Exercise # 1

Q.1	Dry distillation of calcium propanoate gives :								
	[1] Propanone [2] Propanal	[3] Butanone	[4] Diethyl ketone						
Q.2	Acetone can be prepared by dry distillation of :								
	[1] Calcium formate & calcium acetate	[2] Calcium acetate							
	[3] Calcium propanoate	[4] Calcium propanoate	and calcium formate						
Q.3	Stephen reaction is the reaction involving :								
	[1] Reduction of alkanoyl chloride with Pd/BaS	O ₄							
	[2] Reduction of alkyl isocyanide with sodium a	ind alcohol							
	[3] Reduction of alkyl cyanide with SnCl ₂ and H	ICI and hydrolysing the ir	ntermediate aldimine						
	[4] Reduction of carbonyl compound with zinc a	amalgum and HCI							
Q.4	Hydration of acetylene in the presence of dilute	e sulphuric acid and Hg ²⁺	ions at 80°C gives :						
	[1] Ethanol [2] Ethanal	[3] Vinayl alcohol	[4] All of these						
Q.5	CH_3 – $CH(OH)$ – $CH_2(NH_2)$ is a :								
	[1] a β -amino alcohol	[2] an α –aminoalcohol							
	[3] a hydroxy primary amine	[4] a β -hydroxy amine							
Q.6	Carbonyl compounds are best purified by :								
	[1] Steam distillation	[2] Hydrolysis of sodiur	n bisulphite adducts						
	[3] Fractional crytallisation	[4] Sublimation							
Q.7	Carbonyl compounds readily undergo :								
	[1] Nucleophilic substitutions	[2] Electrophilic addtior	n reactions						
	[3] Nucleophilic addition reactions	[4] Free radical substitution reactions							
Q.8	Aldol condensation is the reaction of :								
	[1] Formaldehyde and 10% NaOH	[2] Acetaldehyde and d	iil. KOH						
	[3] Formaldehyde and HCN	[4] Acetone and chlorof	orm						
Q.9	Acetaldehyde reacts with K_2CO_3 to form :								
	ОН Н	ОН Н							
	[1] CH ₃ CH ₂ -CH-C=O	[2] $CH_3 - CH - CH_2 - C = O$							
	[3] CH ₃ -CH-C-CH ₃	[4] CH2-CH2-CH-C=C)						
	OH O	ОН Н							
Q.10	Cannizaro reaction is given by :								
	[1] Aldehydes containing alpha hydrogens	[2] Aldehydes not conta	aining alpha hydrogens						
	[3] A ketone having alpha hydrogen atoms	[4] Ketones not having	alpha hydrogens						
Q.11	Paraldehyde is obtained by :	[2] Heating other al with							
	[3] Adding a few drops of conc. H-SO, to aceta	[2] Heating ethanal with aldebyde	$1 \text{ conc. } \Pi_2 \text{ SO}_4$						
	[4] Treating acetaldehyde with dry HCI gas at lo	ow temperature							
Q.12	Acetone and acetaldehyde are readily distingu	sihed by their reaction wi	th :						
	[1] lodine and alkali	[2] 2,4–dinitrophenylhyd	drazine						
	[3] Tollen's reagent	[4] Chlorine and alkali							

- Q.13 Formaldehyde and acetaldehyde are readily distinguished by reaction with :
 [1] A solution of 2,4–dinitrophenylhydrazine
 [2] Fehling's solution
 [3] Tollen's reagent
 [4] Iodine and alkali
- Q.14Formaldehyde and acetone are disinguished by reaction with :[1] Alkali[2] Schiff's reagent[3] Ammonia
- [4] Phenylhydrazine

Q.15 Metaldehyde has the structure :

Q.22	Schiff's reagent is :												
	[1] R–CH=NR												
	[2] A solution of coppe	er sulphate, alkali and so	odium ptassium tartarate)									
	[3] A solution of magr	neta dye belached by SC	D_{2} [4] An alcoholic solution	on of 2,4–dinitrophynylhy	/drazine								
Q.23	The oximes of which o	of the following pairs of c	ompounds will have the	same percentage of nitro	gen :								
	[1] Acetone and aceto	phenone	[2] Propionaldehyde and dimethyl ketone										
	[3] Propanal and etha	nal	[4] Methanal and acrolein										
Q.24	Which of the following	g is not a heterocyclic co	ompound :										
	[1] Phorone	[2] Dioxan	[3] Trioxan [4] Paraldehyde										
Q.25	Which of the following	does not contain a keto	onic group :										
	[1] Mesityl oxide	[2] Phorone	[3] Acetone oxime	[4] Pyruvic acid									
Q.26	Match list I and list II	and then select the corre	ect answer from the code	es given below the lists :									
	List I		List II										
			[a] Mesitylene										
	[B] CH₂COCHO		[b] Paraldehyde	\mathbf{G}									
			[c] lodoform reaction	\rightarrow									
	[D] CH₂CHO		[d] Cannizzaro reactio	an									
	Codes :												
		А	в	С	D								
	[1]	d	с	b	а								
	[2]	d	b	C	а								
	[3]	a	C	b	d								
	[4]	d		а	b								
Q.27	Which of the following	aldehvdes does not for	m iodoform on heating w	rith iodine and alkali :									
	[1] Pyruvic aldehyde	,											
	[3] Propionaldehyde		[4] 2–Hvdroxypropana	al									
Q.28	Acetaldehvde on treat	tement with aluminium e	thoxide gives :										
	[1] Ethyl methanoate	[2] Ethyl acetate	[3] Ethyl propionate	[4] Ethyl formate									
Q.29	Formalin contains 40°	% formaldehvde and :	[0] =). P. op.o	[.]									
	[1] 40% methanol + 2	0% water	[2] 8% methanol + 52	% water									
	[3] 60% water only		[4] 60% methanol onl	V									
Q.30	Which of the following	alkoxides is used to ox	idize secondary alcohols	s to corresponding keton	es ·								
4.00	[1] Aluminium isoprop	oxide	[2] Aluminium ethoxid	le									
	[3] Aluminium t–butox	ride	[4] Sodium ethoxide										
Q.31	Ketones can be prepa	ared by the following me	thods except :										
4.01	[1] By heating calcium	n salts of acids											
	[2] By reducing acid	chlorides with hydraoen	in the presence of palla	adium catalyst supported	l on barium								
	sulphate												
	[3] By passing vapour	s of an acid over manga	nous oxide at 300ºC										
	[4] By passing any alk	yne having three or mor	e carbon atoms in hot dil	ute sulphuric acid in the	presence of								
	mercuric ions.												
Q.32	Ketone cannot be pre	pared by :											
	[1] Ozonolysis of alke	nes	[2] Heating of calcium	n salts of acids									
	[3] Epoxidation of alke	enes with peracids	[4] Oxidation of a glyc	col with periodic acid									

Q.33	Oxidation of 2-methyl	propane–1,2–diol with p	eriodic acid gives :	
	[1] Propionic acid and	formaldehyde	[2] Acetone and forma	ldehyde
	[3] Acetone and aceti	c acid	[4] Acetone and Propi	onic acid
Q.34	Lemieux reagent cons	sists of :		
	[1] An aqeous solutior	n of periodic acid		
	[2] Lead tertraacetate			
	[3] An aqueous solutio	on of sodium periodate a	nd trace of potassium pe	rmangante
	[4] Zinc chloride and c	conc. HCl		
Q.35	Oxidation of 1,2–glyco	ols of the general structu	OH OH re $R_1 - C - C - R_1$ with portugation $R_2 = R_2$	eriodic acid gives :
	[1] A diketone		[2] Two molecules of a	an aldehyde
	[3] A ketone		[4] A diol	0
0.36	The compounds A B	and C in the reaction sea		$COCI \xrightarrow{B,Pd/H_2} C$ are given by the
4.00	set :			
	[1] Cl ₂ , BaSO ₄ , RCHC)	[2] HCI, BaSO ₄ , RCO	R
	[3] PCI₅, BaSO₄, RCH	0	[4] PCl ₃ , BaSO ₄ , CH ₃	СНО
Q.37	Which of the following	statments is incorrect :		
	[1] Carbonyl compoun	ds undergo nucleophilic	additions	
	[2] Carbonyl compoun	ds have large dipole mor	ments	
	[3] Acetone is more re	active towards nucleoph	ilic reagents then acetal	dehyde
	[4] Carbon atom of the	e carbonyl group is sp ² h	ybridised	
Q.38	Which of the following	statements is wrong :		
	[1] Acetone gives iodo	form reaction		
	[2] Acetone gives diac	etoneamine on treateme	ent with ammonia	
	[3] Acetone does not	react with nitrous acid		
	[4] Acetone reacts with	n sodamide to form sodic	-derivatives	
Q.39	Which of the following	compounds does not ha	ave a C=C :	
	[1] Allyl alcohol	[2] Propargyl alcohol	[3] Crotyl alcohol	[4] Mesityl oxide
Q.40	Acetone is oxidised by	y selenium dioxide at roo	om temperature to form	:
	[1] CH ₃ COOH and CC	2 [2] Glyoxal	[3] Methylglyoxal	[4] Dimethylglyoxal
Q.41	A carbonyl compounds and caustic alkali. It a	s gives pink colour with S Iso gives a red precipita	chiff' reagent and a yello te with Fehling's solutio	w precipitate when boiled with iodine n. It is likely to be :
	[1] Formaldehyde	[2] Propionaldehyde	[3] Acetaldehyde	[4] Crotonaldehyde
Q.42	A carbonyl compound It forms a cyanohydrir compound is :	gives a positive iodoform n with HCN, which on hy	test but does not reduce drolysis gives a hydroxy	Tollen's reagent or Fehling's solution. acid with a methyl side chain. The
	[1] Acetaldehyde	[2] Propionaldehyde	[3] Acetone	[4] Crotonaldehyde

- Q.43 Which of the following statements is wrong :
 - [1] The polar character of the C=O group gives rise to intermolcular attractions called dipole-dipole attraction
 - [2] The lower aldehydes and ketones are soluble in water
 - [3] The boiling points of aldehydes and ketones are lower than those of nonpolar alkanes of comparable molecular weights
 - [4] Aldehydes and ketones are incapable of intermolecular hydrogen bonding with themselves
- Q.44 Which of the following statments is wrong :
 - [1] Paraldehyde is a cyclic trimer of acetaldehyde
 - [2] Acetaldehye is marketed in the liquid form as paraldehyde
 - [3] Acetaldehyde is difficult to handle because of its high boiling point
 - [4] Acetaldhyde is manufactured by oxidation of ehthylene with air-water in the presece of palladium chloride
- Q.45 Cannizzaro reaction is given by :
 - [1] Aldehydes containing α -hydrogen atoms
 - [2] Aldehydes as well as ketones containing α -hydrogen atoms
 - [3] Aldehydes not containing α -hydrogen atoms
 - [4] Aldehyde containg β -hydrogen atoms
- Q.46 Aldehyde not containing α -hydrogen atoms reacts with aqueous alkali to form :
 - [1] an α , β unsaturated aldehyde [2] an α , β unsaturated acid
 - [3] Corresponding alcohol and corresponding carboxylate anion
 - [4] Corresponding carboxylic acid
- Q.47 Formaldehyde reacts with 50% aqueous alkali to form :
 - [1] A mixture of methanol and sodium acetate [2] A mixture of ethanol and sodium acetate
 - [3] A mixture of methanol and sodium formate [4] A resinous mass
- Q.48 Benzladehyde reacts with formaldehyde in the presence of alkali to form : [1] Methyl alcohol and sodium benzoate [2] Benzyl alcohol and sodium formate [3] Benzoic acid and ethanol [4] Formic aicd and benzyl alcohol
- Q.49 The compounds A, B and C in the reaction sequence
 - by the set :
 - [1] lodoform, ethylene, ethyl alcohol
 - [3] lodoform, propyne, acetone
- [2] lodoform, acetylene, acetaldehyde

 $\frac{I_2}{Alkali} \rightarrow A \xrightarrow{Ag} B \xrightarrow{H_2SO_4} C \text{ are given}$

- [4] lodoform, 2-propanol, propanone
- Q.50 Which of the following is mismatched :
 - [1] Acetaldehyde Cannizzaro reaction
 - [2] Acetone - Bimolecular reduction
 - [3] Propionaldehyde Aldol condensation
 - [4] Formaldehyde - Pink colour with Schiff's reagent
- Q.51 Acetone does not form :
 - [1] A phenylhydrazone with phenylhydrazine [2] A sodium bisulphite adduct with sodium bisulphite
 - [3] A silver mirror with Tollen's reagent
- [4] An oxime with hydroxylamine
- Q.52 Oximinoacetone is formed by the reaction of :
 - [1] Hydroxylamine and acetone
 - [3] Nitrous acid and propionaldehyde
- [2] Nitrous acid and acetone
- [4] Ethylamine and acetone
- Q.53 Which of the following cyanohydrins on hydrolysis gives an optically active acid giving iodoform reaction :
 - [1] Acetone cyanohydrin
 - [3] Acetaldehyde cyanohydrin
- [2] Propionaldehyde cyanohydrin
- [4] Formaldehyde cyanohydrin

Q.54	Which of the following	carbonyl compounds ex	hibits keto–enol isomeris	sm to an appreciable extent :						
	[1] Acetone	[2] Acetylacetone	[3] Acetaldehyde	[4] Acetic ester						
Q.55	The specific reagent for	or reducing aldehydes an	d ketones to alcohols is	:						
	[1] Sodium and ethance		[2] Aluminium isopropo	oxide						
	[3] Amalgamated zinc	and concentrated hydroc	chloric acid							
	[4] Sodium bisulphite									
Q.56	Reaction of acetaldeh	yde with aluminium etho	kide in the presence of a	nhydrous AICl ₃ is called :						
	[1] Cannizzaro's reacti	on	[2] Bouveault–Blanc re	duction						
0.57	[3] Tischenko reaction		[4] Rosenmund reactio	n						
Q.57	I ne components of Be	enedict's reagent are :	[2] Copper sulphate + Sodium Carbonate + Sodium citrate							
			[2] Copper sulphate + 3							
0 58	On beating ethanal wit	h febling solution gives :								
Q.30			[3] Cu ₂ O	[4] Cu + Cu + Cu O						
Q.59	Which of the following	substrates show cannizz	r_{10} r_{20} r_{20}							
	[a] CH ₂ CHO	[b] HCHO	[c] CCl ₂ CHO	[d] CaH=CHO						
	[1] b and c	[2] b, a, c	[3] b, c, d	[4] a and d						
	Pd–BaSO₄	• • • • •		No. Salt						
Q.60	$C_6H_5COCI - H_2$	→ Intermediate	on → Intermediate Dry	Distillation A						
	Compound (A) in abov	e reaction sequence is –								
	[1] Benzophenone	[2] Benzaldehyde	[3] Acetophenone	[4] Benzoquinone						
Q.61	Benzaldehyde will be f	ormed in the reaction								
	[1] Hydrolysis of C ₆ H ₆	CHCI ₂	[2] Ozonolysis of C_6H_5	CH =CH ₂						
	[3] Both the above		[4] None of the above							
0.62	$\Lambda \xrightarrow{\text{Pd/BaSO}_4} \Phi = CH$	$O \leftarrow (i) SnCl_2/HCl$)							
Q.02	Η ₂ φ ⁻ ΟΠ	(ii)H ₂ O								
	A and B respectively a	ire –								
	[1] Benzoyl chloride, b	enzonitrile	[2] Benzyl chloride, be	nzylnitrile						
0.62	[3] Benzal chloride, be	nzonitrile	[4] Benzotrichioride, be							
Q.05	11 CHO group of ben	zaldehyde is meta direct	e tonowing statements is incorrect –							
	[1] –Cho group of ben [2] Benzaldehyde unde	ergoes Claisen condensa	tion							
	[3] Benzaldehvde on c	ixidation gives phenyl ac	etic acid							
	[4] Benzaldehyde on re	eduction gives benzyl alc	ohol							
Q.64	-CHO group in benzer	ne nucleus –								
	[1] Activates the ring		[2] Deactivates the ring]						
	[3] Does not affect the	ring	[4] None of these							
Q.65	Malachite green is obta	ained when benzaldehyd	e reacts with the followin	Ig						
	[1] Aniline	[2] Phenol	[3] Phthalic anhydride	[4] N,N–Dimethyl amine						
Q.66	$C_6H_5CHO \xrightarrow{NH_2OH}$	A <u>H₂O</u> → B								
	What is not true for the	e compound B –								
	[1] Gives cannizaro's r	eaction	[2] Acts as strong redu	cing agent						
	[3] Gives phenol on red	duction	[4] Gives optical active	compound with HCN						
Q.67	Which of the folloiwng	compounds would not fo	rm a silver mirror with To	llen's reagent :						
	[1] RCHO	[2] ArCHO	[3] CH ₃ COR	[4] RCHOHCOH						

Q.68	An organic aromatic compound containing C, l oxidation with potassium permanganate gives with sodalime gives benzene. What is the origin	H & O has a characteris a monobasic acid. The nal compound –	tic smell of bitter almonds. This on sodium salt of which on distillation
Q.69	[1] $C_6H_5CH_2CHO$ [2] C_6H_5CHO Benzaldehyde is oxidised and reduced in the p	[3] C ₆ H ₅ OH resence of –	[4] None of the above
	[1] NaHCO ₃ [2] NaOH	[3] Na ₂ CO ₃	[4] HCI
Q.70	$I \leftarrow O_2$ Benzaldehyde $\longrightarrow NH_3 \longrightarrow II$		
	I, II are –		
	[1] Benzoic acid, Benzaldehyde ammonia[3] Phenyl acetic acid, Benzaldehyde ammonia	[2] Benzoic acid, Hydro a [4] Benozic acid, Anilin	obenzamide ne
Q.71	Benzaldehyde is heated with a conc. solution of	of KOH to form –	
•	[1] C ₆ H ₅ CH ₂ OH [2] C ₆ H ₅ COOH	[3] C ₆ H ₅ COOK	[4] C ₆ H ₅ COOK + C ₆ H ₅ CH ₂ OH
Q.72	Benzaldehyde can be conveted benzyl alcohol	by –	[4] and and ard are correct
0 73	[1] TCI [2] NaOT Benzyl alcohol from benzaldebyde is obtained i	[3] LIAIN ₄	
Q.75	[1] Cannizzaro's reaction	[2] Kolbe's reaction	G
	[3] Wurtz reaction	[4] Fitting's reaction	$\dot{}$
Q.74	Benzaldehyde condenses with acetic anhyderi	de to give cinnamic acid	in presence of –
	[1] Sodium acetate [2] Sodium chloride	[3] Sodium benzoate	[4] Sodium metal
Q.75	? $\xrightarrow{\Delta, CN^{-}}$ Benzoin.	C,	
	The reactant is obtained by dry distillation of th	e calcium salts of the fo	llowing pairs –
	[1] C ₆ H ₅ CH ₂ COOH, HCOOH	[2] C ₆ H ₅ COOH, HCOC	DH
	[3] C ₆ H ₄ (OH)COOH, HCOOH	[4] C ₆ H ₄ (NH ₂)COOH, H	НСООН
Q.76	Hydrobenzamide is formed in the reaction –		
	$\begin{bmatrix} 1 \end{bmatrix} C_6 H_5 COOH + NH_3$	$[2] C_6 H_5 CHO + NH_3$	
0 77	[3] HCHU + NH ₃ Benzaldebyde shows different reaction than ali	$[4] CH_3 COCH_3 + NH_3$	following reagent -
Q.11	[1] Tollen's reagent [2] Schiff's reagent	[3] Fehling's reagent	[4] Hydroxylamine
Q.78	Which statement is true about benzaldehvde –		
	[1] It does not react with Tollen's reagent	[2] It does not react wi	th Fehling's solution
	[3] It does not react with HCN	[4] It does not react wi	th NaHSO ₃
Q.79	Benzaldehyde gives all the reaction except –		
	[1] Nucleophilic addition	[2] Reduction	
	[3] Electrophilic substitution	[4] Reduction of Fehlin	ig solution
Q.80	$CH_3 - C - CH_3 \xrightarrow{HCN} A \xrightarrow{LiAIH_4} B, [B] is :$		
	C C	CH	
		$[2] CH_{-} C = COOH$	
		UΠ	
	ĊH ₃		
	$\begin{bmatrix} 3 \end{bmatrix} CH_2 - C - CH_2 NH_2$	[4] CH₃ – CH – CN	
	OH		
		3	

Q.81	C ₆ H ₅ CHO and HCHO	D reacts with NaOH to gi	ve:								
	$[1] C_6 H_5 C H_2 O H + H C$	OONa	[2] C ₆ H ₅ COONa + CH	H ₃ OH							
	[3] C ₆ H ₅ COOH + CH	4	[4] None of these								
Q.82	Ethyl alcohol an oxid	ation with K ₂ Cr ₂ O ₇ give	S :								
	[1] Acetic Acid	[2] Acetaldehyde	[3] Formaldehyde	[4] Formic acid							
Q.83	Schiff's reagent give	s pink colour with :									
	[1] CH ₃ OH	[2] CH ₃ CH ₂ OH	[3] CH ₃ COCH ₃	[4] CH ₃ CH ₂ CHO							
Q.84	The cannizzaro reac	tion is not given by :									
	[1] Trimethyl acetald	ehyde	[2] Acetaldehyde								
	[3] Benzaldehyde		[4] Formaldehyde								
Q.85	$CH_2O \xrightarrow{Heat} A + B$, A and B are :									
	[1] CO ₂ + H ₂	[2] C + H ₂ O	[3] CO + H ₂	[3] All							
Q.86	A compound 'A' has	the molecular formula C	$C_2 Cl_3 OH$. It reduces fehlir	ng's solution and on oxidation gives a							
	monocarboxylic acid	B. A is obtained by act	ion of chlorine on ethyl a	n of chlorine on ethyl alcohol, A is :							
	[1] Chloral	[2] CHCl ₃	[3] CH ₃ CI	[4] Chloroacetic acid							
Q.87	Acetone on reaction	with bromine in presend	ce of basic catalyst gives	-CN [*]							
	[1] CH ₃ COCH ₂ Br	$[2] CH_3 COCBr_3$	[3] Propane	$[4] (CH_3)_2 C - Br_2$							
Q.88	$A \xrightarrow{HCN} B \xrightarrow{2HOH}$	→2–Hydroxy propanoic	acid, the compound B is								
	[1] CH ₃ CHO		[2] Acetaldehyde cya	nohydrin							
	[3] Formaldehyde cya	anohydrine	[4] Acetone								
Q.89	$A \xrightarrow{PCl_5} B \xrightarrow{Pd/Bas}$	$O_4 \rightarrow C \xrightarrow{Conc. H_2SO_4} I$	D in the above reaction A	. B. C & D are :							
				, ,							
		OCI, CH ₃ CHO, Metalde	nyde								
		OCI, CH ₃ CHO, Paraider	nyde								
	$[3] CH_3 COOH, CH_3 C$	$OCI, CH_3 - CH_2OH, Para$	lidenyde								
0 00	Eormaldebyde on reg	action with PCL gives :									
Q.30	[1] Methyl chloride	I21 Methylene chlori	de [3] Chloroformaldeby	de [1] None of these							
	N										
		Anes	wer Kev								

Qus.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Ans.	4	2	3	2	1	2	3	2	2	2	3	3	4	2	1	3	2	2	3	1
Qus.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
Ans.	3	3	2	1	3	4	3	2	2	3	2	3	2	3	3	3	3	3	2	3
Qus.	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
Ans.	3	3	3	3	3	3	3	2	2	1	3	2	3	2	2	3	2	3	1	1
Qus.	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
Ans.	3	1	3	2	4	3	3	2	2	2	4	4	1	1	2	2	3	2	4	3
Qus.	81	82	83	84	85	86	87	88	89	90		-								
Ans.	1	1	4	2	3	1	2	2	1	2										

Exercise # 2

Q.1	Formaldehyde reduce	s :							
	[1] Ag(NH ₃) ₂ ⁺¹	[2] CuO	[3] HgCl ₂	[4] All					
Q.2	Pentane-2-one different	s from pentane–3 one in t	hat:						
	[1] Pentane-2-one do	es not give iodoform test	[2] Pentane–2–one giv	es iodoform test					
	[3] Pentane-3-one giv	es iodoform test	[4] Pentane-2-one do	es not react with NaHSO ₃					
Q.3	Aldehydic group can c	occur:							
	[1] Any where in the ca	arbon chain	[2] In the middle of the	carbon test					
	[3] Only at the second	carbon atom of the chair	in [4] Only at the end carbon atom of the carbon chain						
Q.4	When propyne is teate	d with aqueous sulphuric	acid in the presence of r	nercuric sulphate, the major product					
	is :			\mathbf{O}					
	[1] Propanal		[2] Propyl hydrogen su	Iphate					
	[3] Propanol		[4] Acetone						
Q.5	Paraldehyde is :			$\mathbf{O}_{\mathbf{i}}$					
	[1] A timer of formalde	hyde	[2] A trimer of acetalde	ehyde					
	[3] A hexamer of forma	aldehyde	[4] A hexamer of aceta	ldehyde					
Q.6	Which one of the follow	wing aldehyde will not for	m an aldol when treated	l with dilute NaOH :					
_	[1] CH ₃ CHO	[2] CH ₃ CH ₂ CHO	[3] (CH ₃) ₃ CCHO	$[4]C_6H_5CH_2CHO$					
Q.7	Compound (A) $C_5H_{10}C_{10}$) forms a phenyl hydrazon	e and gives negative Tol	len's and iodoform tests. Compound					
	(A) on reduction gives	[2] An aldohydo	A) 15.						
0.8	The structural formula	of chloral hydrate is							
G.0		or chiorar hydrate is .							
	[1] CCI ₃ CH CH	[2] HCCI ₂ CH CH	[3] CCI ₃ CH ₂ (OH)	[4] None					
Q.9	An organic liquid which	reduces tollen's reagent g	gives one semicarbazone	e derivative in which 36.47% Nitrogen					
	[1] CH ₃ CHO			[4] CH ₃ CH ₂ CH ₂ CHO					
		•							
Q.10	$CH_3CHO \xrightarrow{KMnO_4} A$	$\xrightarrow{PCI_3} B \xrightarrow{CH_3COONa}$	• C, [C] is :						
	$[1] CH_3 COOC_2 H_5$	[2] CH ₃ COCI	[3] CH ₃ COOH	[4] (CH ₃ CO) ₂ O					
Q.11	A $\xrightarrow{Alc KOH} B \xrightarrow{Br_2}$	$\rightarrow C \xrightarrow{Alc. KOH} D \xrightarrow{Hg^{+2}}$	$\xrightarrow{2} \text{E} \xrightarrow{\text{NH}_2\text{OH}} (\text{CH}_3)$	$_2$ C = NOH [A] is :					
	[1] CH ₃ CH ₂ Br	[2] CH ₃ CH ₂ CH ₂ Br	[3] CH ₃ CHBr ₂	[4] CH ₃ CH ₂ CHBr ₂					
Q.12	Formaldehyde when the	reated with conc. KOH give	ves :						
	[1] CH ₃ CHO	[2] C ₂ H ₄	[3] CH ₃ OH, HCOOK	[4] CH ₃ OH, CH ₃ CHO					
Q.13	Acetone on heating wi	th ammonia produces :							
	[1] Acetaldimine	[2] Diacetone alcohol	[3] Diacetone amine	[4] Hydrobenzamide					
Q.14	The product of the rea	ction between diethyl cao	dimium and acetylchlori	de is :					
	[1] CH ₃ COCH ₃	[2] C ₂ H ₅ COC ₂ H ₅	[3] CH ₃ CHO	[4] CH ₃ COC ₂ H ₅					

Acetone + Y \longrightarrow Diacetone amine X and Y are : [1] NH ₂ OH, NH ₃ [2] HNO ₂ , NH ₃ [3] H ₂ SO ₄ , NH ₃ [4] None C.16 Acetaldehyde $\frac{Cb}{SSOIS} \rightarrow A - \frac{CcHcO}{Con, H2SO4} (B), (B) is : [1] Chloroform [2] Chloral [3] DDT [4] TNB C.17 Formaldoxime on hydrolysis gives product, which on further reaction with baryta water gives [1] Paraldehyde [2] Metaldehyde [3] Trioxane [4] Formose C.18 The oxidation of RCH2COCH, with acidic potassium dichromate produces : [1] A mixture of RCOOH and CH3COOH [2] A mixture of RCH2COOH and HCOOH [3] CH3COOH only [4] RCOOH only C.19 Two molecules of an aldehyde reacts with a concentrated solution of NaOH and produces one molecule of an alcohol and acid each, which one is the aldehyde : [1] Acetaldehyde [2] Formaldehyde [3] Propionaldehyde [4] Butyraldehyde C.20 Which of the following compounds will give a mixed ketone on oxidation: [1] (CH3)2COH [2] CH3CH2CH2OH [3] CH3CH3CH(OH)CH3 [4] (CH3)2CHCH2OH C.21 Magenta is : [1] Akaline phenolphthalein [2] Red Illums [3] p-rosaniline hydrochloride [4] Methyl red C.22 An organic compound C2H2O, Grms phenyl hydrazone, gives positive lodoform test and undergoes Wolf-Kishner reaction to give isopentane. It is : [1] Pentanol [2] Pentan-2-one [3] Pentan-3-one [4] 3-methylbutan-2-one C.23 Which of the following is the mechanism or presentative reactions of carbonyl compounds [1] Neucleophilic substitution [2] Electrophilic substitution [3] Neucleophilic substitution [2] Electrophilic substitution [3] Neucleophilic substitution [2] Electrophilic substitution [3] Neucleophilic substitution [2] Schartification [3] Tischenko reaction [4] Cannizzar's reaction 4] Acetone (4] Acetone C.25 What happens on adding concentrated caustic alkali to an aldehyde containing \alpha-hydrogen :[1] Resinfication [2] Saccharification [3] Tischenko reaction [4] Cannizzar's reactionC.26 Which of the following is formed on heating the representative member of alkancic acid family with mang$	Q.15	Acetone + X	 Oxamino acetone 									
X and Y are : [1] NH ₂ OH, NH ₃ [2] HNO ₂ , NH ₃ [3] H ₂ SO ₄ , NH ₃ [4] None Q.16 Acetaldehyde C ₂ /D ₂ Sud3) A C _{cont} H ₂ SO ₄ (B), (B) is : [1] Chloroform [2] Chloral [3] DDT [4] TNB Q.17 Formaldoxime on hydrolysis gives product, which on further reaction with baryta water gives [1] Paraidehyde [2] Metaldehyde [3] Troxane [4] Formose Q.18 The oxidation of RCH_COCH ₃ with acidic potassium dichromate produces : [1] A mixture of RCOOH and CH ₂ COOH [2] A mixture of RCH_COOH and HCOOH [3] CH ₃ COOH only [4] RCOOH only [4] RCOOH only [4] Butyraldehyde Q.19 Two molecules of an aldehyde reacts with a concentrated solution of NaOH and produces one molecule of an alcohol and acid each, which one is the aldehyde : [1] Acetaldehyde [2] Formaldehyde [3] Propionaldehyde [4] Butyraldehyde Q.20 Which of the following compounds will give a mixed ketone on oxidation: [1] (CH ₃) ₂ COH [2] CH ₃ CH ₂ CH ₂ OH [3] CH ₃ CH ₂ CH(CH)CH ₃ [4] CH ₂ O ₂ CH ₂ OH Q.21 Magenta is : [1] [1] Akaline phenolphthalein [2] Red lifums [3] restrict and undergoes Wolf-Kishne reaction to give isopertane. It is : [3] Prosaniline hydrochlonde [4] Stromaldehyde		Acetone + Y	Diacetone amine									
[1] NH ₂ OH, NH ₃ [2] HNO ₂ , NH ₃ [3] H ₂ SO ₄ , NH ₃ [4] None Q.16 Acetaldehyde Coth H ₂ SO ₄ → (B), (B) is : [1] Chloroform [2] Chloral [3] DDT [4] TNB Q.17 Formaldoxime on hydrolysis gives product, which on further reaction with baryte water gives [1] Paraldehyde [2] Metaldehyde [3] Trioxane [4] Formose Q.18 The exidation of RCH_COCH, with acidic potassium dichromate produces : [1] A mixture of RCOOH and CH ₂ COCH [2] A mixture of RCH_COCH [3] CH ₂ COOH only Q.19 Two molecules of an aldehyde reacts with a concentrated solution of NAOH and produces one molecule of an alcohol and acid each, which one is the aldehyde : [4] Butyraldehyde [4] Butyraldehyde Q.20 Which of the following compounds will give a mixed ketone on oxidation: [1] (CH ₃) ₂ COH (2] CH ₃ CH ₂ CH ₂ OH [3] CH ₃ CH ₂ CH(CH)CH ₃ [4] (CH ₃) ₂ CHCH ₂ OH Q.21 Magenta is : [1] Alkaline phenolphthalein [2] Red liftums [3] p-rosaniline hydrochoride [4] Weilvy red Q.22 Which of the following is the mechanism or representative reactions of carbonyl compounds [1] Pentanol [2] Pentan-2-one [3] Pentan-3-one [4] 3-methylbutan-2-one Q.23 Which of the following is the mechanism or representative reactions of carbonyl compounds <t< th=""><th></th><th>X and Y are :</th><th></th><th></th><th></th></t<>		X and Y are :										
Q.16 Acetaldehyde Op sw033 A Cathel Conn. H ₂ SO ₄ (B), (B) is : [1] Chloroform [2] Chloral [3] DDT [4] TNB Q.17 Formaldoxime on hydrolysis gives product, which on further reaction with baryta water gives [1] Paraldehyde [2] Metaldehyde [3] Trioxane [4] Formose Q.18 The oxidation of RCH_COCH, with acidic potassium dichromate produces : [1] A mixture of RCOOH and CH ₃ COOH [2] A mixture of RCH_COOH and HCOOH [3] CH ₃ COOH only [2] A mixture of RCH_COOH and HCOOH [3] CH ₃ COOH only Q.19 Two molecules of an aldehyde reacts with a concentrated solution of NaOH and produces one molecule of an alcohol and acid each, which one is the aldehyde : [1] Acetaldehyde [2] Formaldehyde [3] CH ₃ CH ₂ CH ₂ CH ₂ OH Q.10 Which of the following compounds will give a mixed ketone on oxidation: [1] (CH ₃) ₃ COH [2] CH ₃ CH ₂ CH ₂ CH ₂ OH [3] CH ₃ CH ₂ CH ₂ CH(OH)CH ₃ [4] (CH ₃) ₂ CHCH ₂ OH Q.20 Which of the following compounds will give a mixed ketone on oxidation: [1] Alkaline phenolphthalein [2] Red Itums [3] p-rosaniline hydrochloride [4] Methyl red Q.21 Magenta is: [1] Pentanol [2] Pentan-2-one [3] Pentan-3-one [4] 3-methylbutan-2-one Q.32 Which of the following is the mechanism of representative reactions of carbonyl compounds [3] Neucleophilic substitution [2] Formaldehyde <td< th=""><th></th><th>[1] NH₂OH, NH₃</th><th>[2] HNO₂, NH₃</th><th>$[3] \operatorname{H_2SO}_4, \operatorname{NH}_3$</th><th>[4] None</th></td<>		[1] NH ₂ OH, NH ₃	[2] HNO ₂ , NH ₃	$[3] \operatorname{H_2SO}_4, \operatorname{NH}_3$	[4] None							
 [1] Chloroform [2] Chloral [3] DDT [4] TNB G.17 Formaldoxime on hydrolysis gives product, which on further reaction with barta water gives [1] Paraldehyde [2] Metaldehyde [3] Trioxane [4] Formose G.18 The oxidation of RCH_COCH with acidic potassium dichromate produces : [1] A mixture of RCOOH and CH₂COOH [2] A mixture of RCH₂COOH and HCOOH [3] CH₃COOH only [3] CH₃COOH only [4] RCOOH only C.19 Two molecules of an aldehyde reacts with a concentrated solution of NaOH and produces one molecule of an alcohol and acid each, which one is the aldehyde : [1] A cetaldehyde [2] Formaldehyde [3] Propionaldehyde [4] Butyraldehyde C.20 Which of the following compounds will give a mixed ketone on oxidation : [1] (CH₃)₃COH [2] CH₃CH₂CH₂CH [2] Red liftums [3] prosaniline hydrochloride [4] Methyl red C.21 Magenta is : [1] A netaldehyde [2] Portand-2-one [4] Methyl red C.22 An organic compound C₄H₁₀ O forms phenyl hydrazone, gives positive iodoform test and undergoes Wolf-Kishner reaction to give isopentane. It is : [1] Pentanol [2] Pentan-2-one [3] Pentan-3-one [4] 3-methylbutan-2-one C.23 Which of the following is the mechanism of representative reactions of carbonyl compounds [1] Neucleophilic addition [2] Pentan-2-one [3] Pentan-3-one [4] 3-methylbutan-2-one C.23 Which of the following is the mechanism of representative reactions of carbonyl compounds [2] Formaldehyde [2] Formaldehyde [3] Acetaldehyde [4] Acetone C.24 In the aqueous solution of which of the following compounds forms the compounds belonging to carbo hydrat family on keeping it in the aqueous solution of barium hydroxide : [1] Resinfication [2] Seccharification [3] Schenko reaction [4] Cannizzaro's reaction C.25 What happens on adding concentrated caustic alkali to an aldehyde containing mor	Q.16	Acetaldehyde Cl2 SbCl3	$\rightarrow A \xrightarrow{C_6H_5Cl} (B), (B)$) is :								
 Q.17 Formaldoxime on hydrolysis gives product, which on further reaction with baryta water gives [1] Paraldehyde [2] Metaldehyde [3] Trioxane [4] Formose Q.18 The oxidation of RCH_COCH, with acidic potassium dichromate produces : [1] A mixture of RCOOH and CH₃COOH [2] A mixture of RCH₂COOH and HCOOH [3] CH₃COOH only [4] RCOOH only Q.19 Two molecules of an aldehyde reacts with a concentrated solution of NaOH and produces one molecule of an alcohol and acid each, which one is the aldehyde : [1] Actaldehyde [2] Formaldehyde [3] Propionaldehyde [4] Butyraldehyde Q.20 Which of the following compounds will give a mixed ketone on oxidation: [1] (CH₃)₂COH [2] CH₃CH₂CH₂OH [3] CH₃CH₂CH(OH)CH₃ [4] (CH₃)₂CHCH₂OH Q.21 Magenta is : [1] Aklaline phenolphthalein [2] Red lifums [3] p-rosaniline hydrochloride [4] Methyl red Q.22 An organic compound C₆H₆O forms phenyl hydrazone, gives positive iodoform test and undergoes Wolf-Kishne reaction to give isopentane. It is : [1] Pentanol [2] Pentan-2-one [3] Pentan-3-one [4] 3-methylbutan-2-one Q.23 Which of the following is the mechanism of representative reactions of carbonyl compounds [1] Neucleophilic substitution [2] Electrophilic substitution [3] Neucleophilic substitution [2] Electrophilic substitution [3] Neucleophilic addition [2] Formaldehyde [3] Acetaldehye [4] Acetone Q.24 Muth appens on adoing concentrated caustic alkali to an aldehyde containing α-hydrogen : [1] Resinification [2] Formaldehyde [3] Acetaldehye [4] Acetone Q.25 What happens on adoing concentrated caustic alkali to an aldehyde containing more carbon yoris than the parent alkana1 : [1] Adol condensation [2] Polymerisation [3] Tischenko reaction [4] Cannizzaro's reaction Q.26 Which of the following is formed on heating the representative member of alkanoic acid family with manganou oxide at 300° : [1] Acetaldehyde [2] Polymerisation [3] Tischenko reaction [4] Cannizzaro's reaction <li< th=""><th></th><th>[1] Chloroform</th><th>[2] Chloral</th><th>[3] DDT</th><th>[4] TNB</th></li<>		[1] Chloroform	[2] Chloral	[3] DDT	[4] TNB							
[1] Paraldehyde [2] Metaldehyde [3] Trioxane [4] Formose Q.18 The exidation of RCH_COCH, with acidic potassium dichromate produces : [1] A mixture of RCOOH and CH_2COOH [2] A mixture of RCH_2COOH and HCOOH [3] CH_2COOH only [4] RCOOH only [3] Trioxane [4] RCOOH and HCOOH [3] CH_2COOH only [3] Propionaldehyde [4] Butyraldehyde [3] Propionaldehyde [4] Butyraldehyde [4] Acetaldehyde [2] Formaldehyde [3] Propionaldehyde [4] Butyraldehyde [4] Butyraldehyde [4] Acetaldehyde [2] Formaldehyde [3] Propionaldehyde [4] Butyraldehyde [4] Butyraldehyde [4] Acetaldehyde [2] Formaldehyde [3] Propionaldehyde [4] Butyraldehyde [4] Butyraldehyde [4] Acetaldehyde [2] Formaldehyde [3] Propionaldehyde [4] Butyraldehyde [4] CH ₃ /2, CHCH ₂ OH [1] Alkaline phenolphthalein [2] CH ₃ CH ₂ CH ₂ CH ₂ OH [3] CH ₃ CH ₂ CH(OH)OH ₃ [4] (CH ₃) ₂ CHCH ₂ OH [3] Prosaniline hydrochloride [4] Methyl red [4] Acetane [4] Acetane [1] Alkaline phenolphthalein [2] Pentan-2-one [3] Prosaniline hydrochloride [4] Acetane [1] Neucleophilic addition [2] Pentan-2-one [Q.17	Formaldoxime on hydro	olysis gives product, which	on further reaction with b	oaryta water gives							
Q.18 The oxidation of RCH_2COCH ₃ with acidic potassium dichromate produces : [1] A mixture of RCOOH and CH ₃ COOH [2] A mixture of RCH ₂ COOH and HCOOH [3] CH ₃ COOH only [4] RCOOH only Q.19 Two molecules of an aldehyde reacts with a concentrated solution of NaOH and produces one molecule of an alcohal and acid each, which one is the aldehyde : [1] Acetaldehyde [2] Formaldehyde [3] Propionaldehyde [4] Butyraldehyde Q.20 Which of the following compounds will give a mixed ketone on oxidation : [1] (CH ₃) ₃ COH [2] CH ₃ CH ₂ CH ₂ O ₂ OH [3] CH ₃ CH ₂ CH ₂ OH(OH)CH ₃ [4] (CH ₃) ₃ CHCH ₂ OH Q.21 Magenta is : [1] Alkaline phenolphthalein [2] Red liftums [3] p-rosaniline hydrochloride [4] Methyl red Q.22 An organic compound C ₆ H ₁₀ O forms phenyl hydrazone, gives positive iodoform test and undergoes Wolf-Kishne reaction to give isopentane. It is : [1] Pentanol [2] Pentan-2-one [3] Pentan-3-one [4] 3-methylbutan-2-one Q.23 Which of the following is the mechanism of representative reactions of carbonyl compounds [1] Neucleophilic addition [2] Pentan-2-one [3] P-rentan-3-one [4] 3-methylbutan-2-one Q.23 Which of the following is the mechanism of representative reactions of carbonyl compounds [1] Neucleophilic addition [2] Pertan-2-one [3] Pertan-3-one <t< th=""><th></th><th>[1] Paraldehyde</th><th>[2] Metaldehyde</th><th colspan="9">[3] Trioxane [4] Formose</th></t<>		[1] Paraldehyde	[2] Metaldehyde	[3] Trioxane [4] Formose								
 [1] A mixture of RCOOH and CH₃COOH [2] A mixture of RCH₂COOH and HCOOH [3] CH₃COOH only [4] RCOOH only [4] RCOOH only [4] RCOOH only [4] RCOOH only [5] Two molecules of an aldehyde reacts with a concentrated solution of NaOH and produces one molecule of an alcohol and acid each, which one is the aldehyde is a mixed ketone on oxidation: [1] Acetaldehyde [2] Formaldehyde [3] Propionaldehyde [4] Butyraldehyde [4] Butyraldehyde [2] CH₃CH₂CH₂OH [3] CH₃CH₂CH(OH)CH₃ [4] (CH₃)₂CHCH₂OH [3] Prosaniline hydrochloride [4] Methyl red [3] prosaniline hydrochloride [4] Methyl red [4] An organic compound C₈H₁₀O forms phenyl hydrazone, gives positive iodoform test and undergoes Wolf-Kishne reaction to give isopentane. It is : [1] Pentanol [2] Pentan-2-one [3] Pentan-3-one [4] 3-methylbutan-2-one [4] Sheuteophilic substitution [5] Pentan-3-one [4] 3-methylbutan-2-one [6] Pentan-3-one [7] Neucleophilic substitution [8] Pentan-3-one [9] Pentan-3-one [9] Neucleophilic addition [1] Neucleophilic addition [2] Electrophilic substitution [3] Neucleophilic addition [4] Electrophilic substitution [5] Neucleophilic addition [6] Permaldehyde [7] Acetaldehyde [8] Acetaldehye [9] Acetaldehyde [9] Acetaldehyde [1] Resinification [2] Seccharification [3] Sichenko reaction [4] Cannizzaro's reaction atoms than the parent alkanal : [1] Adol condensation [2] Polymerisation [3] Tischenko reaction [4] Acetone (4) Manganous acetate (5) Which of the following is formed on heating the representative member of alkanoic acid family with manganou oxide at 300	Q.18	The oxidation of RCH ₂ C	OCH ₃ with acidic potassiu	im dichromate produces :								
 [3] CH₃COOH only [4] RCOOH only Q.19 Two molecules of an aldehyde reacts with a concentrated solution of NaOH and produces one molecule of an alcohol and acid each, which one is the aldehyde : [1] Acetaldehyde [2] Formaldehyde [3] Propionaldehyde [4] Butyraldehyde Q.20 Which of the following compounds will give a mixed ketone on oxidation : [1] (CH₃)₃COH [2] CH₃CH₂CH₂OH [3] CH₃CH₂CH(OH)CH₃ [4] (CH₃)₂CHCH₂OH Q.21 Magenta is : [1] Alkaline phenolphthalein [2] Red litums [3] p-rosaniline hydrochloride [4] Methyl red Q.22 An organic compound C₅H₁₀O forms phenyl hydrazone, gives positive iodoform test and undergoes Wolf-Kishne reaction to give isopentane. It is : [1] Pentanol [2] Pentan-2-one [3] Pentan-3-one [4] 3-methylbutan-2-one Q.23 Which of the following is the mechanism of representative reactions of carbonyl compounds [1] Neucleophilic substitution [2] Electrophilic substitution [3] Neucleophilic substitution [4] Electrophilic addition Q.24 In the aqueous solution of which of the following compounds forms the compounds belonging to carbo hydrat family on keeping it in the aqueous solution of barium hydroxide : [1] Benzaldehyde [2] Formaldehyde [3] Acetaldehye [4] Acetone Q.25 What happens on adding concentrated caustic alkali to an aldehyde containing <i>α</i>-hydrogen : [1] Alkol condensation [2] Polymerisation [3] Tischenko reaction [4] Cannizzaro's reaction atoms than the parent alkanal : [1] Alkol condensation [2] Polymerisation [3] Tischenko reaction [4] Manganous acetate Q.25 Which of the following is formed on heating the representative member of alkanoic acid family with manganou oxide at 30°: [1] Acetaldehyde [2] Elyl acetate [3] Acetone 		[1] A mixture of RCOOH	and CH ₃ COOH	[2] A mixture of RCH ₂ CO	DOH and HCOOH							
 Q.19 Two molecules of an aldehyde reacts with a concentrated solution of NaOH and produces one molecule of an alcohol and acid each, which one is the aldehyde : [1] Acetaldehyde [2] Formaldehyde [3] Propionaldehyde [4] Butyraldehyde Q.20 Which of the following compounds will give a mixed ketone on oxidation: [1] (CH₃)₃COH [2] CH₃CH₂CH₂OH [3] CH₃CH₂CH(OH)CH₃ [4] (CH₃)₂CHCH₂OH Q.21 Magenta is : [1] Alkaline phenolphthalein [2] Red Itums [3] p-rosaniline hydrochloride [4] Methyl red Q.22 An organic compound C₆H₁₀O forms phenyl hydrazone, gives positive iodoform test and undergoes Wolf-Kishne reaction to give isopentane. It is : [1] Pentanol [2] Pentan-2-one [3] Pentan-3-one [4] 3-methylbutan-2-one Q.23 Which of the following is the mechanism of representative reactions of carbonyl compounds [1] Neucleophilic substitution [2] Electrophilic substitution [3] Neucleophilic addition [4] Electrophilic substitution [3] Neucleophilic addition [4] Electrophilic addition Q.24 In the aqueous solution of which of the following compounds forms the compounds belonging to carbo hydrat family on keeping it in the aqueous solutic and brium hydroxide : [1] Resinfication [2] Saccharification [3] Tischenko reaction [4] Cannizzaro's reaction Q.26 Which of the following reactions may be used for obtaining an unsaturated aldehyde containing more carbon atoms than the parent alkanal : [1] Alcol condensation [2] Polymerisation [3] Tischenko reaction [4] Cannizzaro's reaction Q.26 Which of the following is formed on heating the representative member of alkanoic acid family with manganou oxide at 300°: [1] Acetaldehyde [2] Ethyl acetate [3] Acetone [4] Manganous acetate 		[3] CH ₃ COOH only		[4] RCOOH only								
[1] Acetaldehyde [2] Formaldehyde [3] Propionaldehyde [4] Butyraldehyde Q.20 Which of the following compounds will give a mixed ketone on oxidation : [1] (CH ₃) ₃ COH [2] CH ₃ CH ₂ CH ₂ OH [3] CH ₃ CH ₂ CH(OH)OH ₃ [4] (CH ₃) ₂ CHCH ₂ OH Q.21 Magenta is : [1] Alkaline phenolphthalein [2] Red Itiums [3] p-rosaniline hydrochloride [4] Methyl red Q.22 An organic compound C ₈ H ₁₀ O forms phenyl hydrazone, gives positive iodoform test and undergoes Wolf-Kishne reaction to give isopentane. It is : [1] Pentanol [2] Pentan-2-one [3] Pentan-3-one [4] 3-methylbutan-2-one Q.23 Which of the following is the mechanism of representative reactions of carbonyl compounds [1] Neucleophilic substitution [2] Electrophilic substitution [3] Neucleophilic addition [4] Electrophilic addition Q.24 In the aqueous solution of which of the following compounds forms the compounds belonging to carbo hydrat family on keeping it in the aqueous solution of barium hydroxide : [1] Benzaldehyde [2] Formaldehyde [3] Acetaldehye [4] Acetone Q.25 What happens on adding concentrated caustic alkali to an aldehyde containing α-hydrogen : [1] Resinification [2] Polymerisation [3] Tischenko reaction [4] Cannizzaro's reaction atoms than the parent alkanal : [1] Aldol condensation [2] Polymerisation [3] Tischenko reaction [4] Anaganous acetate	Q.19	Two molecules of an ald alcohol and acid each,	dehyde reacts with a conc which one is the aldehyde	entrated solution of NaOl e :	H and produces one molecule of an							
 Q.20 Which of the following compounds will give a mixed ketone on oxidation: [1] (CH₃)₃COH [2] CH₃CH₂CH₂OH [3] CH₃CH₂CH(OH)CH₃ [4] (CH₃)₂CHCH₂OH Q.21 Magenta is : [1] Alkaline phenolphthalein [2] Red litums [3] p-rosaniline hydrochloride [4] Methyl red Q.22 An organic compound C₅H₁₀O forms phenyl hydrazone, gives positive iodoform test and undergoes Wolf-Kishne reaction to give isopentane. It is : [1] Pentanol [2] Pentan-2-one [3] Pentan-3-one [4] 3-methylbutan-2-one Q.23 Which of the following is the mechanism of representative reactions of carbonyl compounds [1] Neucleophilic substitution [2] Electrophilic substitution [3] Neucleophilic addition [4] Electrophilic addition Q.24 In the aqueous solution of which of the following compounds forms the compounds belonging to carbo hydrat family on keeping it in the aqueous solution of barium hydroxide : [1] Benzaldehyde [2] Formaldehyde [3] Acetaldehye [4] Acetone Q.25 What happens on adding concentrated caustic alkali to an aldehyde containing α-hydrogen : [1] Resinification [2] Saccharification [3] Tischenko reaction [4] Cannizzaro's reaction Q.26 Which of the following is reactions may be used for obtaining an unsaturated aldehyde containing more carbon atoms than the parent alkanal : [1] Acloi condensation [2] Polymerisation [3] Tischenko reaction [4] Cannizzaro's reaction atoms than the parent alkanal : [1] Acetoleking [2] Ethyl acetate [3] Acetone [4] Manganous acetate Q.26 Which of the following is formed on heating the representative member of alkanoic acid family with manganou oxide at 300°: [1] Acetaldehyde [2] Ethyl acetate [3] Acetone [4] Manganous acetate Q.27 Which of the following is formed on heating the representative member of alkanoic acid family with manganou oxide at 300°: [1] Acetaldehyde [2] Ethyl acetate [3] Acetone [4] Manganous acetate Q.28 Oximinoacetone is formed by the reaction of which of the following		[1] Acetaldehyde	[2] Formaldehyde	[3] Propionaldehyde	[4] Butyraldehyde							
[1] (CH_3)_3COH[2] CH_3CH_2CH_2OH[3] CH_3CH_2CH(OH)CH_3[4] (CH_3)_2CHCH_2OH Q.21 Magenta is : [1] Alkaline phenolphthalein[2] Red littums [3] p-rosaniline hydrochloride[4] Methyl red Q.22 An organic compound $C_5H_{10}O$ forms phenyl hydrazone, gives positive iodoform test and undergoes Wolf-Kishner reaction to give isopentane. It is : [1] Pentanol[2] Pentan-2-one[3] Pentan-3-one[4] 3-methylbutan-2-one Q.23 Which of the following is the mechanism of representative reactions of carbonyl compounds [1] Neucleophilic substitution [3] Neucleophilic addition[2] Electrophilic substitution [3] Electrophilic addition Q.24 In the aqueous solution of which of the following compounds forms the compounds belonging to carbo hydrat family on keeping it in the aqueous solution of barium hydroxide : [1] Benzaldehyde[2] Formaldehyde[3] Acetaldehye[4] Acetone Q.25 Which of the following concentrated caustic alkali to an aldehyde containing α -hydrogen : [1] Resinfification[2] Polymerisation [3] Tischenko reaction[4] Cannizzaro's reaction Q.26 Which of the following is formed on heating the representative member of alkanoic acid family with manganou oxide at 300° : [1] Acetaldehyde[2] Ethyl acetate[3] Acetone Q.27 Which of the following is formed on heating the representative member of alkanoic acid family with manganou oxide at 300° : [1] Propanal + HNO2[2] Methylamine + Acetone[3] HNO ₂ + Propanone[4] Acetone + NH ₂ OH	Q.20	Which of the following of	compounds will give a mix	ed ketone on oxidation :	\sim							
 Q.21 Magenta is : [1] Alkaline phenolphthalein [2] Red litums [3] p-rosaniline hydrochloride [4] Methyl red Q.22 An organic compound C₅H₁₀O forms phenyl hydrazone, gives positive iodoform test and undergoes Wolf-Kishne reaction to give isopentane. It is : [1] Pentanol [2] Pentan-2-one [3] Pentan-3-one [4] 3-methylbutan-2-one Q.23 Which of the following is the mechanism of representative reactions of carbonyl compounds [1] Neucleophilic substitution [2] Electrophilic substitution [3] Neucleophilic addition [4] Electrophilic addition Q.24 In the aqueous solution of which of the following compounds forms the compounds belonging to carbo hydrat family on keeping it in the aqueous solution of barium hydroxide : [1] Benzaldehyde [2] Formaldehyde [3] Acetaldehye [4] Acetone Q.25 What happens on adding concentrated caustic alkali to an aldehyde containing <i>α</i>-hydrogen : [1] Resinification [2] Saccharification [3] Tischenko reaction [4] Cannizzaro's reaction Q.26 Which of the following is formed on heating the representative member of alkanoic acid family with manganou oxide at 300°: [1] Acetaldehyde [2] Ethyl acetate [3] Acetone Q.28 Oximinoacetone is formed by the reaction of which of the following : [1] Propanal + HNO2 [2] Methylamine + Acetone [3] HNO2 + Propanone [4] Acetone + NH2OH 		[1] (CH ₃) ₃ COH	$[2] \operatorname{CH}_3 \operatorname{CH}_2 \operatorname{CH}_2 \operatorname{OH}$	$[3] CH_3 CH_2 CH (OH) CH_3 [4] (CH_3)_2 CH CH_2 OH$								
[1] Alkaline phenolphthalein [2] Red liftums [3] p-rosaniline hydrochloride [4] Methyl red Q.22 An organic compound C ₈ H ₁₀ O forms phenyl hydrazone, gives positive iodoform test and undergoes Wolf-Kishne reaction to give isopentane. It is : [1] Pentanol [2] Pentan-2-one [3] Pentan-3-one [4] 3-methylbutan-2-one Q.23 Which of the following is the mechanism of representative reactions of carbonyl compounds [1] Neucleophilic substitution [2] Electrophilic substitution [3] Neucleophilic addition [2] Electrophilic addition Q.24 In the aqueous solution of which of the following compounds forms the compounds belonging to carbo hydrat family on keeping it in the aqueous solution of barium hydroxide : [1] Benzaldehyde [2] Formaldehyde [3] Acetaldehye [4] Acetone Q.25 What happens on adding concentrated caustic alkali to an aldehyde containing α-hydrogen : [1] Resinification [2] Saccharification [3] Tischenko reaction [4] Cannizzaro's reaction Q.26 Which of the following is formed on heating the representative member of alkanoic acid family with manganou oxide at 300° : [1] Acetaldehyde [2] Polymerisation [3] Tischenko reaction [4] Cannizzaro's reaction Q.27 Which of the following is formed on heating the representative member of alkanoic acid family with	Q.21	Magenta is :										
 [3] p-rosaniline hydrochloride [4] Methyl red Q.22 An organic compound C_gH₁₀O forms phenyl hydrazone, gives positive iodoform test and undergoes Wolf-Kishne reaction to give isopentane. It is : [1] Pentanol [2] Pentan-2-one [3] Pentan-3-one [4] 3-methylbutan-2-one Q.23 Which of the following is the mechanism or representative reactions of carbonyl compounds [1] Neucleophilic substitution [2] Electrophilic substitution [3] Neucleophilic addition [4] Electrophilic addition Q.24 In the aqueous solution of which of the following compounds forms the compounds belonging to carbo hydrat family on keeping it in the aqueous solution of barium hydroxide : [1] Benzaldehyde [2] Formaldehyde [3] Acetaldehye [4] Acetone Q.25 What happens on adding concentrated caustic alkali to an aldehyde containing α-hydrogen : [1] Resinification [2] Polymerisation [3] Tischenko reaction [4] Cannizzaro's reaction Q.26 Which of the following is formed on heating the representative member of alkanoic acid family with manganou oxide at 300°: [1] Acetaldehyde [2] Elethyl acetate [3] Acetone [4] Manganous acetate Q.28 Oximinoacetone is formed by the reaction of which of the following : [1] Propanal + HNO2 [2] Methylamine + Acetone [3] HNO, + Propanone [4] Acetone + NH₂OH 		[1] Alkaline phenolphtha	alein	[2] Red litums								
Q.22 An organic compound $C_5H_{10}O$ forms phenyl hydrazone, gives positive iodoform test and undergoes Wolf-Kishner reaction to give isopentane. It is : [1] Pentanol [2] Pentan-2-one [3] Pentan-3-one [4] 3-methylbutan-2-one Q.23 Which of the following is the mechanism of representative reactions of carbonyl compounds [1] Neucleophilic substitution [2] Electrophilic substitution [3] Neucleophilic substitution [2] Electrophilic substitution [3] Neucleophilic addition [4] Acetone Q.24 In the aqueous solution of which of the following compounds forms the compounds belonging to carbo hydrate family on keeping it in the aqueous solution of barium hydroxide : [1] Benzaldehyde [2] Formaldehyde [3] Acetaldehye [4] Acetone Q.25 What happens on adding concentrated caustic alkali to an aldehyde containing α -hydrogen : [1] Resinification [2] Saccharification [3] Tischenko reaction [4] Cannizzaro's reaction Q.26 Which of the following reactions may be used for obtaining an unsaturated aldehyde containing more carbon atoms than the parent alkanal : [1] Aldol condensation [2] Polymerisation [3] Tischenko reaction [4] Cannizzaro's reaction Q.27 Which of the following is formed on heating the representative member of alkanoic acid family with manganou oxide at 300° : [1] Acetaldehyde [2] Ethyl acetate [3] Acetone [4] Manganous aceta		[3] p-rosaniline hydroch	loride	[4] Methyl red								
 [1] Pentanol [2] Pentan-2-one [3] Pentan-3-one [4] 3-methylbutan-2-one Q.23 Which of the following is the mechanism of representative reactions of carbonyl compounds [1] Neucleophilic substitution [2] Electrophilic substitution [3] Neucleophilic addition [4] Electrophilic addition Q.24 In the aqueous solution of which of the following compounds forms the compounds belonging to carbo hydrate family on keeping it in the aqueous solution of barium hydroxide : [1] Benzaldehyde [2] Formaldehyde [3] Acetaldehye [4] Acetone Q.25 What happens on adding concentrated caustic alkali to an aldehyde containing α-hydrogen : [1] Resinification [2] Saccharification [3] Tischenko reaction [4] Cannizzaro's reaction Q.26 Which of the following is formed on heating the representative member of alkanoic acid family with manganou oxide at 300°: [1] Acetaldehyde [2] Ethyl acetate [3] Acetone [4] Manganous acetate Q.28 Oximinoacetone is formed by the reaction of which of the following : [1] Propanal + HNO2 [2] Methylamine + Acetone [3] HNO₂ + Propanone [4] Acetone + NH₂OH 	Q.22	An organic compound C reaction to give isopent	$F_5H_{10}O$ forms phenyl hydra ane. It is :	zone, gives positive iodof	orm test and undergoes Wolf-Kishner							
 Q.23 Which of the following is the mechanism of representative reactions of carbonyl compounds Neucleophilic substitution Electrophilic substitution Neucleophilic addition Electrophilic addition Q.24 In the aqueous solution of which of the following compounds forms the compounds belonging to carbo hydrat family on keeping it in the aqueous solution of barium hydroxide : Electrophilic addition Formaldehyde Acetaldehye Q.25 What happens on adding concentrated caustic alkali to an aldehyde containing α-hydrogen : Electrophilic addition Saccharification Saccharification Tischenko reaction Cannizzaro's reaction Q.26 Which of the following reactions may be used for obtaining an unsaturated aldehyde containing more carbon atoms than the parent alkanal : Aldol condensation Polymerisation Tischenko reaction Cannizzaro's reaction Q.27 Which of the following is formed on heating the representative member of alkanoic acid family with manganous oxide at 300°: Acetaldehyde Ethyl acetate Acetone Q.28 Oximinoacetone is formed by the reaction of which of the following : Propanal + HNO₂ Methylamine + Acetone HNO₂ + Propanone Acetone + NH₂OH 		[1] Pentanol	[2] Pentan-2-one	[3] Pentan-3-one	[4] 3-methylbutan-2-one							
 [1] Neucleophilic substitution [3] Neucleophilic addition [4] Electrophilic addition [4] Acetone [1] Benzaldehyde [2] Formaldehyde [3] Acetaldehye [4] Acetone [1] Benzaldehyde [2] Formaldehyde [3] Acetaldehye [4] Acetone [1] Resinification [2] Saccharification [3] Tischenko reaction [4] Cannizzaro's reaction [4] Acetone [1] Addol condensation [2] Polymerisation [3] Tischenko reaction [4] Cannizzaro's reaction [4] Acetone [1] Acetaldehyde [2] Ethyl acetate [3] Acetone [4] Cannizzaro's reaction [4] Cannizzaro's reaction [4] Acetone [1] Acetaldehyde [2] Ethyl acetate [3] Acetone [4] Cannizzaro's reaction [4] Cannizzaro's reaction [4] Acetone [1] Acetaldehyde [2] Ethyl acetate [3] Acetone [4] Manganous acetate [1] Propanal + HNO₂ [2] Methylamine + Acetone [3] HNO₂ + Propanone [4] Acetone + NH₂OH [4] Acetone + NH₂OH	Q.23	Which of the following is	s the mechanism of repres	esentative reactions of carbonyl compounds								
 [3] Neucleophilic addition [4] Electrophilic addition Q.24 In the aqueous solution of which of the following compounds forms the compounds belonging to carbo hydrat family on keeping it in the aqueous solution of barium hydroxide : [1] Benzaldehyde [2] Formaldehyde [3] Acetaldehye [4] Acetone Q.25 What happens on adding concentrated caustic alkali to an aldehyde containing α-hydrogen : [1] Resinification [2] Saccharification [3] Tischenko reaction [4] Cannizzaro's reaction Q.26 Which of the following reactions may be used for obtaining an unsaturated aldehyde containing more carbon atoms than the parent alkanal : [1] Aldol condensation [2] Polymerisation [3] Tischenko reaction [4] Cannizzaro's reaction Q.27 Which of the following is formed on heating the representative member of alkanoic acid family with manganous oxide at 300°: [1] Acetaldehyde [2] Ethyl acetate [3] Acetone [4] Manganous acetate Q.28 Oximinoacetone is formed by the reaction of which of the following : [1] Propanal + HNO₂ [2] Methylamine + Acetone [3] HNO₂ + Propanone [4] Acetone + NH₂OH 		[1] Neucleophilic substi	tution	[2] Electrophilic substitution								
 Q.24 In the aqueous solution of which of the following compounds forms the compounds belonging to carbo hydrat family on keeping it in the aqueous solution of barium hydroxide : [1] Benzaldehyde [2] Formaldehyde [3] Acetaldehye [4] Acetone Q.25 What happens on adding concentrated caustic alkali to an aldehyde containing α-hydrogen : [1] Resinification [2] Saccharification [3] Tischenko reaction [4] Cannizzaro's reaction Q.26 Which of the following reactions may be used for obtaining an unsaturated aldehyde containing more carbon atoms than the parent alkanal : [1] Aldol condensation [2] Polymerisation [3] Tischenko reaction [4] Cannizzaro's reaction Q.27 Which of the following is formed on heating the representative member of alkanoic acid family with manganous oxide at 300°: [1] Acetaldehyde [2] Ethyl acetate [3] Acetone [4] Manganous acetate Q.28 Oximinoacetone is formed by the reaction of which of the following : [1] Propanal + HNO2 [2] Methylamine + Acetone [3] HNO2 + Propanone [4] Acetone + NH2OH 		[3] Neucleophilic addition	n	[4] Electrophilic addition								
[1] Benzaldehyde [2] Formaldehyde [3] Acetaldehye [4] Acetone Q.25 What happens on adding concentrated caustic alkali to an aldehyde containing α-hydrogen : [1] Resinification [2] Saccharification [3] Tischenko reaction [4] Cannizzaro's reaction Q.26 Which of the following reactions may be used for obtaining an unsaturated aldehyde containing more carbon atoms than the parent alkanal : [1] Aldol condensation [2] Polymerisation [3] Tischenko reaction [4] Cannizzaro's reaction Q.27 Which of the following is formed on heating the representative member of alkanoic acid family with manganou oxide at 300° : [1] Acetaldehyde [2] Ethyl acetate [3] Acetone [4] Manganous acetate Q.28 Oximinoacetone is formed by the reaction of which of the following : [2] Methylamine + Acetone [3] HNO ₂ + Propanone	Q.24	In the aqueous solution family on keeping it in the solution family on keeping it in the solution of the solut	of which of the following on the aqueous solution of ba	compounds forms the con rium hydroxide :	npounds belonging to carbo hydrate							
 Q.25 What happens on adding concentrated caustic alkali to an aldehyde containing α-hydrogen : [1] Resinification [2] Saccharification [3] Tischenko reaction [4] Cannizzaro's reaction atoms than the parent alkanal : [1] Aldol condensation [2] Polymerisation [3] Tischenko reaction [4] Cannizzaro's reaction Q.26 Which of the following reactions may be used for obtaining an unsaturated aldehyde containing more carbon atoms than the parent alkanal : [1] Aldol condensation [2] Polymerisation [3] Tischenko reaction [4] Cannizzaro's reaction Q.27 Which of the following is formed on heating the representative member of alkanoic acid family with manganous oxide at 300°: [1] Acetaldehyde [2] Ethyl acetate [3] Acetone [4] Manganous acetate Q.28 Oximinoacetone is formed by the reaction of which of the following : [1] Propanal + HNO₂ [2] Methylamine + Acetone [3] HNO₂ + Propanone [4] Acetone + NH₂OH 		[1] Benzaldehyde	[2] Formaldehyde	[3] Acetaldehye	[4] Acetone							
 [1] Resinification [2] Saccharification [3] Tischenko reaction [4] Cannizzaro's reaction Q.26 Which of the following reactions may be used for obtaining an unsaturated aldehyde containing more carbon atoms than the parent alkanal : [1] Aldol condensation [2] Polymerisation [3] Tischenko reaction [4] Cannizzaro's reaction Q.27 Which of the following is formed on heating the representative member of alkanoic acid family with manganou oxide at 300°: [1] Acetaldehyde [2] Ethyl acetate [3] Acetone [4] Manganous acetate Q.28 Oximinoacetone is formed by the reaction of which of the following : [1] Propanal + HNO₂ [2] Methylamine + Acetone [3] HNO₂ + Propanone [4] Acetone + NH₂OH 	Q.25	What happens on addir	ng concentrated caustic a	lkali to an aldehyde conta	aining α -hydrogen :							
 Q.26 Which of the following reactions may be used for obtaining an unsaturated aldehyde containing more carbon atoms than the parent alkanal : [1] Aldol condensation [2] Polymerisation [3] Tischenko reaction [4] Cannizzaro's reaction Q.27 Which of the following is formed on heating the representative member of alkanoic acid family with manganou oxide at 300°: [1] Acetaldehyde [2] Ethyl acetate [3] Acetone [4] Manganous acetate Q.28 Oximinoacetone is formed by the reaction of which of the following : [1] Propanal + HNO₂ [2] Methylamine + Acetone [3] HNO₂ + Propanone [4] Acetone + NH₂OH 		[1] Resinification	[2] Saccharification	[3] Tischenko reaction	[4] Cannizzaro's reaction							
 [1] Aldol condensation [2] Polymerisation [3] Tischenko reaction [4] Cannizzaro's reaction Q.27 Which of the following is formed on heating the representative member of alkanoic acid family with manganou oxide at 300°: [1] Acetaldehyde [2] Ethyl acetate [3] Acetone [4] Manganous acetate Q.28 Oximinoacetone is formed by the reaction of which of the following : [1] Propanal + HNO₂ [2] Methylamine + Acetone [3] HNO₂ + Propanone [4] Acetone + NH₂OH 	Q.26	Which of the following r atoms than the parent a	eactions may be used for alkanal :	obtaining an unsaturated	aldehyde containing more carbon							
 Q.27 Which of the following is formed on heating the representative member of alkanoic acid family with manganous oxide at 300°: [1] Acetaldehyde [2] Ethyl acetate [3] Acetone [4] Manganous acetate Q.28 Oximinoacetone is formed by the reaction of which of the following : [1] Propanal + HNO₂ [2] Methylamine + Acetone [3] HNO₂ + Propanone [4] Acetone + NH₂OH 		[1] Aldol condensation	[2] Polymerisation	[3] Tischenko reaction	[4] Cannizzaro's reaction							
[1] Acetaldehyde[2] Ethyl acetate[3] Acetone[4] Manganous acetateQ.28Oximinoacetone is for \exists by the reaction of $\forall hich of$ the following :[1] Propanal + HNO2[2] Methylamine + Acetone[3] HNO2 + Propanone[4] Acetone + NH2OH	Q.27	Which of the following is oxide at 300°:	s formed on heating the re	presentative member of a	alkanoic acid family with manganous							
Q.28 Oximinoacetone is formed by the reaction of which of the following : [1] Propanal + HNO2 [2] Methylamine + Acetone [3] HNO2 + Propanone [4] Acetone + NH2OH		[1] Acetaldehyde	[2] Ethyl acetate	[3] Acetone	[4] Manganous acetate							
[1] Propanal + HNO_2 [2] Methylamine + Acetone [3] HNO_2 + Propanone [4] Acetone + NH_2OH	Q.28	Oximinoacetone is form	ned by the reaction of which	ch of the following :								
[3] HNO_2 + Propanone [4] Acetone + NH_2OH		[1] Propanal + HNO ₂		[2] Methylamine + Acete	one							
		[3] HNO ₂ + Propanone		[4] Acetone + NH ₂ OH								

Q.29	Hypnotic drugs named	sulphonals can be manuf	actured by which of the f	ollowing reactions :
	[1] Carbonyl compound	d + alcohol ───→ A ──	[0] →	
	[2] Carbonyl compound	d + Thioalcohol $\longrightarrow A$		
	[3] Ketone + Phenylhyd	drazien>		
	[4] Aldehyde + Baryta	water>		
Q.30	Which of the following	compounds is formed on	heating acetone with a w	eak alkali like baryta water :
	[1] Phorone		[2] 3-Methyl-2-penten-2	2-one
	[3] Mesitylene		[4] Mesityl oxide	
Q.31	Tetramethylethylene g benzene	lycol is obtained on the	reduction of which of the	e following compounds by Hg/Mg in
	[1] Butanone	[2] Ethanal	[3] Propanal	[4] Propanone
Q.32	Formamint, the medicing	ne for throat infections, is	a mixture of which of the	following compounds :
	[1] Acetaldehyde + Lac	ctose	[2] HCHO + Lactose	6
	$[3] C_6 H_5 CHO + Glucos$	e	[4] CH ₃ CHO + Fructos	9
Q.33	A mixture of the simple following compounds	st members of alkanone	and alkanal families is fo	rmed on ozonolysis of which of the
	[1] Propyne	[2] Isobutylene	[3] α-Butylene	[4] 3-Pentaone
Q.34	Which of the following of carbon atoms :	compounds reacts with ac	idified dichromate to form	a carboxylic acid having less number
	[1] Acetaldehyde	[2] Ethyl methyl ketone	[3] Isobutyraldehyde	[4] n-Butyraldehyde
Q.35	Which of the following p solution :	products should be formed	d on the reactions of form	aldehyde with concentrated NaOH
	[1] Ethanol + sodium fo	ormate	[2] Methanol + sodium	methanoate
	[3] Methanol + sodium	acetate	[4] Ethanol + sodium a	cetate
Q.36	An organic compound h	aving molecular formula C_3	H_60 , does not give any pred	cipitate with 2,4-dinitrophenylhydrazine
	$[1] CH_a - CH_a - CHO$	$I2ICH_{a} = CH - CH_{a}OH$	[3] (CH ₂) ₂ CO	$[4] CH_a = CH - O - CH_a$
		dil a	1 3/2	
Q.37	$CH_3CHO + CH_3CHO -$	$\rightarrow CH_3CH(OH)CH_2C$	HO	
	which of the following is	s the principal intermediat	e of the above reaction :	
	[1] A carbanion	[2] A carbocation	[3] A carbene	[4] None of the above
Q.38	Which of the following of	compounds can be forme	d from simplest aldehyde):
	[A] Bakelite	[B] Metaldehyde	[C] Urotropine	[D] Formamint [E] Paraldehyde
	[1] ABC	[2] ABE	[3] ACD	[4] ADE
Q.39	Which of the following	will be in gaseous state, it	f room temperature is 25	°C :
	[1] Actaldehyde	[2] Butanone	[3] Acetone	[4] Formalin
Q.40	$[(CH_3)_2C=CH]_2C=Oi$	s :		
	[1] Ketone	[2] Trimer of acetone	[3] Unsaturated aldehy	de[4] Dimer of acetone
Q.41	$>C=O + 2RSH \rightarrow >C(S)$	$SR)_2 + H_2O$, the product is	s called :	
	[1] Mercaptan	[2] Thioketal	[3] Thiacetal	[4] All

Q.42	Phenyl-hydrazone der	ivative of an aldehyde con	tains 20.9% Nitrogen. Th	en the Aldehyde is :						
	[1] Propionaldehyde	[2] Butyraldehyde	[3] Isobutyraldehyde	[4] Acetaldehydes						
Q.43	$C_6H_5CHO + PCI_5$, the p	product is :								
	[1] Benzyl chloride	[2] Benzotrichloride	[3] Benzal chloride	[4] Triphenyl phosphate						
Q.44	Benzaldehyde and forn	naldehyde give a common	reaction :							
	[1] Cannizzaro's reaction	on	[2] Benzoin condensatio	วท						
	[3] Claisen condensatio	n	[4] Perkin's reaction							
Q.45	$C_6H_5CHO \xrightarrow{Cl_2} A + H_5CHO$	HCI								
	The product A when rea	acts with the following con	npounds the reaction is kr	nown as Schotten Baumann reaction						
	[1] C ₆ H ₅ NH ₂	$[2] C_6^{}H_5^{}CH_2^{}OH$	[3] C ₆ H ₅ OH	[4] All of these						
Q.46	HCHO and C_6H_5 CHO of	can be distinguished by :								
	[1] Fehling solution	[2] Tollen's reagent	[3] KMnO ₄	[4] All of these						
Q.47	Benzaldehyde is used	in all except :		6						
	[1] In the manufature of	perfuming agents	[2] An an oxidising age	nt						
	[3] In the manufacture of	of dyes	[4] In the manufacture of	of cosmetics						
Q.48	Benzylidene acetone is ethanolic sodium hydro	the product of the reactio oxide. The organic compo	tion of an orgnaic compound (A) with acetone in the presence pounds (A) is :							
	[1] Benzylalcohol	[2] Benzaldehyde	[3] Benzoic acid	[4] Acetophenone						
Q.49	Which of the following	is most stable :								
	[1] C ₆ H₅COO⁻	[2] CH₃COO⁻	[3] C ₆ H ₅ COOH	[4] CH ₃ COOH						
Q.50	Replacement of carbor	nylic oxygen is observed ir	n the reaction :							
	[1] C ₆ H ₅ CHO/2H	$[2] C_6 H_5 CHO/H_2 N-NH_2$	[3] C ₆ H ₅ COOH/PCI ₅	[4] C ₆ H ₅ CHO/HCN						
Q.51	Use is made of the follo	wing reagent to convert b	benzaldehyde to benzoyl chloride :							
	[1] Phosphorus pentach	nloride								
	[2] Thionyl chloride	033								
	[3] Reaction with chlori	ne in presence of AICI ₃								
	[4] Reaction with Cl ₂	* [*]								
Q.52	Benzyl phenyl ketone i	s :								
	[1] C ₆ H ₅ COC ₆ H ₅		[2] C ₆ H ₅ COCOC ₆ H ₅							
	[3] C ₆ H ₅ CH ₂ COC ₆ H ₅		[4] C ₆ H ₅ CH ₂ -CO-CH ₂ -C	C ₆ H ₅						
Q.53	The following compoun	d is obtained on refluxing	benzaldehyde with aque	ous ethanolic potassium cyanide :						
	[1] Benzoic acid	[2] Benzyl acetate	[3] Cinnamic acid	[4] Benzoin						
Q.54	An organic compound	contains 40% C and 6.66	% H. Its empirical formula	a is :						
	[1] CH ₂	[2] CH ₂ O	[3] CHO	[4] CHO ₂						
Q.55	Choose the wrong state	ement :								
	[1] Smell of benzaldehy	/de and mirbane oil is not	different							
	[2] Benzaldehyde unde	rgoes Tischenko reaction								
	[3] Benzaldehyde redu	ces Fehling's solution								
	[4] Dry distillation of cal	lcium benzoate gives a ke	etonic compound							

Q.56 Etard reaction in the following is :

- [1] Oxidation of toluene to benzaldehyde by chromychloride
- [2] Oxidation of toluene to benzaldehyde by alkaline KMnO₄
- [3] Dry distillation of calcium benzoate
- [4] Reaction of benzene with Cl₂ in the presence of ultra violet light
- Q.57 Aromatic aldehydes react with primary amines to form the following : [3] Schiff's base [1] Urea [2] Amide
- Q.58 Which aldehyde is used in the manufacture of perfumes :

[4] Oxime

	[1] Urea [2] Amide [3] Schiff's base [4] Oxime																					
Q.58	Wł	nich al	dehyd	de is u	ised ii	n the r	nanuf	actur	e of p	erfum	es :											
	[1]	Cinna	malde	ehyde	. [2] Bei	nzalde	ehyde)	[3] I	Propic	onalde	hyde	[4	[4] Acryaldehyde							
	[1]	Cinna	malde	ehyde		2] Bei	nzalde	ehyde			Propic		hyde			yalde	hyde					
								s Vî	SV.	'()	r] [G	Y									
Qus.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20		
Ans.	4	2	4	4	2	3	3	1	2	4	2	3	3	4	2	3	4	1	2	3		
Qus.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40		
Ans.	3	4	3	2	1	1	3	3	2	4	4	2	2	2	2	4	1	3	1	2		
Qus.	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58				
Ans.	2	4	3	1	4	1	2	2	1	2	4	3	4	2	3	1	3	2				

Exercise # 3

Q.1	In the presence of a di	lute base C ₆ H ₅ CHO and	CH ₃ CHO react together	to give a prod	luct. The product is : [MP PET 1994]			
	[1] C ₆ H ₅ CH ₃	$[2]C_6H_5CH_2CH_2OH$	[3] C ₆ H ₅ CH ₂ OH	[4] C ₆ H ₅ CH=	-CHCHO			
Q.2	In the metal carbonyls	of the general formual M	$(CO)_x$, where M = metal	and $x = 4$, the	n metals is bonded to:			
					[CBSE 1995]			
	[1] Carbon and oxyger	[2] Carbon	[3] Oxygen	[4] C≡O tripl	e bond			
Q.3	Oxidation of toluene waqueous NaOH produce	vith CrO ₃ in the presence ces :	e of (CH ₃ CO) ₂ O gives a p	oroduct 'A' wh	ich on treatment with [CBSE 1995]			
	[1] C ₆ H ₅ CHO	[2] (C ₆ H ₅ CO) ₂ O	[3] C ₆ H ₅ COONa	[4] 2,4–diac	etyl toluene			
Q.4	The general order of re	eactivity of carbonyl com	pounds for nucleophilic a	addition reacti	ons is :			
				\mathbf{C}	[CBSE 1995]			
	$[1] H_2C = O > RCHO >$	> ArCHO $>$ R ₂ C = O $>$ A	$r_2 C = O$					
	$[2] ArCHO > Ar_2C = O$	> RCHO $>$ R ₂ C = O $>$ H	$I_2C = O$					
	$[3] Ar_2 C = O > R_2 C = 0$	O > ArCHO > RCHO > H	$I_2 C = O$					
	$[4] H_2 C = O > R_2 C = C$	$> Ar_2C = O > RCHO >$	ArCHO					
Q.5	What is/are the produc	t(s) formed when an equ	imolar mixture of benzlad	lehyde and fo	rmladehyde is heated			
	with concentrated NaC				[1995]			
	$[1]C_{6}H_{5}-CH_{2}-OH$ and	H–COONa	$[2]C_6H_5$ -COONa and C	CH ₃ -OH				
• •	$[3] C_6 H_5$ –COOH and C	H ₃ –ONa	$[4]C_6H_5-CH_2-COONa$		ID 4005]			
Q.6	The suitable reagent f	or the reduction of keton	es to hydrocarbons is :		[Roorkee 1995]			
• -	[1] Zn–Hg/HCl	[2] HI		[4] H ₂ SO ₄				
Q.7	Which of the following	regents distinguishes be	etween aldehyde and ket		7. DDMT 40001			
		[CPMT 1994, 97; MP	PET 1995; MP PMT 19	96; RPMI 198	97; RPMT 1999]			
0.0	[1] Feniing soluion	$[2] H_2 SO_4$ solution	[3] Nahso ₃	[4] NH ₃				
Q.8	Acetone is easily oxid	Ized with :			[MP PET 1996]			
	[1] Iollen's reagent		[2] Fehling solution					
• •	[3] Acidic dichromate	solution	[4] Benedict's solution					
Q.9	Which of the following	tooes not give yellow pre	cipitate with I ₂ and NaOF					
0.40								
Q.10	Dry distillation of the n	nixture of calcium format	e and calcium acetate gi	Ves :				
0.44	[1] Acetone	[2] Acetaidenyde	[3] Formaldenyde	[4] Formic a				
Q.TT	Reaction of acetaiden	yde with HCN followed b	y hydrolysis gives a com	pound which s				
	[1] Optical icomoriam		[2] Coomstriag isome	iom				
	[1] Optical isomerism							
0 42		control with KOU airroom	[4] Tautomensm	ormoto Thor	aastian is knows oo i			
Q.12	Formaldenyde when ti	eated with KOH gives m	ethanol and potassium in	ormate. The n	[MP PET 1997]			
	[1] Perkin reaction	[2] Claisen reaction	[3] Cannizzaro reactior	n [4] Knoeven	agel reaction			
Q.13	Which of the following	does not give yellow pre	cipiate with NaOH + KI ?)	[MP PMT 1997]			
	[1] Acetone	[2] Acetaldehyde	[3] Benzaldehyde	[4] Acetophe	enone			

Q.14	Which one of the following reactions is a method for the conversion of a ketone into a hyd									
				[MP F	PET/PMT 1998]					
	[1] Aldol condensation		[2] Reimer–Tiemann re	action						
	[3] Cannizzaro reaction	ו	[4] Wolff–Kishner redu							
Q.15	Which of the following	reagent reacts differently	y with HCHO, CH ₃ CHO and CH ₃ COCH ₃ : [MP PET 1999]							
	[1] HCN	[2] NH ₂ NH ₂	[3] NH ₂ OH	[4] NH ₃						
Q.16	Which of the following	on reaction with NH ₃ give	es urinary antiseptic com	npound	[MP PMT 1999]					
	[1] HCHO	[2] CH ₃ CHO	[3] C ₆ H ₅ CHO	[4] C ₆ H ₅ CH ₂ C	Ю					
Q.17	Bakelite is a polymer of	of :		[Delhi PMT 1	1996; MP PMT 2002]					
	[1] HCHO + phenol		[2] HCHO + aldehyde (acetaldehyde)	0.					
	[3] Phenol + H_2SO_4		[4] HCHO + acetone							
Q.18	Aldol condensation inv	olving $CH_3CHO + CH_3CH$	IO gives the product :		elhi PMT 1996]					
	[1] CH ₃ CHOHCH ₂ CHO	$[2] \operatorname{CH}_3 \operatorname{COCH}_2 \operatorname{CH}_3$	[3] CH ₃ CH=CH ₂	[4] None of these						
Q.19	The reaction : C_6H_5CH	$O + CH_3CHO \rightarrow C_6H_5CH$	H = CH–CHO is known a	s :	[BHU 1996]					
	[1] Perkin's reaction		[2] Claisen condensati	on						
	[3] Benzoin condensta	ion	[4] Cannizzaro's reacti	on						
Q.20	Which one of the follow	ving gives iodoform test :			[AIIMS 1996]					
	[1] Formaldehyde	[2] Ethyl alcohol	[3] Benzyl alcohol	[4] Benzalde	hyde					
Q.21	Acetone is prepared b	y:	<u> </u>		[RPMT 2002]					
	[1] Oxidation of n-prop	yl alcohol	[2] Pyrolysis of acetic acid							
	[3] Oxidation of acetal	dehyde	[4] Pyrolysis of calciur	n acetate						
Q.22	Which of the following	does not give brick red p	precipitate with Fehling s	solution : [AIIMS 1996]						
	[1] Acetone	[2] Acetladehyde	[3] Formalin	[4] D–glucose						
Q.23	Acetaldehyde and ace	tone can be distinguishe	ed by :	[AIIMS 1996; DEC 1999]						
	[1] Molisch test	[2] Bromoform test	[3] Solubility in water	[4] Tollen's te	est					
Q.24	When CH ₃ COCH ₃ read	cts with Cl ₂ and NaOH, w	hich of the following is fo	ormed :	[CPMT 1996]					
	[1] CHCl ₃	[2] CCI ₄	[3] CCI ₂ H ₂	[4] CH ₃ CI						
Q.25	Which compound is so	oluble in H ₂ O :			[RPMT 1997]					
	[1] HCHO	[2] CH ₃ CHO	[3] CH ₃ COCH ₃	[4] All						
Q.26	CH ₃ CHO + CH ₃ MgBr -	\rightarrow Product $\xrightarrow{H_2O}$ A			[RPMT 1997]					
	[1] Primary alcohol	[2] Secondary alcohol	[3] Tertiary alcohol	[4] Ketone						
Q.27	Among the following c	ompounds, which will rea	act with acetone to give	a product cont	aining > C = N $-$					
					[IIT 1998]					
	$[1] C_6 H_5 NH_2$	[2] (CH ₃) ₃ N	$[4] \operatorname{C_6H_5}\operatorname{NHC_6H_5}$	[4] None of th	nese					

			AI	LDEHYDE, KETONE & BENZALDEHYDE				
Q.28	Which of the following	will not undergo aldol co	ondensation :	[IIT 1998]				
	[1] Acetaldehyde	[2] Propanaldehyde	[3] Benzaldehyde	[4] Trideuteroacetaldehyde				
Q.29	Which of the following	has the most acidic pro	ton :	[Roorkee 1998]				
	[1] CH ₃ COCH ₃	[2] (CH ₃) ₂ C=CH ₂	$[3] \operatorname{CH}_3 \operatorname{COCH}_2 \operatorname{COCH}_3$	[4] (CH ₃ CO) ₃ CH				
Q.30	Which of the following	compound will undergo	self aldol condensation i	n the presence of cold dilute alkali :				
				[CBSE 1994]				
	[1] C ₆ H ₅ CHO	[2] CH ₃ CH ₂ CHO	[3] CH≡C–CHO	[4] CH ₂ =CH–CHO				
Q.31	Acetaldehyde cannot	show :		[AIIMS 1997]				
	[1] lodoform test	[2] Lucas test	[3] Benedict's test	[4] Tollen's test				
Q.32	CO + NaOH \rightarrow :			[CPMT 1997]				
	[1] HCOONa	[2] C ₂ H ₂ O ₄	[3] HCOOH	[4] CH ₃ COOH				
Q.33	Benzladehyde + NaOł	$\dashv \rightarrow$		[Pb. PMT 1999]				
	[1] Benzyl alcohol	[2] Benzoic alcohol	[3] Hydrobenzamide	[4] Cinnamic acid				
Q.34	Ketones $[R - C - R_1]$ wi	nere R = R₁ = alkyl group	o.	9				
	U O			•				
	It can be obtained in c	ne sten hv :		[CBSE 1997]				
	[1] Hydrolysis of ester	s	[2] Oxidation of primar	v alcobol				
	[3] Oxidation of second	dary alcohol	[4] Reaction of acid ba	lide with alcohols				
Q.35	C_0H_CHO and $(CH_0)_0$	CO can be distinugished	by testing with :	[EAMCET 1998]				
	[1] Phenyl hydrazine	[2] Hvdroxvlamine	[3] Fehling solution	[4] Sodium bisulphite				
Q.36	the oxidation of toluen	e to benzaldehyde by ch	nromyl chloride is called	[AIIMS 2000; JIPMER 2001]				
	[1] Cannizzaro reaction	n [2] Wurtz reaction	[3] Etard reaction	[4] Reimer–Tiemann reaction				
Q.37	Clemensen's reductio	n of ketones is carried o	ut in :	[BHU 2000]				
	[1] H ₂ with Pd catalys		[2] Glycol with KOH					
	[3] LiAlH ₄ in water	7.	[4] Zn–Hg with HCl					
0.38		$H_{3}O^{+}$, R in the above	sequence of reactions A	and Rara COMT 20001				
Q.30	(HCI) / A	Δ D in the above	sequence of reactions A					
	[1] (CH ₃) ₂ C(OH)CN, (C	H ₃) ₂ C(OH)COOH	[2] (CH ₃) ₂ C(OH)CN, (CI	H ₃) ₂ C(OH) ₂				
	[3] (CH ₃) ₂ C(OH)CN, (C	H ₃) ₂ CHCOOH	[4] (CH ₃) ₂ C(OH)CN, (C	H ₃) ₂ C=O				
Q.39	Reduction of $> C = O$	to CH ₂ can be carried ou	ut with :	[DEC 2000]				
	[1] Catalytic reduction		$[2] Na/C_2H_5OH$					
	[3] Wolf–Kischner redu	uction	[4] LiAlH ₄					
Q.40	From which of the follo	owing tertiary butyl alcoh	ol is obtained by the act	ion of methyl magnesium iodide :				
				[MP CET 2000]				
	[1] HCHO	[2] CH ₃ CHO	$[3] CH_3 COCH_3$	[4] CO ₂				

ALDEHYDE, KETONE & BENZALDEHYDE

Q.41	Which of the following	gives aldol condensation	n reaction :	[CPMT 2001]
		P	Ŷ	Ŷ
	[1] C ₆ H ₅ OH	$[2] C_6 H_5 - C_6 H_5$	[3] CH ₃ CH ₂ – Ċ – CH ₃	$[4] (CH_3)_3 C - \ddot{C} - C_6 H_5$
Q.42	The product formed b	y the reaction of chlorine	with benzladehyde in th	e absence of a catalyst is :
				[Tamil Nadu CET 2002]
	[1] Chlorobenzene	[2] Benzyl chloride	[3] Benzoyl chloride	[4] o-Chlorobenzladehyde
Q.43	The products obtained	d via oxymercuration (Hg	$SO_4 + H_2SO_4$) of 1-butyr	ne would be : [IIT 1999]
	$[1] \operatorname{CH}_3 \operatorname{CH}_2 \operatorname{COCH}_3$		$[2] \operatorname{CH}_3 \operatorname{CH}_2 \operatorname{CH}_2 \operatorname{CHO}$	
	$[3] CH_3 CH_2 CHO + HC$	НО	[4] CH ₃ CH ₂ COOH + H	соон
Q.44	Formaldehyde reacts	with ammonia to give uro	tropine. The formula of ι	urotropine is : [MP PMT 2003]
	[1] (CH ₂) ₆ N ₄	$[2] (CH_2)_4 N_3$	[3] (CH ₂) ₆ N ₆	[4] (CH ₂) ₃ N ₃
Q.45	Cinnamic acid is form	ed when C ₆ H ₅ –CHO cond	denses with $(CH_3CO)_2O$	in presence of :[Orissa Jee 2003]
	[1] Conc. H_2SO_4	[2] Sodium acetate	[3] Sodium metal	[4] Anhydrous ZnCl ₂
Q.46	Reduction of aldehyd	es and ketones to hydroc	arbon take place in the p	presence of : [CPMT 2003]
	[1] Zn amalgam and H	ICI acid	[2] Pd/BaSO ₄	
	[3] Anhydrous AlCl ₃		[4] Ni/Pt	
Q.47	Benzaldehyde on rea	ction with acetophenone	in the presence of sodiu	m hydroxide solution gives :
			.0	[BVP 2003]
	[1] C ₆ H ₅ CH=CHCOC ₆	$H_5[2]C_6H_5COCH_2C_6H_5$	$[3] C_6 H_5 CH=CHC_6 H_5$	$[4] C_6 H_5 CH(OH) COC_6 H_5$
Q.48	Product in following re	eaction is :	>	
	$CH_3MgI + HCHO \rightarrow P$	Product :		[RPMT 2003]
	[1] CH ₃ CHO	[2] CH ₃ OH	[3] C ₂ H ₅ OH	[4] CH ₃ –O–CH ₃
Q.49	$A \xrightarrow{\Delta} CH_2 = C = C$	0, Reactant 'A' in the reac	ction is :	[RPMT 2003]
	[1] CH ₃ CH ₂ CHO	[2] CH ₃ CHO	[3] CH ₃ -C -CH ₃ O	[4] C ₂ H ₅ OH
Q.50	When m-chlorobenza	aldehyde is treated with 5	0% KOH solution, the p	roducts obtained is/are :

[CBSE 2003]

Q.51	In the reaction :						
	CH₃CHO + HCN						
	CH₃CH(OH)CN — ^{H⁺}	$\xrightarrow{/OH^-}$ CH ₃ CH(OH)COC	DH)				
	an asymmetric centre i	s generated. The acid ol	otained would be :		[CBSE 2003]		
	[1] 20% D + 80% L–iso	omer	[2] D-isomer				
	[3] L-isomer		[4] 50% D + 50% L–iso	omer			
Q.52	CH ₃ COCH ₂ COOC ₂ H ₅	$\xrightarrow{\text{NaOH}} A[A] \text{ is}$			[CBSE 2003]		
	[1] CH ₃ COOH	[2] CH ₃ COCH ₃	[3] C ₂ H ₅ CHO	[4] None of th	ese		
Q.53	Which one of the follow	ing is reduced with zinc a	nd hydrochloric acid to gi	ive the correspo	nding hydrocarbon?		
				6	[AIEEE 2004]		
	[1] Butan-2-one	[2] Acetic acid	[3] Acetamide	[4] Ethyl acet	tate		
Q.54	Which one of the follow	ing undergoes reaction w	vith 50% sodium hydroxic	le solution to giv	e the corresponding		
	alcohol and acid?			•	[AIEEE 2004]		
	[1] Benzoic acid	[2] Benzaldehyde	[3] Butanal	[4] Phenol			
Q.55	Which one of the follow	ving aldehydes gives car	nizaro reaction when he	eated with stron	g alkali ?		
			0.0		[VIEEE 2005]		
	[1] Banzaldehyde	[2] Propionaldehyde	[3] Acetaldehyde	[4] Butanal			
Q.56	2-Butanone is best cor	overted to propanoic acid	l by	[J	EE(Scr.) 2005]		
	[1] aq. NaOH/NaI/H+	[3] Tollen's reagent	[4] Fehiling so	g solution			
Q.57	The increasing order o	f the rate of HCN additio	n to compounds A - D is	-	[AIEEE 2006]		
	[A] HCHO	[B] CH ₃ COCH ₃	[3] PhCOCH ₃	[4] PhCOPh			
	[1] D < B < C < A	[2] D < C < B < A	[3] C < D < B < A	[4] A < B < C	< D		
Q.58	A carbonyl compound r	eacts with hydrogen cyar	nide to form cyanohydrin	which on hydrol	ysis forms a racemic		
	mixture of α -hydroxy a	cid. The carbonyl compo	ound is -?		[CPMT - 2006]		
	[1] acetone	[2] diethyl ketone	[3] formaldehyde	[4] acetaldehy	/de		

Qus.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Ans.	4	2	3	1	1	1	1	3	4	2	1	3	3	4	4	1	1	1	2	2
Qus.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
Ans.	4	1	4	1	4	2	1	3	4	2	2	1	1	3	3	3	4	1	3	3
Qus.	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58		
Ans.	3	3	1	1	2	1	1	3	1	3	4	2	1	2	1	2	2	4		

Answer Key