₂								
Q.36	The reaction of bleachi	ing powder with ethanol is	s:									
	[1] Hydrolysis	[2] Oxidation	[3] Halogenation	[4] All of the above								
Q.37	$A \xrightarrow{OBr^{-}} CHBr_{3}$			*								
Q.31	3			\mathcal{S}								
	The compound is:											
	[1] Isopropyl alcohol	[2] Isobutyl alcohol	[3] Neopentyl alcohol	[4] n-Butanol								
Q.38		-		nto a primary alkyl halide :								
	[1] SOCl ₂ /Pyridine	[2] Luca's reagent	[3] Tilden's reagent	3								
Q.39				prepared by the following reaction								
0.40	[1] Ethanal with PCl ₅	_	[3] Ethyl chloride with	Cl ₂ [4] None of these								
Q.40	Strecker's reaction is:		101 DOL N 00	tu pour por								
0.44	[1] ROH + SOCl ₂ →		[3] RCI + Na ₂ SO ₃ \rightarrow	[4] ROH + PCI ₅ \rightarrow								
Q.41		queous KOH with difficul	•	141 fol 1 fol D 4								
0.40	[1] Allyl chloride	[2] Vinyl chloride	[3] Chlorobenzene	[4] [2] and [3] Both								
Q.42	4	compounds is used as m		141 OLL I								
0.40	[1] C ₂ H ₅ Cl	[2] C ₂ H ₅ Br	[3] C ₂ H ₅ I	[4] CH ₃ I								
Q.43		s used in the preparation	•									
0.44	[1] Zn + H ₂ O	[2] Fe + H ₂ O	[3] Zn	[4] Ag powder								
Q.44		used as an antiseptic is		1410111								
0.45	[1] CHCl ₃	[2] CHBr ₃	[3] CCl ₄	[4] CHI ₃								
Q.45	_	reagents is used to step										
0.46	[1] HCN	[2] KCN	[3] NH ₄ CN	[4] AgCN								
Q.46		replaced by a halogen ato		[4] Katana (* C. O)								
0.47		H)[2] Aldehyde (–CHO)	[3] Nitro (NO ₂)	[4] Ketone (> C=O)								
Q.47	CCl ₄ is insoluble in wat			nolar [4] None of the above								
0.40	[1] Water is polar	[2] CCl ₄ is nonpolar	•	polar [4] None of the above								
Q.48	·	by the reaction of ethyl o		•								
	[1] Tetraethyl lead	[2] Sodium ethoxide	[3] Ethyl sodium	[4] No reaction								

Q.49	Which of the following reagents reduces alkyl halide by hydride ion?									
	[1] Na/C ₂ H ₅ OH	[2] NaBH ₄	[3] Pd/H ₂	[4] Zn-Cu/C ₂ H ₅ OH						
Q.50	The compound with	nighest boiling point is :								
	[1] C ₂ H ₅ I	$[2] C_2H_5Br$	[3] C ₂ H ₅ Cl	[4] C ₃ H ₇ Cl						
Q.51	The following alkane is not obtained by the reaction of ethyl iodide with propyl iodide and sodium metal in the presence of dry ether									
	[1] Propane	[2] Butane	[3] Pentane	[4] Hexane						
Q.52	The reaction of meth	ane with iodine is carried o	ut in the presence of HIC	O ₃ because HIO ₃						
	[1] Gives iodine in the	e iodination of methane	[2] Oxidises HI forme	d in the reaction						
	[3] Reduces HI formed in the reaction [4] Changes the I ₂ molecule into I atoms.									
Q.53	The following compou	und is obtained when a mixt	ure of carbon tetra chloric	de vapours and water vapours is heated						
	[1] Carbon dioxide	[2] Phosgene gas	[3] Phosphine gas	[4] Phosphoryl chloride						
Q.54	The following compo		oduct of the reaction of c	hloroform with 1-butene is heated with						
	[1] Butanoic acid		[2] 2-Methyl butanoic	acid						
	[3] 1,1,1—Trichloro-2-methyl butane [4] Reaction does not take place									
Q.55	The product of the re reaction	eaction of ethyl iodide with	n Zn-Cu couple/alcohol (can also be prepared by the following						
	[1] By the hydrolysis	of the product obtained fro	om the reaction of ethyl i	odide with Mg in dry ether.						
	[2] Reaction of iodomethane with Na in dry ether									
	[3] By the reduction of ethyl alcohol with red P + HI									
	[4] All of the above									
Q.56	The following compo	und is obtained on heating	2,2–dichloropropane wit	h aqueous KOH						
	[1] 2,2–Propandiol	[2] 1,2-Propandiol	[3] Propanone	[4] Propanal						
Q.57	The product of which	of the following reactions i	is not a vicinal dihalide							
	[1] Reaction of ethyle	ene glycol with P +Br ₂								
	[2] Reaction of HCl w	vith ethyne								
	[3] Reaction of HBr w	vith ethyne in the presence	of peroxide							
	[4] Reaction of Cl ₂ wi	th propene								
Q.58	Ethylene chloride ar applicable on both	nd ethylidene chloride are	positional isomers. Wh	nich of the following statement is not						
	[1] both are dihaloger	n derivatives								
	[2] Both form the san	ne product with aqueous p	otash							
	[3] Both form the san	ne product with alcoholic p	otash							
	[4] Both give Beileste	ein test								
Q.59	Which of the following	g chlorides hydrolyses mo	st easily							
	[1] CH ₃ CH ₂ CH ₂ CI	[2] CH ₂ =CH-Cl	[3] CH ₂ =CH-CH ₂ CI	[4] (CH ₃) ₂ CHCH ₂ CI						
Q.60	-	` '		on reacting with alco. KOH. (B) gives a H gives a ketone. Compound (A) is						
	[1] 1,1–Dihoalo propa	ane [2] 1,2-Dihalopropane	[3] 2,2-Dihalopropane	e [4] 1,3-Dihalopropane						

	is dissolved in dry ether and then treated with metallic sodium to give name of compound (A) is	e 2,2,5, 5-tetramethyl hexane. The IUPAC
	[1] Neopentyl chloride [2] 1–chloro-2,2-d	imethyl propane
	[3] 1-chloro-3-methyl butane [4] 2-chloro-3-met	• • •
Q.62	precipitate with ammonical cuprous chloride. The dihalogen derivative potash. The dihalogen derivative is -	ve gives propanal on heating with aqueous
Q.63	[1] 1,1—Dichloropropane [2] 1,2—Dichloropropane [3] 2,2—DichloroprThe following reaction is used in the Darzen's process for the preparation.	
Q.05		nionyl chloride in the presence of pyridine
	[3] Alcohol with HCl in the presence of anhy. ZnCl ₂ [4] None of these	
Q.64	-	
	[1] 224 ml. [2] 112 ml [3] 22400 ml.	[4] 2240 ml
Q.65		
	[1] Chloral [2] D.D.T. [3] Chloretone	[4]1,1,1,2,3-pentachloropropane
Q.66	The product of the reaction of ethyl bromide with dry silver oxide in e	ethanol is the functional isomer of
	[1] A primary alcohol [2] A secondary alcohol [3] A tertiary alcohol	hol [4] All of the above
Q.67	The compound (A) in the following reaction sequence is	
	(A) $\xrightarrow{\text{PCl}_5}$ (B) $\xrightarrow{\text{Alco. KOH}}$ (C) $\xrightarrow{\text{H}_2/\text{Ni}}$ Propane	
	[1] Chloroethane [2] Ethanol [3] 1,2-Dichloroeth	nane [4] Propan-2-ol
Q.68	68 The false statement about the freons is	
	[1] these are high boiling point liquids [2] these are non	inflammable and flameless liquids
	[3] these are nonpoisonous and inert [4] these are used	d as refrigerants
Q.69	69 Alkyl halides are insoluble in water althought they are polar. Its reas	son is
	[1] They are unable to form hydrogen bonds with water [2] They are	able to form hydrogen bonds with water
		sity is less than water
Q.70		
	[1] The product of the reaction of ethyl iodide with silver cyanide is e	
	[2] The formation of ether from the reaction of methyl iodide with dry	-
	[3] The test of chloroform is possible with Hofmann carbylamine rea	ction
0.71	[4] lodoform gives violet vapours on heating	
Q.71	71 Ethylene chloride and ethylidene chloride are [1] Functional isomers [2] Chain isomers [3] Metamers	[4] Position isomers
Q.72		[4] i osition isomers
Q.7 Z	[1] By heating an amide with P ₂ O ₅	
	[2] By heating an alcohol with NH ₃ in the presence of anhy. ZnCl ₂	
	[3] By the reaction of an alkyl halide with AgCN	
	[4] By the reaction of an alkyl halidewith KCN	

A five C-atom hydrocarbon is formed by the reduction of a chloroderivative (A) of an alkane with Zn-Cu couple. (A)

Q.61

- Q.73 In the laboratory, chloroform is prepared by the following method
 - [1] By oxidation of alcohol with bleaching powder
 - [2] By reduction of carbon tetrachloride with Fe + H₂O
 - [3] By oxidation of carbon tertrachloride with bleaching powder
 - [4] None of the above
- Q.74 A and B in the following reactions are respectively

(i)
$$CHCl_3 \xrightarrow{Zn+H_2O} A$$

[1] CH₂Cl₂ and CH₄

[2] CH₄ and CH₂Cl₂

[3] CCl₃CHO and CH₄ [4] CCl₃CHO and CH₂Cl₃

Q.75 The product obtained by the reaction of silver propanoate with bromine in carbon tetrachloride solution is

[1] Bromoethane

[2] Silver-3-bromopropanoate

[3] Ethanoyl bromide

[4] None of the above

Q.76 Which of the following plastics is a last product of the reaction

$$CFCI_3 \xrightarrow{HF} X \xrightarrow{800^{\circ}C} Y \xrightarrow{Polymerisation} Plastic$$

[1] Backellite

[2] Teflon

[3] Polyethene

[4] None of the above

Q.77 Benzene can be converted to isopropyl benzene (Cumene) by the following reagent

[1] CH₃CH₂CH₂CI + Anhy. AICI₃

[2] CH_3 - $CH = CH_2 + Anhy. AlCl_3$

[3] Both of the above

[4] None of the above

- Q.78 The adduct of a compound (A) with isopropyl magnesium halide on hydrolysis gives a tertiary alcohol. The compound (A) is
 - [1] An ester
- [2] A secondary alcohol [3] A primary alcohol [4] An aldehyde
- Q.79 A salt solution reacts with some drops of chloroform and the mixture is shaken with chlorine water. The chloroform layer becomes violet. Salt solution contains

[1] NO₂-ion

[2] NO_3^- ion

[3] Br-ion

[4] I- ion

- The product obtained by the hydrolysis of the adduct formed by the reaction of ethyl magnesium iodide with Q.80 methanal can also be prepared by the following reaction
 - [1] Reduction of ethanal with Na/C2H2OH

[2] 1-Bromopropane with aqueous KOH

[3] Iodoethane with alco. KOH

[4] 1-Bromopropane with alco. KOH

Answer Key

Qus.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Ans.	1	2	2	2	3	4	3	4	3	3	2	4	3	1	2	3	2	2	1	3
Qus.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
Ans.	1	3	1	3	1	3	3	4	1	3	3	2	3	1	2	4	1	3	1	3
Qus.	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
Ans.	4	4	4	4	2	1	2	1	2	1	1	2	2	2	4	3	2	2	3	3
Qus.	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
Ans.	2	1	2	2	4	4	4	1	1	2	4	3	1	2	1	2	3	1	4	2

Exercise # 2

Q.1	An organic compound contains about 7.7% carbon. Its acidic sodium extract gives a white precipitate wit AgNO ₃ . This precipitate is soluble in the excess of ammonia. The compound is											
	[1] CH		[2] CHBr ₃	[3] CHI ₃	[4] CCI ₄							
Q.2	Match	the following and	l pick up the correct answ	ver	•							
	(Compound	Use									
	Α	CHCI,	(i) Refrigerant									
	В	CCI	(ii) Fire extinguisher									
	С	CF,CI,	(iii) Anaesthetic									
	The co	orrect answer is										
	[1] A-	(i), B–(ii), C–(iii)	[2] A-(iii), B-(ii), C-(i)	[3] A-(iii), B-(i), C-(ii)	[4] None of the above							
Q.3	Ethylic	dene bromide can	be prepared by the follow	wing reaction								
	[1] Ac	etone with PBr ₃	[2] Acetone with PBr ₅	[3] Ethene with HBr	[4] Ethyne with HBr							
Q.4	A com	npound (A) is form	ed by the reaction of ethy	lene with bromine which	on reacting with aqueous KOH gives							
	a compound (B). The compound (B) can also be prepared by the reaction of ethylene with the following											
	[1] Ba	eyer's reagent										
	[2] Ox	xygen in the peser	nce of silver catalyst and	then acidic hydrolysis								
	[3] pe	rformic acid and th	ne product undergoes ac	idic hyrolysis								
	[4] All	of the above		~0								
Q.5	The p	roduct of the react	ion of methyl magnesium	bromide with methanol o	can also be prepared by the following							
	reaction	on	· XC)								
	[1] Re	duction of methyl	bromide	[2] Decarboxylation of s	sodium ethanoate							
	[3] Re	duction of methyl	alcohol	[4] All of the above								
Q.6	The p	roduct of the reac	tion of sodium acetylide v	with alkyl halide is								
	[1] A t	erminal alkyne	[2] A terminal alkene	[3] A non terminal alkyr	ne [4] [1] and [3] both							
Q.7	Carbo	on tetrachloride ca	n be prepared by the follo	wing reaction								
	[1] CS	S_2 with Cl_2 in the pr	resence of I ₂	[2] CS_2 with S_2CI_2 in the	e presence of I ₂							
	[3] CH	ICl ₃ with Cl ₂ in the	presence of I_2	[4] All of the above								
Q.8			the following compounds	s with Grignard's reagen	t does not form a primary alcohol on							
		lysis										
	[1] O ₂		[2] Oxirane	[3] Methanal	[4] Ethanal							
Q.9				agnesium chloride, it will								
	[1] Pro		[2] Propyl chloride	[3] 3–Chloro propene								
Q.10		apour density of ar ound is	n organic compound is 23	.0. It contains 52.17% C a	and 13% H. It gives iodoform test. The							
	[1] Eth	nanol	[2] dimethyl ether	[3] Acetone	[4] Methanol							
Q.11	Identif	fy Z in the following	g reaction									
	CH ₃ C	Na/C ₂ H ₅ OH	$X \xrightarrow{HNO_2} Y \xrightarrow{KMnO_2}$	$\xrightarrow{4,H^+}$ Z								
	[1] CH	I ₃ CHO	[2] CH ₃ CONH ₂	[3] CH ₃ COOH	[4] CH ₃ CH ₂ NHOH							

Q.12 Which of the following is a correct statement

[1] C,H,Br reacts with alcoholic KOH to give C,H,OH

[2] Reaction of C₂H₅Br with metallic Na gives ethane

[3] C₂H₅ Br reacts with sodium ethoxide to give ether

[4] C₂H₅Br reacts with AgCN to give ethyl cyanide

Q.13 The product of the reaction of chloromethane with sodium sulphide is

[1] Dimethyl sulphide [2] Methan thiol

[3] Mixture of both the above [4] None of the above

Q.14 The compound with highest boiling point is -

[1] Ethylene bromide [2] Ethylene chloride [3] Ethylidene bromide [4] Ethylidene chloride

Q.15 The main product obtained by the electrolysis of the aqueous ethanolic solution of potassium bromide and sodium carbonate, is

[1] Ethyl bromide [2] Bromoform [3] Ethylene bromide [4] Ethylidene bromide

Q.16 Which of the following is Swart's reaction

[1]
$$C_2H_2CI + AgF \xrightarrow{\Delta} C_2H_2F + AgCI$$
 [2] $2C_2H_2Br + 2Zn \rightarrow (C_2H_2)_2Zn + ZnBr_2$

[3]
$$2CHCl_3 + 6Ag \rightarrow CH \equiv CH + 6AgCl$$
 [4] $C_2H_5Br + Nal \rightarrow C_2H_5l + NaBr$

Q.17 The chloroform exposed to air and sunlight gives white precipitate with AgNO₃ solution because it contains

[1] Phosgene [2] Hydrogen chloride [3] Chlorine [4] Mixture of all the above

Q.18 The following type of compounds are obtained by the reaction of a carboxylic acid with lead tetra acetate and lithium chloride in benzene

[1] Alkyl halides [2] Acid chlorides [3] $CO_2 + H_2O$ [4] None of the above

HALOBENZENE

Q.19 Which of the following reactions is more suitable than the remaining three for obtaining iodobenzene?

[1]
$$N_2CI + KI \rightarrow$$

[2]
$$\sim$$
 $N_2CI + HI \rightarrow$

$$[3] \bigcirc \longrightarrow OH + HI \longrightarrow$$

Q.20 The reaction of chlorobenzene with which of the following reagents is not an example of electrophilic substitution reaction?

[1] Cl_2 + Fe powder [2] Conc. H_2SO_4

[3] Conc. $HNO_3 + Conc. H_2SO_4$ [4] $CCl_3CHO + Conc. H_2SO_4$

Q.21 At the time of preparation of chlorobenzene from benzne, which of the following can be used as a halogen carrier?

[1] A lewis acid [2] Elements like iron, iodine etc

[3] A tertiary amine base [4] All of the above

Q.22 Which of the following can be obtained by Balz–Schiemann reaction?

[1] Fluorobenzene [2] Chlororbenzene [3] Bromobenzene [4] Iodobenzene

Q.23	Which of the following r	eactions can be used to	to obtain chlorobenzene from benzenediazonium chloride?					
	[A] Sandmeyer reaction	n	[2] Balz-Schemann rea	action				
	[C] Rashing process		[4] Gattermann reaction	١				
	[1] A and B	[2] A, B and C	[3] A, C and D	[4] C and D				
Q.24	Which of the following	catalysts is used in the p	reparation of chlorobenz	zene by Gattermann reaction?				
	[1] CuSO ₄	[2] CuCl ₂	$[3] Cu_2Cl_2$	[4] Cu				
Q.25	Which of the following	catalysts is used in the p	reparation of chlorobenz	zene by Sandmeyer's reaction?				
	[1] CuCl ₂	$\mathrm{[2]}\mathrm{Cu}_{2}\mathrm{Cl}_{2}$	[3] CuSO ₄	[4] Cu				
Q.26	Which of the following of	compounds is obtained b	y Borodine–Hunsdiecke	r reaction of silver benzoate?				
	[1] Fluorobenzene	[2] Chlorobenzene	[3] Bromobenzene	[4] lodobenzene				
Q.27	Which of the following r	eagents is used for obta	ining chlorobenzne from	p-chlorophenol?				
	[1] Zinc dust	[2] Soda lime	[3] Sodamide	[4] Copper powder				
Q.28	All of the following prop	erties are exhibited by o	hlorobenzene, except :					
	[1] Almond-like faint sn	nell	[2] Volatility					
	[3] Influammability		[4] Nonpoisonous natur	е				
Q.29	In Dow process, chloro	benzene is reacted with	which of the following re	agents?				
	[A] O ₂ + HCl	[B] NaOH	[C] H ₂ O	[4] Na ₂ CO ₃				
	[1] A and C	[2] A and D	[3] B and C	[4] B and D				
Q.30		benzene and chloral hyd	Irate is carried out in the p	presence of concentrated sulphuric				
	acid for obtaining?							
	[1] D.D.T.	[2] Chloropicrin	[3] B.H.C	[4] Dichlorodiphenylethane				
Q.31	The best method for the	e preparation of chlorobe	enzene is :					
	[1] + Cl ₂ FeCk	$3 \rightarrow \bigcirc -CI$	[2] OH + PCI ₅	\rightarrow CI + POCI ₃ + HCI				
	[3]	-cı	[4] OH + Cl ₂ _	$hv \rightarrow CI$				
Q.32	Highest yield of chlorol	penzene is obtained in th	ne reaction :					
	Cla	•	Cla					
	$[1] C_6 H_6 \xrightarrow{\text{FeCl}_3}$	[2] Phenol $\xrightarrow{PCl_5}$	$[3] C_6 H_6 \xrightarrow{\text{h v}}$	[4] All the above				
Q.33	Chlorobenzene is:							
	[1] Nearly as reactive a	•	[2] More reactive than 6	•				
	[3] Less reactive than b	enzyl chloride	[4] More reactive than isopropyl chloride					

Answer Key

Qus.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Ans.	4	2	4	4	4	1	4	4	3	1	3	3	1	1	2	1	2	1	1	4
Qus.	21	22	23	24	25	26	27	28	29	30	31	32	33							
Ans.	4	1	3	4	2	3	1	4	4	1	1	1	3							

Exercise # 3

In the reaction $C_2H_5MgBr + H_2C - CH_2 \xrightarrow{H_2O} A$ **Q.1** [MP PET 1994, CBSE -1998] [1] C₂H₅CH₂CHO [2] C₂H₅CH₂CH₂OH [3] C₂H₅CH₂OH [4] C₂H₅CHO **Q.2** Which one will give positive iodoform test [Roorkee-1995] [1] CH₃ – CH₂ – OH [2] CH₃ - COO - CH₃ [4] CH₃ - CH - CO - CH₂ - CH₃ [4] CH₃ - CH₂ - CO - CH₂ - CH₃ **Q.3** War gas is formed from [BHU-1995] [3] Zinc phosphate [4] Chloropicrin [1] PH₂ $[2] C_{2}H_{2}$ $C_2H_5CI + KCN \longrightarrow X \xrightarrow{Hydrolysis} Y$, 'X' and 'Y' are [MP PET- 1995] **Q.4** [1] C₂H₆ and C₂H₅CN [2] C₂H₅CN and C₂H₆ [3] C₂H₅CN and C₂H₅CH₂NH₂ [4] C₂H₅CN and C₂H₅COOH **Q.5** lodoform is formed on warming I₂ and NaOH with [MP PET- 1995] [3] HCOOH [1] C₂H₅OH [2] CH₂OH $[4] C_6 H_6$ **Q.6** Carbon-halogen bond is strongest among the following [MP PMT- 1995] [1] CH₃CI [2] CH₃Br [3] CH₃F [4] CH₃I A compound A has a molecular formula C₂Cl₃OH. It reduces Fehling solution and on oxidation gives a mono-**Q.7** carboxylic acid (B). A is obtained by action of chlorine on ethyl alcohol. A is [MP PET 1997] [2] CHCl, [1] Chloral [4] Chloroacetic acid For a given alkyl group the densities of the halides follow the order [MP PMT-1997] **Q.8** [2] RI < RCI < RBr [1] RI < RBr < RCI [3] RBr < RI < RCI [4] RCI < RBr < RI AgNO₃ does not give precipitate with chloroform because **Q.9** [MP PET-1999] [1] CHCl₃ is inosluble in water [2] CHCl₃ does not ionise in water [3] CHCl_a is an organic compound [4] AgNO₃ is insoluble in CHCl₃ Which of the following alkyl halides is used as a methylating agent Q.10 [MP PET- 1999] [1] C₂H₅Cl [2] C₂H₅Br [3] C₂H₅I [4] CH₃I Q.11 In which one of the following conversions phosphorus pentachloride is used as a reagent [EAMCET-1997] [1] $H_2C = CH_2 \rightarrow CH_3CH_2CI$ [2] $HC \equiv CH \rightarrow CH_2 = CHCI$ [3] CH₃CH₂OH → CH₃CH₂CI [4] None of these Q.12 An organic halide is shaken with aqueous NaOH followed by the addition of dil. HNO3 and silver nitrate solution gave white ppt. The substance can be [JIRMER 1997] $[1] C_6 H_4 (CH_3) Br$ [3] C₆H₅CI [2] C₆H₅CH₂CI [4] None of these In which alkyl halide. SN² mechanism is favoured maximum Q.13 [RPMT 1997] [1] CH₃CI [2] CH₃CH₂CI [3] (CH₃)₂CHCl [4] (CH₃)₃C-CI

Q.14	Reaction of t-butyl brom	ide with sodium methoxide	e produces	[CPMT 1997]							
	[1] Isobutane	[2] Isobutylene	[3] Sodium t-butoxide	[4] t-butyl methyl ether							
Q.15	When alkyl halides are h	neated with dry Ag ₂ O, it gi	ves	[CBSE 1998]							
	[1] Ester	[2] Ether	[3] Ketone	[4] AgCl + hydrocarbon							
Q.16	DDT is prepared by read	ting chlorobenzene with		[BHU 1998]							
	[1] CCI ₄	[2] CCI ₃ – CHO	[3] CHCl ₃	[4] Ethane							
Q.17	$C_3H_8 + CI_2 \xrightarrow{Light} C_3$	H ₇ Cl + HCl is an exmple o	of which of the following ty	ypes of reactions [CPMT 1999]							
	[1] Substitution	[2] Elimination	[3] Addition	[4] Rearrangement							
Q.18	Compound A reacts with acid. What is A and B re	ŭ	reatment with KCN follow	red by hydrolysis gave propionic [EAMCET 1998]							
	[1] C_3H_8 and C_3H_7CI	$[2] C_2H_6$ and C_2H_5CI	[3] C_2H_5CI and C_2H_5CI	[4] C ₂ H ₅ OH and C ₂ H ₅ Cl							
Q.19	Which of the following w	ould be produced when a	cetylene reacts with HCI	[MH CET 1999]							
	[1] CH ₃ CH ₂ CI	[2] CH ₃ CHCl ₂	[3] CHCl = CHCl	[4] CH ₂ = CHCI							
Q.20	An alkyl bromide (X) rea	cts with Na to form 4,5-die	ethyloctane. Compound X	is [Roorkee 1999]							
	[1] CH ₃ (CH ₂) ₃ Br	[2] CH3 (CH2)5Br	[3] CH ₃ (CH ₂) ₃ CH.Br.CH ₃	[4] CH ₃ (CH ₂) ₂ CH.Br.CH ₂ CH ₃							
Q.21	False statement is			[RPET 1999]							
	[1] Chloroform is heavier	than water	[2] CCl ₄ is non-inflamma	able							
	[3] Vinyl chloride is more	e reactive than allyl chloric	de[4] Br is a weak nucled	ophile as compared to I-							
Q.22	Statement "Ozone in atm	nosphere is decreased by	chloro-fluoro-carbon (Cl ₂ F	[RPET 1999]							
	[1] Is true		[2] Is false								
	[3] Only in presence of (2	[4] Only in adsence of								
Q.23	Number of π–bonds pres	sent in B.H.C. (Benzene he	exachloride) are	[RPMT 1999]							
	[1] 6	[2] Zero	[3] 3	[4] 12							
Q.24		re correct statements about	ut C ₂ H ₅ Br	[Roorkee 1999]							
	[1] It reacts with metallic	: Na to give ethane									
	[2] It gives nitroethane on heating with aqueous ethanolic solution of AgNO ₂										
	2 3	[3] It gives C ₂ H ₅ OH on boiling with alcoholic potash									
	[4] None of these										
Q.25		obtained as a result of read									
	[1] Hypnotic	[2] antiseptic	[3] Germicidal	[4] Anaesthetic							
Q.26	Chloroform with zinc dus	_		[UPSEAT 2000]							
	[1] CH ₄	[2] Chloropicrin	[3] CCI ₄	[4] CH ₂ Cl ₂							
Q.27	•	ated with silver nitrate, the	•	[CPMT 2000]							
	[1] C ₂ H ₅ Ag	[2] Ag-O-NO ₂	$[3] C_2 H_5 O - NO_2$	$[4] C_2 H_5 I - NO_2$							
Q.28	Gem-dibromide is			[RPMT 2000]							
	[1] CH ₃ CH(Br)OH(Br)CH ₃	0 2 0	[3] CH ₂ (Br)CH ₂ CH ₂ (Br)	2 2							
Q.29	The correct order of C->			[RPMT 2000]							
	[1] CH ₃ Br > CH ₃ Cl > CH	0	$[2] CH_3I > CH_3Br > CH_3$,							
	[3] $CH_3CI > CH_3Br > CH$	₃ I	[4] CH ₃ CI > CH ₃ I > CH ₃	Br							

```
Q.30
         The product of the reaction CH_2 = CH - CCI_3 + HBr is
                                                                                                                [RPET 2000]
         [1] CH<sub>3</sub> -CH(Br) - CCl<sub>3</sub>
                                                                  [2] CH<sub>2</sub>(Br)-CH<sub>2</sub>-CCl<sub>3</sub>
         [3] BrCH<sub>2</sub> -CHCI - CHCl<sub>2</sub>
                                                                  [4] CH<sub>2</sub> - CH<sub>2</sub> - CCI<sub>3</sub>
Q.31
         R-X + NaOH ------ ROH + NaX, The above reaction is classified as
                                                                                                                [RPET 2000]
         [1] Nucleophilic substitution
                                                                  [2] Electrophilic substitution
         [3] Reduction
                                                                  [4] Oxidation
Q.32
         Decreasing order of reactivity of HX in the reaction ROH + HX → RX + H₂O
                                                                                                                [RPET 2000]
         CF_{y}CI_{y} [where x + y = 4]. These compounds are not used as refrigerants because
Q.33
                                                                                                                [RPET 2000]
         [1] These are fluoro carbons
                                                                  [2] These are difficult to synthesis
         [3] They deplete ozone layer
                                                                  [4] None of the these
Q.34
         CHCl<sub>2</sub> and HF lead to the formation of a compound of fluorine of molecular weight 70. The compound is
                                                                                                                [RPET 2000]
                                                                                              [4] Fluromethanol
                                                                  [3] Fluorine dioxide
         [1] Fluoroform
                                     [2] Fluorine monoxide
Q.35
         When methyl bromide is heated with Na it gives
                                                                                                            [MP PMT 2000]
                                     [2] C_2 H_6
                                                                  [3] C_2 H_4
                                                                                              [4] CH<sub>2</sub>OH
         The order of reactivities of the following alkyl halides for a SN<sup>2</sup> reaction is
                                                                                                      [IIT Screening 2000]
Q.36
         [1] RF > RCl > RBr > RI [2] RF > RBr > RCl > RI [3] RCl > RBr > RF > RI [4] RI > RBr > RCl > RF
         Preparation of alkyl halides in laboratory is least preferred by
Q.37
                                                                 [2] Addition of hydrogen halides to alkenes
         [1] Treatment of alcohols
         [3] Halide exchange
                                                                  [4] Direct halogenation of alkanes
Q.38
         Which of the following organic compounds will give a mixture of 1-chlorobutane and 2-chlorobutane on addition
         of HCI
                                                                                                               [CPMT 2001]
        CH_3

[1] CH_3 - CH - CH = CH_2 [2] HC \equiv C - C = CH_2
                                                                 [3] CH_2 = CH - CH = CH_2 [4] CH_2 = CH - CH_2 - CH_3
         When CH<sub>3</sub>CH<sub>2</sub>CHCl<sub>2</sub> is treated with NaNH<sub>2</sub> the product formed is
Q.39
                                                                                                                [CBSE 2002]
                                                                [3] CH<sub>3</sub>CH<sub>2</sub>CH < NH<sub>2</sub>  [4] CH<sub>3</sub>CH<sub>2</sub>CH < NH<sub>2</sub>  NH<sub>2</sub>
        [1] CH_3-CH=CH_2       [2] CH_3-C\equivCH 
         Why is chloroform put into dark coloured bottles
                                                                                                             [MP PET 2002]
Q.40
         [1] To prevent evaporation
                                                                  [2] To prevent from moisture
         [3] To prevent it from oxidation to form phosgene
                                                                  [4] To prevent its reaction with glass
Q.41
         Which of the following is Teflon
                                                                                                               [RPMT 2002]
         [1] [-CF<sub>2</sub>-CF<sub>2</sub>-]<sub>2</sub>
                                     [2] CF<sub>2</sub>=CF<sub>2</sub>
                                                                  [3] CF = CF
                                                                                              [4] None of these
         AgNO<sub>3</sub> does not give precipitate with CHCl<sub>3</sub> because
Q.42
                                                                                                               [CPMT 2002]
         [1] CHCl<sub>3</sub> does not ionise in water
                                                                  [2] AgNO<sub>3</sub> does not reacts with CHCl<sub>3</sub>
         [3] CHCl<sub>3</sub> is chemically inert
                                                                  [3] None of these
Q.43
         What is the main product of the reaction between 2-methyl propene with HBr
                                                                                                               [RPMT 2002]
         [1] 1-bromo butane
                                                                  [2] 1-bromo-2 methyl propane
         [3] 2-bromo butane
                                                                  [4] 2-bromo-2 methyl propane
         Among the following, the molecule with the highest dipole moment is
Q.44
                                                                                                      [IIT Screening 2003]
         [1] CH<sub>3</sub>CI
                                     [2] CH, CI,
                                                                  [3] CHCI<sub>3</sub>
                                                                                              [4] CCI,
```

Q.45	At higher temperature, ic	doform reaction is given b	у	[AIIMS 2003]
	[1] CH ₃ CO ₂ CH ₃	[2] CH ₃ CO ₂ C ₂ H ₅	[3] C ₆ H ₅ CO ₂ CH ₃	[4] CH ₃ CO ₂ C ₆ H ₅
Q.46	lodoform test is not give	n by		[CPMT 2003]
	[1] 2-pentanone	[2] 3-pentanone	[3] Ethanol	[4] None of these
Q.47	Which of the following re	actions leads to the forma	tion of chloetone	[RPMT 2003]
	[1] CHCl ₃ + CH ₃ COCH ₃	[2] CCI ₄ + Acetone	[3] CHCl ₃ + KOH	[4] CHCl ₃ + HNO ₃
Q.48	CH ₃ -CH ₂ -CH ₂ Br + KOH	(alc.) \rightarrow Product , Product	in above reaction is	[RPMT 2003]
		[2] CH ₃ -CH ₂ -CH ₃		[4] None of these
Q.49	1,2 di-bromo cyclohexan	e on dehydro halogenation	gives	[UPSEAT 2003]
		. ^	• •	
	[1]	[2]	[3] [1]	[4] None of these
Q.50	Wurtz reaction of methyl	iodide yields an organic cor	mpound X. Which one of th	ne following reactions also yields
	Χ.			[EAMCET 2003]
	[1] C ₂ H ₅ CI + Mg <u>dryeth</u>	ner		
	$[1] C_2H_5CI + Mg \underline{\qquad} aryon$	 →	[2] $C_2H_5CI + LiAlH_4$	\rightarrow
	[3] C ₂ H ₅ Cl + C ₂ H ₅ ONa _		[4] CHCl ₃ Ag powder	\
				,
Q.51	Acetyl bromide reacts wi	th excess of CH ₃ MgI follow	ved by treatment with a sa	aturated solution of NH ₄ Cl gives
	[1] Acetyl iodide	[2] Acetamide	[3] 2-methyl-2-propano	[4] Acetone [AIEEE 2004]
Q.52	Using anhydrous AICI ₃ as	s catalyst, which one of the	following reactions produc	ced ethylbenzene (PhEt)
	[1] $CH_3 - CH = CH_2 + C_6$	H ₆	[2] $H_2C = CH_2 + C_6H_6$	
	$[3] H_3 C - CH_3 + C_6 H_6$		[4] H ₃ C – CH ₂ OH + C ₆ H ₆	•
Q.53	Which of the following is	responsible for depletion of	f the ozone layer in the upp	per strata of the atmosphere
	[1] Ferrocene	[2] Fullerences	[3] Freons	[CPMT pre. 2004] [4] Polyhalogens
Q.54		east reactive in a nucleophi		[CPMT pre. 2004]
4.0 .		[2] CH ₃ CH ₃ Cl	[3] CH ₂ = CHCH ₂ Cl	[4] (CH ₃) ₃ C – Cl
Q.55	Chloropicrin is obtained by	J 2	2 2	[CPMT pre. 2004]
	[1] nitric acid on chlorobe	nzene	[2] chlorine on picric acid	b
	[3] nitric acid on chlorofor	rm	[4] steam on carbon tetra	achloride
Q.56	Which of the following will	Il not form a yellow precipita	ate on heating with an alka	aline solution of iodine
				[CPMT pre. 2004]
	[1] CH ₃ CH ₂ CH(OH)CH ₃	· ·	[3] CH ₃ CH ₂ OH	[4] CH ₃ CH(OH)CH ₃
Q.57		with acetyl chloride in pres	· ·	[RPMT 2004]
O 50	[1] C ₂ H ₅ Cl	[2] C ₆ H ₅ COCH ₃	[3] CH ₃ COCH ₃	[4] C ₆ H ₅ Cl
Q.58	_	H ₅ is reacted with ammonio [2] CCI ₂	[3] CCl ₂ H ₂	[RPMT 2004] [4] C ₂ Cu ₂
Q.59	[1] C ₂ H ₄ Westrosol is			[RPMT 2004]
	[1] Ethylene dichloride	[2] Acetylene tetrachloride	[3] Acetylene dichloride	-
Q.60		d with aresenic trichloride ç		[RPMT 2004]
	[1] Lewisite	[2] Bakelite	[3] Glucoside	[4] Boxite

Q.61	Chloroform is tested befo	ore anaesthetic use with		[RPMT 2004]
	[1] Fehling solution		[2] heating with AgNO ₃	and then heated with KOH
	[3] Ammonical Cu ₂ Cl ₂		[4] AgNO ₃	
Q.62	Which of the following wi	ll give iodoform test		[RPMT 2004]
	H 	[2] CH ₃ OH	[3] CH ₃ CH ₂ CH ₂ OH	CH ₃ [4] H ₃ C — C — OH CH ₃
Q.63	$ \begin{array}{c} \text{OH} \\ & \xrightarrow{\text{CCI}_4/\text{NaOH}} X, \end{array} $	X' is		[RPMT 2004]
	[1] Salicylic acid	[2] Ferric acid	[3] Sodium benzoate	[4] Salicyl aldehyde
Q.64	The compound formed o	n heating chlorobenzene	with chloral in the presence	e of concentrated sulphuric acid is
				[AIEEE 2004]
	[1] Freon	[2] DDT	[3] Gammexene	[4] Hexachloroethane
Q.65	Among the following the	most reactive towards al	coholic KOH is	[AIIMS 2004]
	[1] $CH_2 = CHBr$	[2] CH ₃ COCH ₂ CH ₂ Br	[3] CH ₃ CH ₂ Br	[4] CH ₃ CH ₂ CH ₂ Br
Q.66	Among the following, the	one which reacts most r	eadily with ethanol is	[AIIMS 2004]
	[1] p-nitrobenzyl bromide		[2] p-chlorobenzyl bror	nide
	[3] p-methoxybenzyl bro	488/	[4] p–methylbenzyl bro	
Q.67	with 2 equiv.	of Na in ether will yield		[JEE (SCR) 2005]
	[1]	[2] Br	[3]	[4]
Q.68	Which one of the following	ng functional groups can b	pe identified by iodoform te	st [VITEEE 2005]
	[1]-COCH ₃	[2]-COOH	[3] -CH ₂ OH	[4]-CH ₂ -O-CH ₂ -
Q.69	Which of the following ur	ndergoes nucleophilic sul	ostitution exclusively by $S_{_{\rm N}}$	1 mechanism [CPMT 2005]
	[1] Benzyl chloride	[2] Isopropylchloride	[3] Chlorobenzene	[4] Ethyl chloride
Q.70	Identify X and Y in the fo	llowing sequence		
		$C_2H_5Br \xrightarrow{X} product$	\xrightarrow{Y} C ₃ H ₇ NH ₂	[Orissa JEE 2005]
	[1] $X = KCN$, $Y = LiAIH_4$		[2] $X = KCN, Y = H_3O^+$	
	[3] $X = CH_2CI$, $Y = AICI$	/HCI	[4] $X = CH_2NH_2$, $Y = HNC$),

Q.71 One of the following that cannot undergo dehydrohalogenation is -[J & K 2005] [1] Iso-propyl bromide [2] Ethanol [3] Ethyl bromide [4] None of these The major product obtained on treatment of CH₃CH₂CHFCH₃ with CH₃O⁻/ CH₃OH is Q.72 [AIIMS 2005] [1] CH₃CH₂CH(OCH₃)CH₃ [2] CH₃CH=CHCH₃ [3] CH₃CH₂CH=CH₂ [4] CH₃CH₂CH₂CH₂OCH₃ Q.73 Which of the following is liquid at room temperature -[AFMC 2005] [2] CH₃Br $[3] C_2H_5CI$ [4] CH₃F Q.74 Which of the following haloalkanes is most reactive -[KCET 2005] [1] 1-chloropropane [2] 1-bromopropane [3] 2-chloropropane [4] 2-bromopropane **HALOBENZENE** Q.75 [IIT 1984] C₆H₅Cl prepared by aniline with: [2] Cu₂Cl₂ [3] Cl₂ in presnece of anhydrous AlCl₃ [4] HNO₂ and then heated with Cu₂Cl₂ An important insecticide is obtained by the action of chloral on chlorobenzene. It is: Q.76 [KCET 1989] [1] BHC [3] DDT [4] Lindane [2] Gammexene Q.77 $C_6H_5CH_2CI + KCN (aq.) \rightarrow X+Y$ Compounds X and Y are: [BHU 1979] $[2] C_6 H_5 CH_2 CN + KCI$ $[3] C_6 H_5$ $[1] C_6 H_6 + KCI$ Q.78 Chlorobenzene is: [1] Less reactive than benzyl chloride [2] More reactive than ethyl bromide [3] Nearly as reactive as methyl chloride [4] More reactive than ispropyl chloride What is the decreasing order of reactivity amongest the following compounds towards aromatic electrophilic Q.79 substitution: [IIT 1995] III. Anilinium chloride I. Chlorobenzne II. Benzene IV. Toluene [2] IV > II > I > III [1] I > II > III > IV [3] II > I > III > IV [4] III > I > II > IV Q.80 The commercial uses of DDT and benzene hexachloride are: [1] DDT is a herbicide, benzene hexachloride is a fungicide [2] Both are insecticides [3] Both are herbicides [4] DDT is a fungicide and benzene hexachloride is a herbicide DDT can be prepared by reacting chlorobenzene (in the presnece of conc. H_2SO_4) with : Q.81 [1] Cl₂ in ultraviolet light [2] Chloroform [3] Trichloroacetone [4] Chloral hydrate $\xrightarrow{200-250^{\circ}\text{C}} \text{C}_6\text{H}_5\text{ONa} + \text{NaCl} + \text{H}_2\text{O} \text{ [Bihar CEE 1995]}$ Q.82 Following equation illustrates: C₆H₅Cl + 2NaOH — [1] Dow's process [2] Kolbe's process [3] Carbylamine test [4] Haloform reaction

Q.os	2,4–dinitrochlorobenz			ulles diastic cond	[CBSE 1997]								
	[1] NO ₂ make ring ele	ctron rich at ortho ar	nd para										
	[2] NO ₂ withdraw e ⁻ fr												
	[3] NO ₂ donates e ⁻ at												
	[4] NO ₂ withdraws e ⁻ f		tion										
Q.84	The chlorobenzene is			diazonium salt by rea	acting it with :								
		,	, ,	,	[MP PMT 2000]								
	[1] Cu ₂ Cl ₂	[2] CuSO₄	[3] Cu	[4] Cu(NH ₃)									
Q.85	The reaction between	•	chloral in the presence	•	•								
	[Pb. PMT 2001												
	[1] Gammexane		[2] pp-dichloro	diphenyl trichloro eth	-								
	[3] Chloropicrin		[4] Benzene he) *								
Q.86	Aryl halide is less read	ctive than alkyl halid			e :								
				(F	Rajasthan PMT 2002]								
	[1] Less stable carbon	ium ion	•	(4)									
	[2] Due to large C-Cl b	ond energy											
	[3] Inductive effect												
	[4] Resonance stabiliz	ation and sp ² hybric	disation of C attached	to halide									
Q.87	Bottles containing C_6H_5I and $C_6H_5CH_2I$ lost their original labels. They were labelled A and B for testing. A and B were separately taken in test tubes and boiled with NaOH solution. The end solution in each tube was made acidic with dilute HNO_3 and then some $AgNO_3$ solution was added. Substance B give a yellow precipitate. Which one of the following statements is true for this experiment [AIEEE 2003]												
	[1] A was C ₆ H ₅ I		[2] A was C ₆ H ₅	CH ₂ I									
	[3] B was C ₆ H ₅ I	CAO	[4] Addiotion of	HNO ₃ was unneces	ary								
Q.88	The compound formed	d on heating chlorob	enzene with chloroal i	in the presence of co	onc. H ₂ SO ₄ is :								
		•			[AIEEE 2004]								
	[1] Hexachloroethane	[2] D.D.T.	[3] Freon	[4] Gamma	xene								
0.00		and a three fallers than any	CH ₂	IBS 、	[DIIII 0005]								
Q.89	What will be the produ	ict in the following re	eaction		[BHU 2005]								
	[1] CH ₃		[2] CH ₀	3									
	[3] CH ₃ Br		[4] CH ₃										

Q.90
$$\xrightarrow{\text{leqv.of Br}_2/\text{Fe}}$$
 A. Compound A is -

[Orissa JEE 2005]

Q.91 When phenyl magnesium bromide reacts with t-butanol, the product would be -

[IIT 2005]

- [1] Benzene
- [2] Phenol
- [3] t-butyl benzene

[4] t-butyl phenyl ether

Q.92 Analyse the following reaction and identify the nature of A and B

[Karala CET 2005]

$$\begin{array}{c} B \xrightarrow{hBr} A \end{array}$$

Answer Key

Qus.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Ans.	2	1	2	4	1	3	1	4	2	4	3	2	1	2	2	2	1	4	2	4
Qus.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
Ans.	3	1	2	2	1	1	3	2	3	2	1	1	3	1	2	4	4	4	2	3
Qus.	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
Ans.	1	1	4	3	4	2	1	1	1	2	3	2	3	1	3	2	2	4	4	1
Qus.	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
Ans.	4	1	1	2	2	3	4	1	2	1	2	2	1	4	4	3	2	1	2	4
Qus.	81	82	83	84	85	86	87	88	89	90	91	92								
Ans.	4	1	4	1	2	4	1	2	1	1	1	3								