Exercise # 1

Q.1	Which of the following	statements is untrue :							
	[1] A primary alcohol h	as CH ₂ OH group							
	[2] A secondary alcoh	ol has two carbon atoms	5						
	[3] A tertiary alcohol h	as a minimum of four ca	rbon atoms						
	[4] A primary alcohol with a branched chain has a minimum of four carbon atoms								
Q.2	Which of the following	is not a dihydric alcoho	l:						
	[1] Trimethylene glycol	[2] Ethylene glycol	[3] Glycerine	[4] Glycol					
Q.3	Which of the following alcoholic groups:	g compounds does not o	contain at least two prim	ary carbon atoms and two primary					
	[1] Glycerol	[2] Glycol	[3] Trimethylene glyco	[4] Methyl glycol					
Q.4	Which of the following	reactions does not lead	to formation of an alkand	ol:					
	[1] RCOOR' + KOH —	→	[2] $R_2O + H_2O \xrightarrow{\text{dil}/H_2}$	2504					
	[3] RCOR' + 2HNa+	ethanal	[4] (RCO) ₂ O + H ₂ O —	→					
Q.5	Which of the following reducing agents reduces carboxylic acids to alkanols:								
	[1] Sodium and ethano	ol	[2] Sodium and n-buty	d alcohol					
	[3] Lithium aluminium	hydride	[4] Magnesium amalga	am and conc. HCI					
Q.6	Which of the following	enzymes is not present	t in yeast :						
	[1] Maltase	[2] Zymase	[3] Invertase	[4] Diastase					
Q.7	The enzyme diastase	is present in :							
	[1] Wash	[2] Wort	[3] Malt	[4] Yeast					
Q.8	Starch is converted in	to sugar by the enzyme	:						
	[1] Maltase	[2] Zymase	[3] Maltose	[4] Diastase					
Q.9	Which enzyme conver	ts glucose into ethanol :							
	[1] Invertase	[2] Zymase	[3] Maltse	[4] Diastase					
Q.10	Maltose (a disacchario	de) is converted into the	monosaccharide by the	enzyme:					
	[1] Invertase	[2] Maltase	[3] Zymase	[4] Diastase					
Q.11	Which enzyme conver	ts canesugar into a mixt	ture of glucose and fructo	ose:					
	[1] Zymase	[2] Invertase	[3] Maltase	[4] Diastase					
Q.12	Which of the following	statements is false :							
	[1] Industrial alcohol is	s rectified spirit							
	[2] Industrial methylate	ed spirit contains 95% et	thanol and 5% methanol						
	[3] Mineralised methyl	ated spirit contains 90%	rectified spirit, 9% meth	anol and 1% petroleum oil					
	[4] Alcohol can be drie	ed over calcium chloride							
Q.13	Ethanol cannot be der	natured by adding:							
	[1] Pyridine	[2] Caoutchoucine	[3] Methanol	[4] Methanal					

Q.14	Methanol is not prepared by :								
	[1] Destructive distillat	ion of wood	[2] Catalytic hydrogen	ation of carbon monoxide					
	[3] Catalytic oxidation	of methane	[4] Hydroboration-oxid	dation of ethylene					
Q.15	Pyroligneous acid con	tains:							
	[1] Acetic acid, aceton	e and ethanol	[2] Formic acid, aceto	ne and methanol					
	[3] Methanol, acetic ac	cid and acetone	[4] Formic acid, ethan	ol and acetone					
Q.16	Methanol reacts with o	calcium chloride to form	an alcoholate of the stru	cture:					
	[1] CaCl ₂ .2CH ₃ OH	[2] CaCl ₂ .4CH ₃ OH	[3] CaCl ₂ .3CH ₃ OH	[4] CaCl ₂ .CH ₃ OH					
Q.17	Methanol is not used	as:							
	[1] Solvent	[2] An antifreeze	[3] Heart stimulant	[4] Motor fuel					
Q.18	Which of the following	statements is incorrect	:						
	[1] The catalyst used in the hydrogenation of carbon monoxide is a mixture of oxides of copper, zinc and chromium								
	[2] Synthesis gas is a	mixture of CO and hydro	ogen in the ratio 1:3 by	volume					
	[3] Methanol forms an azeotrope with acetone and also with water								
	[4] Methanol vapours form an expolsive mixture with air or oxygen when ignited								
Q.19	Which of the following	reactions of alkanols do	es not involve C-O bond	d breaking :					
	[1] CH ₃ CH ₂ OH + SOC	l ₂	$[2]$ CH $_3$ CH(OH)CH $_3$ +	PBr ₃					
	[3] CH ₃ CH ₂ OH + CH ₃ C	СООН	[4] ROX + HX						
Q.20	Which of the following	Which of the following compounds does not have an ester linkage:							
	[1] Ethyl acid sulphate		[2] Diethyl hydrogen p	hosphate					
	[3] Ethyl acetate		[4] CH ₃ CO-O-CO-CH	l ₃					
Q.21	Which of the following	is a correct statement :							
	[1] An alcohol is a stro	nger acid than water							
	[2] An alkoxide ion is a	a stronger base than hyd	droxide ion						
	[3] Amide ion is a wea	ker base than alkoxide i	on						
	[4] Ammonia is a stror	nger acid than an alcoho	l						
Q.22	Which of the following	is least soluble in water	r:						
	[1] CH ₃ OH	[2] CH ₃ CH ₂ OH	[3] CH ₃ CH ₂ CH ₂ OH	[4] CH ₃ CH ₂ CH ₂ CH ₂ OH					
Q.23	Which of the isomers	of n-butyl alcohol exhib	it optical isomerism :						
	[1] Butyl alcohol		[2] Sec. Butyl alcohol						
	[3] 2-Methyl-1-propar	nol	[4] 2-Methyl-2-Propa	nol					
Q.24	Alcohols are reduced	by red phosphorus and I	nydroiodic acid into :						
	[1] Aldehydes	[2] Alkoxyalkanes	[3] Alkanes	[4] Anhydrides					
Q.25	Which of the following	alcohols does not give a	an aldehyde on oxidatior	1:					
	[1] Benzyl alcohol	[2] Sec. butyl alcohol	[3] Allyl alcohol	[4] Crotyl alcohol					
Q.26	Which of the following	alcohols gives a red col	our in victor Meyer test :						
	[1] n-Propyl alcohol	[2] Isoproyl alcohol	[3] (CH ₃) ₃ C-OH	[4] Sec. Butyl alcohol					

Q.27	Methanol can be distinguished from ethanol by the following except:									
	[1] Reaction with iodir	ne and alkali	[2] Reaction with salid	cylic acid and H ₂ SO ₄						
	[3] Reaction with Luca	as reagent	[4] Boiling point							
Q.28	Methanol on heating v	with salicylic acid and a f	ew drops of conc. H ₂ SO	4 gives the smell of :						
	[1] Bitter almonds	[2] Oil of wintergreen	[3] Rotten eggs	[4] Mustard oil						
Q.29	Which of the following	alcohols gives iodoform	reactions:							
	[1] n-propyl alcohol	[2] Isobutyl alcohol	[3] sec. Butyl alcohol	[4] n–Butyl alcohol						
Q.30	The compounds A, B and C in the reaction sequence :									
	A <u>diastase</u> B <u>malta</u>	$\xrightarrow{\text{se}} C \xrightarrow{\text{zymase}} C_2 H_5 C_5 H_5 H_5 H_5 H_5 H_5 H_5 H_5 H_5 H_5 H$	OH + CO ₂ are :							
	[1] Starch, sucrose, fr		[2] Starch, sucrose, gl	lucsoe						
	[3] Sratch, maltose, g	lucose	[4] Starch, surcose, m	naltose						
Q.31	Methanol on heating v	vith hot copper gives the	smell of :	~O,						
	[1] Oil of bitter almond	ds [2] Oil of mirbane	[3] Formalin	[4] Vinegar						
Q.32	Addition of borane to	I-butene followed by oxi	dative alkaline hydrolysi	s gives :						
	[1] n-butyl alcohol	[2] sec. butyl alcohol	[3] isobutyl alcohol	[4] ter. butyl alcohol						
Q.33	The compound A, B and C in the reaction sequence :									
	CH ₃ -CH ₂ OH PBr ₃	\rightarrow A $\xrightarrow{\text{alc. KOH}}$ B $\xrightarrow{\text{Br}_2}$	C are given by the set :							
	0 2		[2] C ₂ H ₅ Br, CH≡CH, C	H ₂ =CHBr						
	[3] C_2H_5Br , $CH_2=CH_2$,		[4] C ₂ H ₅ Br, CH ₃ CH ₂ Ol	_						
Q.34	Alcohol are stronger acids than alkanes. This is clear from the reaction:									
	[1] 2ROH + 2Na ——	4 X L								
			[4] ROH + R'COCI —	→ R'COOR + H ₂ O						
Q.35	The main product obta	ained by heating ethanol	with concentrated sulph	uric acid at 140°C is :						
	[1] Ethylene	6.50	[2] Ethyl hydrogen sul	phate						
	[3] Ethoxyethene		[4] Ethoxyethane							
Q.36	The oxidation of a sec	ondary alkanol with Cr(\	/I) leads to the formation	of:						
	[1] An alkanone and C	r (II)	[2] A ketone and Cr (II	1)						
	[3] An alkanal and Cr	(III)	[4] A ketone and Cr (II)						
Q.37	Polyhydroxy alcohols	have higher boiling poin	t than monohydric alcoho	ols because :						
	[1] The former have m	ore than one OH group								
	[2] The former have hi	gher moelcular weights								
	[3] The former provide	more than one site per r	noelcule for hydrogen bo	onding						
	[4] The latter are more	volatile								
Q.38	The "notorious" alcoho	ol deposited on the walls	of arteries and the chie	constituent of gallstones is:						
	[1] Ethanol	[2] Cholesterol	[3] Glycol	[4] Glycerol						
Q.39	The molecular formula	a C ₇ H ₈ O represents the f	following except:							
	[1] A mixed aliphatic e	ether	[2] Phenolic compound	ds						
	[3] A cycloalkanol		[4] An aralkanol							

Q.40	Most phenolic compounds are insoluble in water but phenol is slightly soluble. This is due to :									
	[1] the presence of a h	ydroxy group	[2] Hydrogen bondin	g with water molecules						
	[3] Its low melting poir	nt	[4] High boiling point							
Q.41	Which of the following	compounds shows intra	ımolecular hydrogen bo	onding:						
	[1] p-Nitrophenol	[2] Ethanol	[3] o-Nitrophenol	[4] Methanamine						
Q.42	Which of the following	reactions will not lead t	o a phenol :							
	[1] C ₆ H ₅ SO ₃ Na + NaC)H Fuse →	$[2] C_6 H_5 N_2 CI + H_2 O$	Boil						
	[3] C ₆ H ₅ ONa + RX —	NaOH Heat →	[4] OH COONa	+ NaOH(CaO) — Heat →						
Q.43	Phenol is commerciall	y prepared by :								
	[1] Decarboxylation of	sodium salicylate								
	[2] Distilling diazoniun	•								
	[3] Cumene–phenol process									
		enzene sulphonate with	n solid caustic soda	0),						
Q.44	The compounds A, B a	and C in the reaction seq	uence cumene $\stackrel{O_2}{\longrightarrow}$	$A \xrightarrow{Aq. H_3O^+} B + C$ are given by the						
	set:									
	[1] Cumene oxide, phe	enol, CH ₃ CHO	[2] Cumene hydrope	roxide, Catechol, CH ₃ CHO						
		xide, Phenol CH ₃ COCH	₃ [4] Cumene oxide, P	henol, CH ₃ COCH ₃						
Q.45		ts with acetyle chloride t		3						
	[1] Methyl benzoate	[2] Acetyl phenol	[3] Phenyl acetate	[4] Chlorobenzene						
Q.46	Phenol undergoes ele			n all benzene derivatives because of :						
	[1] Slightly water solul		·							
	[2] Acidic nature of ph									
		eleasing nature of phen	oxide ion							
	[4] Low melting point of									
		•								
Q.47	The reaction, Phenol -	$\begin{array}{c} \kappa_2 s_2 o_8 \\ \text{NaOH} \end{array} \rightarrow \text{Quinol, is cal}$	lled:							
	[1] Lederer–Manasse	reaction	[2] Reimer–Tiemann	reaction						
	[3] Elbs persulphate o	xidation	[4] Kolbe's reaction							
Q.48	Phenol when refluxed	with CHCl ₃ and alkali at	: 60°C gives :							
	[1] Benzaldehyde	[2] Benzoic acid	[3] Salicylic acid	[4] Salicyladehyde						
Q.49	Phenol can be disting	uished from ethanol by r	eactions with the follow	ving except :						
	[1] lodine and alkali	[2] Ferric chloride	[3] Acetyl chloride	[4] Bromine						
Q.50	Reimer-Tiemann form	ylation reaction involves	addition of:							
	[1] Chloroform on pher	noxide ion	[2] Trichloromethyl c	arbanion on phenoxide ion						
	[3] Dichlorocarbene or	n phenoxide ion	[4] Hydroxide ion on	phenol						
Q.51	Phenol on treatment w	vith methyl chloride in th	e presence of anhydro	us AICI ₃ gives chiefly :						
	[1] o-cersol	[2] m-cersol	[3] anisole	[4] p-cersol						

Q.52	Phenol reacts with aqu	leous solution of bromir	ne to give :	
	[1] Tribromobenzene		[2] Trinitorphenol	
	[3] 2,4,6-tribromophen	ol	[4] A mixture of ortho	bromophenol and para bromophenol
Q.53	Which of the following	is the correct stabiltiy of	order:	
	[1] OH >		[2]	<u></u> Ö;:
	[3] (5)-(5): > (6)	— ОН	[4] (): > (—ОН
Q.54	Which of the following	reactions leads to an et	ther formation :	
	[1] p-cersol + p-nitrob	enzyl bromide — Aq. NaO	\xrightarrow{H} [2] Phenol + chloroa	acetic acid $\xrightarrow{\text{Aq. NaOH}} \Delta$
	[3] Phenol + benzoyl c	hloride OH⁻ →	[4] Phenol + benzene	esulphonyl chloride
Q.55	Phenol on heating with	n conc. sulphuric acid a		
	[1] Benzenesulphonic	acid	[2] p-phenolsulphonic	c acid
	[3] o-phenolsulphonic	acid	[4] m-phenolsulphon	ic acid
Q.56			= ;	s a dark colour. This reaction mixture
		of alkali. This reaction i		
	[1] Lederer–Manasse r		[2] Lucas test	
0.57	[3] Liebermann nitroso		[4] Lossen rearranger	
Q.57	to be:	latic compound dissolve	es in sodium nydroxide b	ut not in aqueous NaHCO ₃ . It is likely
		[2] C ₆ H ₅ COCH ₃	[3] C ₆ H ₅ OH	[4] C ₆ H ₅ NH ₂
Q.58	The reaction of phenol	with chloroform and all	kali is known as :	
	[1] Carboxylation of ph	enol	[2] Diazotisation of ph	nenol
	[3] Nitrosation of pheno	ol	[4] Formylation of phe	enol
Q.59	Phenol on heating with	phthalic anhydride and	sulphuric acid gives :	
	[1] Phenetole	[2] Phenolphthalein	[3] Phenanthrene	[4] Pseudonitrole
Q.60	Anisole is obtained fro	m phenol by reaction w	ith :	
	[1] NaOH + CHCl ₃	[2] NaOH + CH ₃ I	[3] NaOH + C_2H_5I	[4] NaOH + CO ₂
Q.61	Phenol on treatement	with aqueous solution o	f ferric chloride gives :	
	[1] Red colour	[2] Violet colour	[3] Blue colour	[4] Orange colour
Q.62	Phenol is not used in t	he manufacture of :		
	[1] Phenolic resins		[2] Dyes and herbicid	es
	[3] Petrol subtitutes		[4] Expolsives and wo	od preservatives
Q.63	Which of the following	is not a correct stateme	ent:	
	[1] Phenol is a much w	eaker acid than benzoi	c acid	
	[2] The reaction of ferr	ic chloride with phenol t	o give violet colour is ch	aracteristic of -C=C- group
	[3] Phenol is a stronge	r acid than ethanol but	weaker than benzyl alco	ohol ÓH

[4] Picric acid does not contain a -COOH group

	[1] Phenoxide ion is sta	bilized more than pheno	ol					
	[2] Cyclohexanol is a st	ronger acid than phenol						
	[3] Phenol on refluxing	with conc. HBr does not	give bromobenzene					
	[4] Cyclohexanol on he	ating with HBr forms bro	mocyclohexane					
Q.65	The widely used pain re	eliever aspirin is prepare	d by :					
	[1] Treating phenol with	Ac ₂ O	[2] Reacting salicylic a	cid with methanol				
	[3] Reacting salicylic a	cid with acetic anhydride	e [4] Reacting phenol wit	h sulphuric acid				
Q.66	Ethers are more volatile	e than alcohols containir	ng same number of carb	on atoms. This is because :				
	[1] Ethers are polar con	npounds	[2] Ethers do not exhibit hydrogen bonding					
	[3] Ethers are immiscib	le with water	[4] Ethers are miscible	with water				
Q.67	Ethanol when heated w	rith concentrated sulphu	ric acid gives all of the fo	llowing compounds except:				
	$[1] C_2 H_5 - O - SO_2 OH$	$[2] C_2 H_5 - O - C_2 H_5$	[3] CH ₂ =CH ₂	[4] CH≡CH				
Q.68	The preparation of ethe	ers from alcohols by usir	ng sulphuric acid is called	d:				
	[1] Williamson's ether	synthesis	[2] Williamson's contin	uous etherification process				
	[3] Ziesel's method		[4] Zerewitinoff method					
Q.69	Ether is used as:							
	[1] An antiseptic and a	solvent						
	[2] An anaesthetic and	a solvent						
	[3] A fire extinguisher u	nder the trade name pyr	ene					
	[4] A dry cleaning solve	ent						
Q.70	Ether reacts wtih air to	form :						
	[1] Acetic anhydride	[2] Ether hydroperoxide	e [3] An ester	[4] Alkanol				
Q.71	Ether bottles should no	t be kept open in air bed	cause :					
	[1] Ether is an anaesth	etic	[2] Ether forms an explo	osive peroxide				
	[3] Ether is costly		[4] Ether gets oxidised	to ethanol				
Q.72	The reaction of HI on e	thers is important becau	use it is used for estimati	on of :				
	[1] Alcoholic groups in	natural compounds	[2] Ether groups in natu	ıral compounds				
	[3] Amino groups in nat	ural compounds	[4] Carbonyl groups in	natural compounds				
Q.73	The decomposition of e	ethers by HI or HBr is ca	lled:					
	[1] Zerewitinoff's reaction	on	[2] Ziesel's method					
	[3] Williamson's metho	d	[4] Hell-volhard-Zelins	ky reaction				
Q.74	The simplest cyclic eth	er is :						
	[1] Furane	[2] Tetrahydrofuran	[3] Anisole	[4] Ethylene oxide				
Q.75	Ethers are not prepared	d by :						
	[1] Expoxidation							
	[2] Reaction of a sodium	n alkoxide with an alkyll	nalide					
	[3] Heating a silver carl	poxylate with alkyl halide	Э					
	[4] Williamson's continuous etherification process							

Q.64

Select the incrorrect statement :

Q.76 Which of the following ethers has highest boiling points is:

[1] Ethyl ether

[2] Vinyl ether

[3] Phenyl ether

[4] Tetrahydrofuran

Q.77 The Williamson synthesis involves:

[1] A nucleophilic addition

[2] An electrophilic substitution

[3] SN² displacement

[4] SN¹ displacement

Q.78 Which of the following statements is untrue:

[1] Anisole on treatent with HI forms phenol and CH₃I

[2] 2-Ethoxypropane on heating with HBr forms isopropyl bromide and ethyl bromide

[3] Air ether-vapour mixtures are used as anaesthetic

[4] Air ether-vapour mixtures detonate violently

Q.79 Ethoxyethane on reaction with ethanoyl chloride in presence of anhydrous AICl₃ gives :

[1] Ethyl methyl ketone

[2] Ethyl acetate

[3] Ethyl methanoate

[4] Diethyl ketone

Q.80 Which of the following reactions does not lead to formation of ethanol:

[3]
$$CH_2=CH_2 + CO + H_2 \longrightarrow$$

Answer Key

Qus.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Ans.	2	3	4	4	3	4	3	4	2	2	2	4	4	4	3	2	3	3	3	4
Qus.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
Ans.	2	4	2	3	2	1	3	2	3	3	3	1	3	2	4	2	3	2	3	2
Qus.	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
Ans.	3	3	3	3	3	3	3	4	3	3	4	3	3	1	2	3	3	4	2	2
Qus.	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
Ans.	2	3	3	2	3	2	4	2	2	2	2	2	2	4	3	3	3	3	2	3

Exercise # 2

Q.1 Glycerol reacts with nitric acid to form an explosive compound called nitroglycerine having the structure :

- [1] CH₂OH [2] CH₂OH [3] CH₂-O-NO₂ [4] CH₂-O-NO₂ CH-O-NO₂ CH-O-NO₂ CH₂OH CH₂-O-NO₃ CH₂OH
- Q.2 Crotyl alcohol has the structure:

Q.3 The missing structures A and B in the reaction sequence :

$$R-CH_2-CH_2OH \xrightarrow{AI_2O_3} R-CH=CH_2 \xrightarrow{(i)O_3} R-CHO + A \xrightarrow{Reduce} B$$

are given by the set:

[1] CH₃OH, RCOOH [2] Methanal, RCH₂OH [3] Ethanal, RCOOH [4] Methanal, RCHOHR'

Q.4 The missing structures A and B in the reaction sequence:

 CH_3 –CH= CH_2 $\xrightarrow{B_2H_6}$ A $\xrightarrow{H_2O_2 + NaOH}$ B are given by the set :

 $\hbox{[1] CH$_3$-CH$_2$-CH$_2$-CH$_2$-CH$_2$-CH$_2$OH} \qquad \hbox{[2] (CH$_3$CHCH)$_2BH, CH_3$-CH$_2$-CH$_2$OH} \\$

 $\text{[3]} \ (\text{CH}_{3})_{2} \text{CH-CH}_{2} - \text{BH}_{2}, \ \text{CH}_{3} - \text{CH}(\text{OH}) - \text{CH} \\ \text{[4]} \ (\text{CH}_{3} - \text{CH}_{2} - \text{CH}_{2})_{3} \ \text{B}, \ \text{CH}_{3} - \text{CH}_{2} - \text{CH}_{2} \text{OH} \\ \text{[5]} \ \text{CH}_{3} - \text{CH}_{2} - \text{CH}_{2} + \text{CH}_{2} - \text{CH}_{2} + \text{CH}_{2} - \text{CH}_{2} \\ \text{CH}_{3} - \text{CH}_{2} - \text{CH}_{2} - \text{CH}_{2} + \text{CH}_{2} - \text{CH}_{2} + \text{CH}_{2} - \text{CH}_{2} \\ \text{CH}_{3} - \text{CH}_{2} - \text{CH}_{2} - \text{CH}_{2} + \text{CH}_{2} - \text{CH}_{2} + \text{CH}_{2} - \text{CH}_{2} \\ \text{CH}_{3} - \text{CH}_{2} - \text{CH}_{2} - \text{CH}_{2} + \text{CH}_{2} - \text{CH}_{2} + \text{CH}_{2} - \text{CH}_{2} \\ \text{CH}_{3} - \text{CH}_{2} \\ \text{CH}_{3} - \text{CH}_{2} \\ \text{CH}_{3} - \text{CH}_{2} \\ \text{CH}_{3} - \text{CH}_{2} \\ \text{CH}_{3} - \text{CH}_{2} - \text{CH}_{2}$

Q.5 Which of the following reactions is an example of hydrogenolysis:

 $\text{[1]} \ C_2 H_5 - O - C_2 H_5 \xrightarrow{\quad \text{Dil.} \ H_2 \text{SO}_4 \quad} C_2 H_5 O H \\ \text{[2]} \ C H_3 COOC_2 H_5 \xrightarrow{\quad \text{Na} \ + \quad } C_2 H_5 O H_$

[3] $CH_3COOH \xrightarrow{LiAlH_4} C_2H_5OH$ [4] $CH_3CHO \xrightarrow{2H} C_2H_5OH$

Q.6 The compounds A, B and C in the reaction sequence :

 $\text{CH}_3\text{CH}_2\text{OH} \xrightarrow{\text{HBr}} \text{A} \xrightarrow{-\frac{M}{g}} \text{B} \xrightarrow{\text{(ii) H}_3\text{O}^+} \text{C are given by the set}:$

[1] CH₃CH₂Br, CH₃CH₂MgBr, (CH₃)₃C-OH

[2] CH₃CH₂Br, (CH₃CH₂)₂Mg, (CH₃)₂CHCH₂OH

[3] CH₃CH₂Br, CH₃CH₂MgBr, CH₃CH(OH)CH₂CH₃

[4] CH₃CHBr₂, CH₃CH(MgBr)₂, CH₃CH(OH)CH₃

Q.7 A primary alcohol on oxidation :

[1] Loses only one α -hydrogen [2] Loses no α -hydrogen

[3] Can lose both α -hydrogens [4] Can lose one α -hydrogen or both α -hydrogen atoms

Q.8 which of the following is not a common oxidant for alkanols :

[1] Heptavalent manganese [2] Hexavalent chromium

[3] Tetravalant manganese [4] Chromium trioxide in acetic acid

		ALCOHOL, PHENOL & ETHER
Q.9	In the industrial preparation of ethanol from sta	arch by fermentation processes, a small amount of inferionically a mixture of :
	[1] Propyl alcohol, isobutyl alcohol active amyl	alcohol and excess of isopentyl alcohol
	[2] Propyl alcohol, ispropyl alcohol and isopent	yl alcohol
	[3] Methanol, ethanol and 1-propanol	
	[4] Methanal + ethanal + propanal	
Q.10	Which of the following statements is not true :	
	[1] Pure phenol is a colourless crystalline solid	[2] Phenol has a low melting point
	[3] Phenol has a very low boiling point	[4] Phenol turns pink on exposure to air
Q.11	Select the wrong statement :	
	[1] K_a of phenol is of the order of 10^{-10}	[2] Phenol is stronger acid than CH ₃ COOH
	[3] Acetic acid is stronger acid than C ₆ H ₅ OH	
Q.12	The reaction	⁶ 0,
	\overline{O} Na ⁺ + CO ₂ $\overline{-7}$	120°C OOŌ Na
	is called :	
	[1] Elbs persulphate oxidation	[2] Kolbe reaction
	[3] Reimer–Tiemann reaction	[4] Lederer-Manasse reaction
Q.13	Sodium phenate on heating with CO ₂ under pre	esssure gives mainly :
	[1] o-hydroxybenzaldehyde	[2] o-hydroxybenzyl alcohol
	[3] o-hydroxybenzoic aicd	[4] o-hydroxyphenol
Q.14	Nitration of phenol with conc. nitric acid gives:	
	[1] o-nitrophenol [2] m-nitrophenol	[3] p-nitrophenol [4] 2,4,6-trinitrophenol
Q.15	Phenol reacts with benzenediazonium chloride	solution to from a compound of the structure :
	[1] HO————————————————————————————————————	[2] N=N-O-OH
	[3] OH CI	$[4] \bigcirc N = N - \bigcirc CI$
Q.16	Which of the following sets of groups activa substitutions	tes the ortho and para positios in electrophilic aromatic
		Ŷ.
	[1] -OH, -NO ₂ , -CHO	[2] -NH ₂ , -NO ₂ , -C-O-H
	[3] –OH, O [–] , –OR	[4] –OR, –C≡N, –CI
Q.17	Deoxygenation of phenol can be achieved by d	stillation with:
	[1] Raney nickel	[2] Lithium aluminium hydride
	[3] Sodium borohydride	[4] Zinc dust

Q.18 Phenol and benzoic acid are distinguished by :

[1] Lucas reagent [2] Victor Meyer test
[3] Caustic soda [4] Sodium bicarbonate

Q.19 Phenol is distinguished from ethanol by the reaction with:

[1] Red litmus

[2] Aqueous ferric chloride

[3] Alkaline β–naphthol

[4] Sodium bicarbonate solution

Phenol $\xrightarrow{\text{NaNO}_2}$ Green product $\xrightarrow{\text{H}_2\text{O}}$ red product $\xrightarrow{\text{NaOH}}$ Blue product : Q.20

this reaction is associated with the name of :

- [1] Gattermann
- [2] Hofmann
- [3] Liebermann
- [4] Reimer-Tiemann

Q.21 The sulphur analogue of phenol is not called:

[1] Phenyl mercaptan

- [2] thiophenol
- [3] Phenyl hydrogen sulphide
- [4] Benzenethiol

Q.22 Which of the following is not correctly matched:

- [1] Phenol + $CHCl_3$ + $NaOH \xrightarrow{Heat}$ Salicylaldehyde
- [2] Phenol + Phthalic anhydride $\xrightarrow{\text{Heat}}$ Phenetole
- [3] Phenol $\xrightarrow{Br_2 \text{ water}}$ Tribromophenol
- [4] Sodium phenate + $CO_2 \xrightarrow{\text{Heat, Pr essure}}$ Salicylic acid

Q.23 In the reaction sequence:

SO₃Na
$$\xrightarrow{\text{NaOH}}$$
 A $\xrightarrow{\text{CH}_3\text{I}}$ B $\xrightarrow{\text{HI}}$ C + D

A, B, C and D are given by the set:

- $[1] \ Sodium \ phenate, \ anisole, \ C_6H_5I, \ CH_3OH \qquad [2] \ Sodium \ phenate, \ phenetole, \ C_2H_5I, \ C_6H_5OH \qquad [2] \ Sodium \ phenate, \ phenetole, \ C_2H_5I, \ C_6H_5OH \qquad [2] \ Sodium \ phenate, \ phenetole, \ C_2H_5I, \ C_6H_5OH \qquad [2] \ Sodium \ phenate, \ phenetole, \ C_2H_5I, \ C_6H_5OH \qquad [2] \ Sodium \ phenate, \ phenetole, \ C_2H_5I, \ C_6H_5OH \qquad [2] \ Sodium \ phenate, \ phenetole, \ C_2H_5I, \ C_6H_5OH \qquad [2] \ Sodium \ phenate, \ phenetole, \ C_2H_5I, \ C_6H_5OH \qquad [2] \ Sodium \ phenate, \ phenetole, \ C_2H_5I, \ C_6H_5OH \qquad [2] \ Sodium \ phenate, \ phenetole, \ C_2H_5I, \ C_6H_5OH \qquad [2] \ Sodium \ phenate, \ phenetole, \ C_2H_5I, \ C_6H_5OH \qquad [2] \ Sodium \ phenate, \ phenetole, \ C_2H_5I, \ C_6H_5OH \qquad [2] \ Sodium \ phenate, \ phenetole, \ C_2H_5I, \ C_6H_5OH \qquad [2] \ Sodium \ phenate, \ phenetole, \ phenet$
- $[3] \ \, \text{Sodium phenate, anisole, C}_6 \text{H}_5 \text{OH, CH}_3 \text{I} \qquad [4] \ \, \text{Sodium phenate, phenetole, C}_6 \text{H}_5 \text{II, C}_2 \text{H}_5 \text{OH, CH}_3 \text{II}$

Q.24 Anisole does not react with HI to from C_6H_5I and CH_3OH because :

[1] C₆H₅ is less stable

- [2] C₆H₅I has high molecular weight
- [3] Aromatic carbon–oxygen bond is stronger [4] CH₃OH is more volatile than CH₃I

Which of the following is a schotten-baumann reaction: Q.25

[1]
$$C_6H_5OH + CH_3COCI \rightarrow C_6H_5OCOCH_3 + HCI$$

[2]
$$C_6H_5OH + C_6H_5COCI \rightarrow C_6H_5COOC_6H_5 + HCI$$

[3]
$$3C_6H_5OH + PCI_5 + H_2O \rightarrow (C_6H_5)_3PO_4 + 5HCI$$

[4]
$$C_6H_5OH + (CH_3CO)_2O \rightarrow C_6H_5OCOCH_3 + CH_3COOH_3$$

The methoxy groups in natural compounds are estimated by reaction with: Q.26

- [1] H₂SO₄
- [2] HF
- [3] HI
- [4] BF₃

In the reaction sequence A $\xrightarrow{\text{HBr}}$ B $\xrightarrow{\text{C}_2\text{H}_5\text{ONa}}$ Ethoxyethane A and B are : Q.27

- - $[1] C_2 H_6, C_2 H_5 Br$ $[2] CH_4, CH_3 Br$
- [3] $CH_2 = CH_2$, C_2H_5Br [4] CH = CH, $CH_2 = CH Br$

Q.28 Oxonium salt of ether has the structure:

[3]
$$(C_2H_5)_2O \to O$$

ALCOHOL, Q.29 In the Williamson synthesis of ethers given by the general equation: $R-X+R'ONa \longrightarrow R-O-R'$ the yield from R-X follows the sequence : [1] $CH_3 > 1^0 > 2^0 > 3^0$ [2] $CH_3 < 1^\circ < 2^\circ < 3^\circ$ [4] $CH_3 < 1^0 < 2^0 > 3^0$ [4] $CH_3 > 1^0 < 2^0 < 3^0$ Q.30 On Boiling with conc. HBr ethyl phenyl ether yields: [1] Phenol and ethyl bromide [2] Bromobenzene and ethanol [3] Phenol and ethane [4] Bromobenzene and ethane Which enzyme is used in the reaction: Q.31 $C_6H_{12}O_6 \longrightarrow 2C_2H_5OH + 2CO_2$ [1] Zymase [2] Invertase [3] Diastase [4] Maltase Q.32 Which of the following property is not shown by $C_2H_5-O-C_2H_5$ [a] lodoform test [2] Reaction with CH₃-COCI [4] Action of AgNO₃ [3] Action of HI Correct answer is: [1] b, c [2] a, d [3] a, b & c The product of the reaction CH₃CH₂OH + Cu -Q.33 $[1] C_6 H_6$ [2] CH₃COCH₃ [3] CH₃CHO [4] CH₃COOH Reaction : CO + H_2 (water gas) + H_2 -Q.34 may be used for manufacture of: [3] CH₃OH [1] HCHO [2] HCOOH Q.35 When ethanol vapours are passed through heated alumina (250°C). The compound formed is: [1] $CH_2 = CH_2$ [4] CH₃-CH=CH₂ Q.36 When the vapours of alcohol is passed over copper or zinc oxide then the following compound has no chances to be formed: [1] Alkanal [2] Alkyne [3] Alkene [4] Alkanone For industrial method to produce methanol we choose: Q.37 [2] $CH_4 + H_2O$ [1] CO + H₂ [3] HCHO + H₂ [4] None Q.38 -OH group of ethyl alcohol is neutral whereas acetic acid is acidic because : [1] Ethyl alcohol molecule undergoes association [2] Ethyl alcohol is covalent compound [3] Acetic acid is an electrovalent compound [4] In acetic acid OH group is attached to electronegative carbonyl group

[2] Conc. HCl and hydrous ZnCl₂

[4] Conc. HNO₃ and anhydrous ZnCl₂

Q.39

Lucas reagent is:

[1] Conc. HCl and anhydrous ZnCl₂

[3] Conc. HNO₃ and hydrous ZnCl₂

Q.40	Isopropyl alcohol is heated at 300°C in presence of Cu catalyst to give :							
	[1] Acetone	[2] Dimethyl ether	[3] Acetaldehyde	[4] Ethane				
Q.41	Which statement is i	incorrect for $\mathrm{C_2H_5OC_2H_5}$	is:					
	[1] It is an extracting	solvent	[2] It is an anaesthet	ic				
	[3] It is more reactive	e than alcohol	[4] It shows dipole m	oment				
Q.42	C ₂ H ₅ -O-C ₂ H ₅ with	cold HI forms :						
	[1] Only C ₂ H ₅ OH	[2] Only C ₂ H ₅ I	[3] Both the above	[4] None of the above				
Q.43	When ethanol is refl	uxed with conc. H_2SO_4 a	t 150–170°C the resultin	ig compound is :				
	[1] Ethylene		[2] Ethyl hydrogen su	ulphate				
	[3] Diethyl ether		[4] Acetaldehyde					
Q.44	The high boiling poin molecular formula C		pared to dimethyl ether (-	-23.6°C) though both having the same				
	[1] Hydrogen bondin	g	[2] Ionic bonding					
	[3] Co-ordinate Co-	valent bonding	[4] Resonance	A •				
Q.45	With which of the folloalcohol:	owing compounds the gri	gnard reagent should be	treated in order to produce secondary				
	[1] CH ₃ COCH ₃	[2] CH ₃ CHO	[3] CO ₂	[4] HCHO				
Q.46	C ₂ H ₅ OH can be diffe	erentiated from CH ₃ OH by	<i>i</i> :					
	[1] Reaction with HC	CI	[2] Reaction with NH	3				
	[3] By iodoform test		[4] By solubility in wa	ater				
Q.47	The reaction between	en an alcohol and an acid	is called :					
	[1] Esterification	[2] Sponification	[3] Hydrolysis	[4] Hydrogenation				
Q.48	How does alcohol re	eact to litmus :						
	[1] Colour changes f	rom red to blue	[2] Colour changes from blue to red					
	[3] Colour is not effe	cted	[4] Not possible to predict					
Q.49	When wine is put in	air it becomes sour due	to:					
	[1] Oxidation of C ₂ H ₂	₅ OH	[2] Reduction of C_2H_{ξ}	₅ OH				
	[3] Formation of C ₂ H	₅ NH ₂	[4] Dissolution of CO	2				
Q.50	Absolute alcohol car	n not be obtained by simp	ole fractional distillation	because:				
	[1] Pure C ₂ H ₅ OH is	unstable						
	[2] $\mathrm{C_2H_5OH}$ forms H	–bonding with water						
	[3] Boiling point of C	₂ H ₅ OH is very close to th	at of water					
	[4] Constant boiling	azeotropic mixture is forn	ned with water					
Q.51	When vapours of ar alcohol is:	n alcohol are passed ove	er hot reduced copper, a	alcohol is converted into alkene, the				
	[1] Tertiary	[2] Primary	[3] Secondary	[4] None				
Q.52	Absolute alcohol is p	orepared from rectified sp	pirit by :					
	[1] Steam distillation	١	[2] Azeotropic distilla	ation				

[4] Fractional distillation

[3] Simple distillation

When glycerol is heated with KHSO₄, which is formed : Q.53

[1] Glyceric acid

[2] Acrolein

[3] glyceraldehyde

[4] Dihydroxy acetone

Q.54 Ethylene glycol on oxidation with periodic acid give:

[1] Glyoxal

[2] Oxalic acid

[3] Formaldehyde

[4] Glycolic acid

Q.55 23 gms of sodium of reaction with methyl alcohol gives:

[1] Half mole of H₂

[2] One mole of H₂

[3] One mole of O_2

[4] none

Q.56 Diethyl ether is prepared by passing ethyl alcohol vapours over a catalyst under high pressure and temperature.

The catalyst is:

[1] SiO₂

[2] CuO

[3] Al_2O_3

[4] Ag₂O

Q.57 Phenol is:

[1] A base weaker than ammonia

[2] An acid stronger than carbonic acid

[3] An acid weaker than carbonic acid

[4] A Neutral compound

Answer Key

Qus.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Ans.	3	3	2	4	2	3	4	3	1	3	2	2	3	4	2	3	4	4	2	3
Qus.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
Ans.	3	2	3	3	2	3	3	2	1	1	1	2	3	3	3	2	1	4	1	1
Qus.	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57			
Ans.	3	3	1	1	2	3	1	3	1	4	1	2	2	3	1	3	3			

Exercise # 3

Q.1	Tonics in general con	tain :		[MNR 1995]
	[1] Ether	[2] Methanol	[3] Ethanol	[4] Rectified spirit
Q.2	Which will dehydrate	easily:		[Roorkee 1995]
	[1] 3-methyl-2-butan	ol	[2] Ethyl alcohol	
	[3] 2-methyl propane-	-2-ol	[4] 2-methyl butanol-	-2
Q.3	Which of the following	g reacts with phenol to g	give salicylaldehyde after	hydrolysis: [MP PMT 1995]
	[1] Dichloromethane	[2] Trichloromethane	[3] Methyl chloride	[4] None of these
Q.4	Which of the following	g is most soluble in wat	er:	[MP PMT 1995]
	[1] Normal butyl alcol	nol	[2] Isobutyl alcohol	
	[3] Tertiary butyl alcol	hol	[4] Secondary butyl a	llcohol
Q.5	Ethyl alcohol exhibits	acidic character on rea	acting with:	[MP PMT 1995]
	[1] Acetic acid	[2] Sodium metal	[3] Hydrogen iodide	[4] Acidic potassium dichromate
Q.6	Phenol is obtained by	heating aqueous soluti	on of :	[MP PMT 1995]
	[1] Aniline		[2] Benzene diazoniu	m chloride
	[3] Benzoic acid		[4] None of these	
Q.7	For phenol, which of	the following statements	s is correct:	[MP PMT 1995]
	[1] It is insoluble in w	ater		
	[2] It has lower meltin	g point compared to aro	matic hydrocarbons of co	omparable molecular weight
	[3] It has higher boilin	g point than toluene	.0	
	[4] It does not show a	cidic property		
Q.8	Conversion of glucos	e into ethyl alcohol is m	ade by :	[MP PMT 1995]
	[1] Acid	[2] Enzyme	[3] Hydroxylamine	[4] Phenyl hydrazine
Q.9	The reaction of C ₂ H ₅ 0	OH with H ₂ SO ₄ does no		[MP PMT 1996]
	[1] Ethylene	[2] Diethyl ether	[3] Acetylene	[4] Ethyl hydrogen sulphate
Q.10	The final product obta		alcohol with the excess o	f chlorine and Ca(OH) ₂ is :
		, , ,		[MP PET 1996]
	[1] CH ₃ CHO	[2] CCI ₃ CHO	[3] CHCl ₃	[4] (CH ₃) ₂ O
Q.11		ŭ	ŭ	anone) were treated with iodine and
		, ,	es will give iodoform test	,
	[1] Only ethyl alcohol		[2] Only methyl alcoh	ol and ethyl alcohol
	[3] Only ethyl alcohol	and acetone	[4] Only acetone	•
Q.12	The following reaction		,	[MP PET 1997]
	G			-
	OH		OH	
	+ HCI +	$HCN \xrightarrow{Anhydrous} IC$)	
		-	СНО	
	is known as :			

[1] Perkin reaction [2] Gattermann reaction [3] Kolbe reaction

[4] Gattermann-Koch reacton

Q.13	The alcohol which d	oes not give a stable com	pound on dehydration is	S: [MP PET 11997]
	[1] Ethyl alcohol	[2] Methyl alcohol	[3] n-propyl alcohol	[4] n-butyl alcohol
Q.14	Phenol reacts with 0	CHCI ₃ and NaOH (at 340 I	K) to give :	[MP PMT 1997, CBSE 2002]
	[1] o-chlorophenol	[2] Salicylaldehyde	[3] Benzaldehyde	[4] Chlorobenzene
Q.15	What amount of broa	mine will be required to co	nvert 2g of phenol into 2	2,4,6-tribromophenol:
				[MP PMT/PET 1998]
	[1] 4.00	[2] 6.00	[3] 10.22	[4] 20.44
Q.16	Carbolic acid is:			[MP PET/PMT 1998]
	[1] Phenol	[2] Phenyl benzoate	[3] Pheny lacetate	[4] Salol
Q.17	The reagent used fo	r the dehydration of an ald	cohol is :	[MP PET/PMT 1998]
	[1] Phosphorus pent	achloride	[2] Calcium chloride	
	[3] Aluminium oxide		[4] Sodium chloride	
Q.18	Which of the following	ng reacts first with lucas r	eagent :	[MP PMT 1999]
	[1] C ₃ H ₇ OH	[2] (CH ₃) ₂ CHOH	[3] (CH ₃) ₃ COH	[4] C ₆ H ₅ OH
Q.19	Which of the following	ng is not true in case of re	action with heated copp	per at 300°C : [CPMT 1999]
	[1] Phenol \rightarrow Benzy	l alcohol	[2] Primary alcohol -	→ Aldehyde
	[3] Secondary alcoh	ol o Ketone	[4] Tertiary alcohol →	Olefin
Q.20	The correct order of	boiling point for primary (1°), secondary (2°) and	tertiary (3º) alcohol is :
				[CPMT 1999 ; Raj PMT 2002]
	[1] $1^{\circ} > 2^{\circ} > 3^{\circ}$	$[2] 3^{\circ} > 2^{\circ} > 1^{\circ}$	$[3] 2^{\circ} > 1^{\circ} > 3^{\circ}$	$[4] 2^{\circ} > 3^{\circ} > 1^{\circ}$
Q.21	Which of the following	ng is the most suitable me	thod for removing the tr	aces of water from ethanol :
				[CPMT 1999]
	[1] Heating with Na	metal	[2] Passing dry HCl t	
	[3] Distilling it		[4] Reacting with Mg	
Q.22				n gave acid. After first oxidation it was
		niacal AgNO ₃ , then silver		
0.00	[1] Primary alcohol	[2] Tertiary alcohol	[3] Acetaldehyde	[4] Acetone
Q.23	Maltose on hydrolys		[0] 0 1 1	[BHU 1996]
	[1] Mannose + gluco	ose	[2] Galactose + gluco	
0.04	[3] Glucose		[4] Mannose + fructo	
Q.24		cerol at 260°C gives :	[O] Channal manna as	[BHU 1996]
	[1] Allyl alcohol		[2] Glyceryl mono–ox	calate
0.05	[3] Formic acid		[4] Glyceraldehyde	[AUMO 4000]
Q.25	Phenol is used in the		[2] Nudan	[AIIMS 1996]
0.26	[1] Bakelite	[2] Polystyrene	[3] Nylon	[4] PVC
Q.26	soapy touch :	er or gryceror and pramitic	acid on boiling with aque	eous NaOH gives a solid cake having
	Reason: Free glyce	erol is liberated which is a	greasy solid :	[AIIMS 1996]
	[1] Both assertion a	nd reason are true statem	ents and reason is the o	correct explanation of assertion
	[2] Both assertion a	nd reason are true statem	ents and reson is not th	e correct explanation of assertion
	[3] Assertion is true	but reason is a false state	ement	
	[4] Both asseration a	and reason are false state	ement	

Q.27 Which of the following reaction shows industrial method of preparation of CH₃OH: [CPMT 1996] $\begin{tabular}{ll} \begin{tabular}{ll} \be$ Q.28 The alcohol that produces turbidity immediately with ZnCl₂ + conc. HCl at room temperature : [EAMCET 1997] [1] 1-hydroxybutane [2] 2-hydroxybutane [3] 2-hydroxy-2-methylpropane [4] 1-hydroxy-2-methylpropane Q.29 Which of the following explains the viscous nature of glycerol: [JIPMET 1997] [3] Vander Wall's forces[4] Ionic forces [1] Covalent bonds [2] Hydrogen bond Q.30 Which of the following statments is correct: [BHU 1997] [1] Phenol is less acidic than ethyl alcohol [2] Phenol is more acidic than ethyl alcohol [3] Phenol is more acidic than carboxylic acid [4] Phenol is more acidic than carboxylic acid Q.31 Which gas is eliminated in fermentation: [RPMT 1997] [2] CO₂[3] N_2 $[1] O_2$ When phenol reacts with CHCl₃ and KOH, the product obtined would be Q.32 [RPMT 1997] [2] p-hydroxy benzaldehyde [1] Salicylaldehyde [4] Chloretone [3] Both (a) and (b) Q.33 Absolute alcohol is: [RPMT 1997] [1] 100% pure ethanol [2] 95% alcohol + 5% H₂O [3] Ethanol + water + phenol [4] 95% ethanol + 5% methanol Q.34 The reaction of CH₃CH = CH OH with HBr gives: [IIT 1998] [2] CH₃CH₂CHBr [4] CH₃CH₂CHBr [3] CH₃CHBrCH Q.35 Benzenediazonium chloride on reaction with phenol in weakly basic medium gives : [IIT 1998] [1] Diphenyl ether [2] p-hydroxyazobenzene [3] Chlorobenzene [4] Benzene Q.36 The most suitable method for the separation of a 1:1 mixture of ortho and para nitrophenols is: [CBSE 1994, 99, CPMT 1997] [1] Distillation [2] Sublimation [3] Crystallization [4] Chromatography Q.37 $R-OH + HX \rightarrow R-X + H_2O$ In the above reaction, the reactivity of different alcohols is: [CPMT 1997] [1] Tertiary > Secondary > Primary [2] Tertiary < Secondary < Primary [3] Tertiary < Secondary > Primary [4] Secondary < Primary < Tertiary

Q.38 The boiling point of glycerol is more than propanol because of : [CPMT 1997, 2002] [4] All the above [1] Hydrogen bonding [2] Hybridisation [3] Resonance Q.39 Which statement is not correct about alcohol: [AFMC 1997] [1] Alcohol is lighter than water [2] Alcohol evaporates quickly [3] Alcohol of less no. of carbon atoms is less soluble in water than alcohol of high no. of carbon atoms [4] All of these An organic compound A reacts with sodium metal and forms B, On heating with conc. H₂SO₄. A gives Q.40 [AFMC 1998] diethyl ether A and B are: [1] C₂H₅OH and C₂H₅ONa [2] C₃H₇OH and CH₃ONa [3] CH₃OH and CH₃ONa [4] C_4H_9OH and C_4H_9ONa The reaction of aromatic acyl chloride and phenol in the presence of a base NaOH or pyridine is called: Q.41 [AFMC 1998] [1] Kolbe's reaction [2] Perkin's reaction [3] Sandmayer's reaction [4] Schotten-Baumann reaction Q.42 In the Liebermann's nitroso reaction, sequential changes in the colour of phenol occurs as: [AFMC 1998; BHU 1999] [2] Red \rightarrow deep blue \rightarrow green [1] Brown or red \rightarrow green \rightarrow red \rightarrow deep blue [4] White \rightarrow red \rightarrow green [3] Red \rightarrow green \rightarrow white Q.43 Which one of the following reactions does not yield an alkyl halide: [EAMCET 1998] [1] Diethyl ether + Cl₂ [2] Diethyl ether + HI [4] Diethyl ether $\xrightarrow{\text{Reduction}} X \xrightarrow{\text{SO}_2\text{Cl}_2} \to$ [3] Diethyl ether and PCI₅ The reaction between an alcohol and an acid with the elimination of water molecule is called: Q.44 [MH CET 1999] [1] Esterification Saponification [3] Etherification [4] Elimination 3-pentanol is a: Q.45 [Raj PET 2002] [1] Primary alcohol [2] Secondary alcohol [3] Tertiary alcohol [4] None of these Which of most acidic: Q.46 [Raj PET 1999] $[4] C_6 H_5 OH$ $[2] C_2H_5OH$ [3] CH₃OCH₃ Q.47 The compound X in the reaction: [Roorkee 1999]

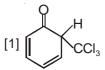
Q.48	Condensation of phenol and phthalic anhydride gives : [Raj PMT											
	[1] Methyl orange	[2] Phenol red	[3] Salicylic acid	[4] Phenolphthalein								
Q.49	The role of conc. H ₂ S	O ₄ in the esterification p	rocess is :	[Raj	PMT 1999]							
	[1] Catalyst	[2] Dehydrating agent	[3] Hydrolysing agent	[4] Dehydrating agent a	and catalyst							
Q.50	Methanol and ethano	are distingusihed by the	:	[MP	PET 1999]							
	[1] Action of HCI	[2] lodoform test	[3] Solubility in water	[4] Sodium								
Q.51	When 2-ethylanthraq	uinol dissolved in a mixtu	ire of benzene and cyclo		product is PMER 1999]							
	[1] Ethanol	[2] Hydrogen peroxide	[3] Anthracene	[4] None of these								
Q.52	Phenol is heated with phthalic anhydride in the presence of concentrated H_2SO_4 . The product gives pin colour with alkali. The product is : [Karnataka CET (Med.) 2000]											
	[1] Bakelite	[2] Fluorescein	[3] Salicylic acid	[4] Phenolphthalein								
Q.53	$A \xleftarrow{Cu}_{\Delta} CH_{3} CH_{2} OH$	$\xrightarrow{\text{Al}_2\text{O}_3}$ B. A and B resp	pectively are.	[Rajasthan (Engg./M	/led.) 2000]							
	[1] Alkene, alkanal	[2] Alkyne, alkanal	[3] Alkanal, alkene	[4] Alkene, alkyne								
Q.54	The alcohol manufact	ured from water gas is:		[A	FMC 2000]							
	[1] Ethanol	[2] Butanol	[3] Methanol	[4] Isobutanol								
Q.55	Which of the following	does not form phenol or	phenoxide:	A]	AFMC 2000]							
	[1] C ₆ H ₅ CI	$[2]$ C $_6$ H $_5$ COOH	$[3] \mathrm{C_6H_5N_2CI}$	$[4] C_6 H_5 SO_3 Na$								
Q.56	Which of the following	differentiate between C_2	H ₅ OH and CH ₃ OH :		[BHU 2000]							
	[1] HCI	[2] NH ₃	[3] H ₂ O	[4] I ₂ + KOH								
Q.57	Action of nitrous acid	with ethylamine produce	s :		[BHU 2000]							
	[1] Ethane	[2] Ammonia	[3] Ethyl alcohol	[4] Nitroethane								
Q.58	An unknown compound 'D', first oxidised to aldehyde and then acetic acid by a dilute solution of $\rm K_2Cr_2O_7$ and $\rm H_2SO_4$. The unknown compound 'D' is : [BHU 2000]											
	[1] CH ₃ CHO	[2] CH ₃ CH ₂ OH	[3] CH ₃ CH ₂ CH ₂ OH	[4] CH ₃ CH ₂ CH ₃								
Q.59	Carbinol is :			[Raj	PMT 2000]							
	[1] C ₂ H ₅ OH	[2] CH ₃ OH	[3] (CH ₃) ₂ CHOH	[4] CH ₃ CH ₂ CH	· ·							
Q.60	From which of the following tertiary butyl alcohol is obtained by the aciton of methyl magnesium iodide:											
				[MP	PET 2000]							
	[1] HCHO	[2] CH ₃ CHO	[3] CH ₃ COCH ₃	[4] CO ₂								
Q.61	Q.61 Reaction: $CH_3OH + O_2 \xrightarrow{600^{\circ}C} Ag \rightarrow product$											
	The product is:			[F	RPET 2000]							
	[1] CH ₂ =C=O	[2] H ₂ C=O	[3] C ₂ H ₄	$[4] C_2 H_2$								
Q.62	CH ₃ -CH=CH-CH(OH)	$-CH_3 \xrightarrow{\text{Jone's}} X$,										
	Product X is:			[F	RPET 2000]							
	[1] CH ₃ CH ₂ CH ₂ CH(OF	H)CH ₃	[2] CH ₃ CH=CHCOCH ₃									
	[3] Both the above		[4] CH ₃ CH ₂ CH ₂ COCH ₃									

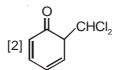
Q.63 Methyl alcohol is toxic. The reason assigned is:

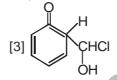
[RPET 2000]

[1] It stops respiratory track

[2] It reacts with nitrogen and forms CN⁻ in the lungs


[3] It increases CO₂ content in the blood


[4] It is a reduction product of formaldehyde


Q.64 Assertion (A): Phenol is more reactive than benzene towards electrophilic substitution reaction.

Reason (R): In the case of phenol, the intermediate carbocation is more resonance stabilized [IIT 2000]

- [1] Both A and R are true and R is a correct explanation of A
- [2] Both A and R are true but R is not a correct explanation of A
- [3] A is true but R is false
- [4] Both A and R are false
- Q.65 When phenol is reacted with CHCl₃ and NaOH followed by acidification, salicyldehyde is obtained. Which of the following species are involved in the above mentioned reaction as inter mediate: [DCE 2000]

[4] All of these

Q.66 Which of the following compound dehydrates most easily:

[BHU 2002]

[1] R₃COH

[2] R₂CHOH

[3] CH₃CH₂OH

[4] CH₃CH₂CH₂OH

Q.67 The reaction of ethylene glycol with Pl₃ gives :

[MP PMT 2000]

[1] ICH₂CH₂I

[2] $CH_2 = CH_2$

[3] CH₂=CHI

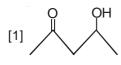
•

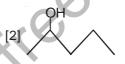
Q.68 The reaction of Lucas reagent is fast with:

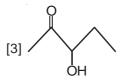
[MP PMT 2000]

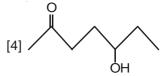
 $[1](CH_3)_3COH$

[2] (CH₃)₂CHOH


[3] CH₃(CH₂)₂OH


[4] CH₃CH₂OH


[4] ICH=CHI


Q.69 Which one of the following will most readily be dehydrated in acidic condtion:

[IIT Scr. 2000]

 ${\bf Q.70} \quad \hbox{Acetone on treatement with CH$}_3-\hbox{Mg-I and on further hydrolysis gives}:$

[UPSEAT 2000]

[1] Isopropyl alcohol

[2] Primary alcohol

[3] Acetic acid

[3] Tertiary amine

[4] 2-methyl -2-propanol

Q.71 When phenol reacts with ammonia in presence of ZnCl₂ at 300°C, it gives :

[2] Secondary amine

[AFMC 2001]

[4] Both (2) and (3)

Q.72 Maltose, on hydrolysis, gives:

[CPMT 2001]

[1] Glucose

[1] Primary amine

[2] Fructose

[3] Maltose

[4] Mannose

Q.73 With excess bromine, phenol reacts to form:

[BHU 2001]

[4] Mixture of (1) and (2)

Q.74	The compound that	[IIT Scr. 2001]								
	[1] (CH ₃) ₄ N ⁺ I ⁻	[2] CH ₃ OCH ₃	[3] (CH ₃) ₃ S ⁺ I ⁻	[4] (CH ₃) ₃ CI						
Q.75	When ethyl alcohol is:	(C ₂ H ₅ OH) reacts with th	ionyl chloride, in the prese	ence of pyridine, th	e product obtained [AIIMS 2001]					
[1] (CH ₃ Q.75 When e is: [1] CH ₃ [3] CH ₃ Q.76 Oil + Na Above r [1] Sapo Q.77 Asserti Reasor [1] Both [2] Both [3] A is [4] Both [3] A is [4] Both [3] P-po Q.80 In the se CH ₃ OH X and Y [1] CH ₃ ([3] CH ₃ ([3] CH ₃ ([3] Free [4] Both X and Y [1] CH ₃ ([3] CH ₃ ([3] CH ₃ ([3] Free [4] Both X and Y [1] CH ₃ ([3] CH ₃	[1] CH ₃ CH ₂ CI + HC	I	[2] C ₂ H ₅ Cl + HCl + S	3O ₂						
	$[3] CH_3CH_2CI + H_2CI$	O + SO ₂	[4] CH ₃ CH ₂ CI + Cl ₂ -	+ SO ₂						
Q.76	Oil + NaOH(aq)	⊶ Glycerol + Soap								
	Above reaction is c	[UPSEAT 2001]								
	[1] Saponification	[2] Esterification	[3] Hydrogenation	[4] None of the	se					
Q.77	Assertion (A) : Phe	enol is a weak acid than	ethanol							
	Reason (R): Group	[AIIMS 2002]								
	[1] Both A and R ar	e true and the R is a cor	rect explanation of A	-O,						
Q.75 Q.76 Q.77 Q.80 Q.81 Q.82	[2] Both A and R ar	re ture but R is not a corr	rect explanation of A	G						
	[3] A is true but the	R is false		^ •						
	[4] Both A and R are false									
Q.78	Which of the follow	ing product is formed, wl	hen ether is exposed to ai	r:	[AIIMS 2000]					
	[1] Oxide	[2] Alkanes	[3] Alkenes	[4] Peroxide of	diethyl ether					
Q.79	Electrophilic subsit	ution reaction in phenol	take place at :		[Raj PMT 2002]					
	[a] p-position	[2] m-position	[3] o-position	[4] o- and p- p	osition					
Q.80	In the sequence of the following reactions									
	$CH_3OH \xrightarrow{HI} CH_3I \xrightarrow{KCN} CH_3CN \xrightarrow{reduction} X \xrightarrow{HNO_3} Y$									
Q.75 Q.76 Q.77 Q.78 Q.80 Q.81 Q.82	X and Y are respec	tively:			[MP PMT 2002]					
	[1] CH ₃ CH ₂ NH ₂ and	ICH ₃ CH ₂ OH	[2] CH ₃ CH ₂ NH ₂ and (CH ₃ COOH						
	[3] CH ₃ CH ₂ OH and	СН ₃ СНО	[4] CH ₃ OCH ₃ and CH	I ₃ CHO						
Q.81	The reaction : $(CH_3)_3C$ –Br $\xrightarrow{H_2O}$ $(CH_3)_3$ –C–OH									
	[1] Elimination read	tion	[2] Substitution reac	tion						
	[3] Free radical read	ction	[4] Displacement rea	[4] Displacement reaction						
Q.82	The reaction : C ₂ H _e	5OH + SOCI ₂ — Pyridine →	• C ₂ H ₅ Cl + SO ₂ + HCl		[AIIMS 2002]					
	is known as :									
Q.80 In to CH X a [1] [3] Q.81 The [1] [3] Q.82 The [1] [3] Q.83 Glu	[1] Kharasch effect		[2] Darzen's procedu	re						
	[3] Williamson's sy	nthesis	[4] Hunsdieker synth	[4] Hunsdieker synthesis reaction						
Q.83	Glucose \rightarrow ethyl al	cohol in this reaction en	zyme is :		[Raj PMT 2002]					
	[1] Zymase	[2] Invertase	[3] Maltase	[4] Diastase						
Q.84	During dehydration	of alcohols to alkenes b	by heating with conc. H ₂ S	O ₄ the initiation ste	ep is :					
					[AIEEE 2003]					
	[1] Protonation of a	lcohol molecule	[2] Formation of carb	[2] Formation of carbocation						
	[3] Elimination of wa	ater	[4] Formation of an e	[4] Formation of an ester						

[MP PMT 2003]

[MP PET 1994]

[4] A ketone

[2] RCHOH . CH_3 [3] RCH_2 . CH_2OH [4] $\stackrel{\mathsf{R}}{\triangleright}$ $CHCH_2OH$

[3] An ether

Q.95

Q.96

[1] RCHOHR

[1] An aldehyde

A is:

The product 'A' in the following reaction is:

In the reaction Ar–OH + RX — Alkali — A

[2] An aryl chloride

Q.97	When a mixture of ethanol and methanol is heated in the presence of concentrated $\rm H_2SO_4$, the resulting									
	organic product or pro	ducts is / are :		[Manipal MEE 1995]						
	[1] CH ₃ OC ₂ H ₅		[2] CH ₃ OCH ₃ and C ₂ H ₃	₅ OC ₂ H ₅						
	[3] $CH_3OC_2H_5$ and CH_5	3OCH3	$[4] CH_3OC_2H_5, CH_3OC_2$	$\mathrm{CH_3}$ and $\mathrm{C_2H_5OC_2H_5}$						
Q.98	In Williamson's synthe	esis, ethoxyethane is pre	epared by :	[MP PMT 1995]						
	[1] Passing ethanol ov	er heated alumina	[2] Sodium ethoxide w	ith ethyl bromide						
	[3] Ethyl alcohol with s	sulphuric acid	[4] Ethyl iodide and dry	y silver oxide						
Q.99	Dimethyl ether when h	eated with excess HI giv	ves:	[CPMT 1996]						
	[1] CH ₃ I and CH ₃ OH		[2] CH ₃ I and H ₂ O							
	[3] $C_2H_6 + CH_3I$ and C	H ₃ OH	[4] CH ₃ I and HCHO							
Q.100	Methyl-terbutyl ether on heating with HI of one molar concentration gives : [MP PET 199									
	[1] CH ₃ I + (CH ₃) ₃ COH		[2] CH ₃ OH + (CH ₃) ₃ CI							
	[3] CH ₃ I + (CH ₃) ₃ CI		[4] None of the above							
Q.101	The reaction of CH ₃ M ₆	gl with acetone and hydr	olysis of the resulting pro	oduct gives : [MP PMT 1999]						
	[1] CH ₃ CH ₂ CH ₂ OH	[2] CH ₃ CH ₂ CH ₂ CH ₂ OH	1 [3] (CH ₃) ₂ CHOH	[4] (CH ₃) ₃ COH						
Q.102	The ether \	–CH $_2$ — $\langle \rangle$ when tre	eated with HI produces:	[IIT 1999]						
	<u>. </u>	<u> </u>	~C)*							
	[1] CH ₂ I	[2] CH ₂ OH	[3]	[4] None of these						
Q.103	Ethyl chloride is conve	erted into diethyl ether by	y :	[CBSE 1999]						
	[1] Wurtz synthesis	[2] Grignard reaction	[3] Perkin's reaction	[4] Williamson's synthesis						
Q.104	Which of the following	compounds will react wi	th NaHCO ₃ solution to gi	ive sodium salt and carbon dioxide :						
		150		[CBSE 1999]						
	[1] Phenol	[2] n-hexanol	[3] Acetic acid	[4] Both (1) and (2)						
Q.105	Heating mixture of eth	nyl alcohol and acetic a	cid in presence of conc.	. H ₂ SO ₄ produces a fruity smelling						
				[AIIMS 1996]						
	[1] Neutralisation	[2] Ester hydrolysis	[3] Esterification	[4] Williamson's synthesis						
Q.106	When ether is reacted	with O ₂ . It undergoes ex	xplosion due to :	[CPMT 1996]						
	[1] Peroxide	[2] Acid	[3] Ketone	[4] TNT						
Q.107	Which of the following	is obtained when C ₂ H ₅ C	DC ₂ H ₅ is heated with cor	nc. H ₂ SO ₄ : [CPMT 1996]						
	[1] CH ₂ =CH ₂	[2] C ₂ H ₅ OH	$[3]$ C_2 H_5 SO_4 H	[4] CH ₃ CH ₂ CH ₂ CH ₃						
Q.108	In which of the following	ng reaction, phenol or so	dium phenoxide is not formed : [CPMT 1996							
	[1] $C_6H_5N_2CI + alc. KC$	DH	[2] C ₆ H ₅ OCI + NaOH							
	[3] C ₆ H ₅ N ₂ Cl + aq. Na	ОН	[4] $C_6H_5NNCI \frac{H_2O}{\Delta}$	>						
[3] CH ₃ I + (CH ₃) ₃ Cl [4] None of the Q.101 The reaction of CH ₃ MgI with acetone and hydrolysis of the rest [1] CH ₃ CH ₂ CH ₂ OH [2] CH ₃ CH ₂ CH ₂ CH ₂ OH [3] (CH ₃) ₂ CHOQ. Q.102 The ether O-CH ₂ when treated with HI production of the following compounds will react with NaHCO ₃ solution of the following compounds will react with NaHCO ₃ solution of the following compounds will react with NaHCO ₃ solution of the following compounds will react with NaHCO ₃ solution of the following compounds will react with NaHCO ₃ solution of the following compounds will react with NaHCO ₃ solution of the following compounds will react with NaHCO ₃ solution of the following compounds will react with NaHCO ₃ solution of the following is called: [1] Phenol [2] n-hexanol [3] Acetic acid in presence compound. This reaction is called: [1] Neutralisation [2] Ester hydrolysis [3] Esterification of the following is obtained when C ₂ H ₅ OC ₂ H ₅ is heated of the following is obtained when C ₂ H ₅ OC ₂ H ₅ is heated of the following reaction, phenol or sodium phenoxide of the following reaction of t		conc. HNO ₃ is :	[JIPMER 1997]							
			o a	[4] None of these						

```
Q.110 Isopropyl alcohol on oxidation gives:
                                                                                                                    [RPMT 1997]
         [1] Acetone
                                     [2] Acetaldehyde
                                                                 [3] Ether
                                                                                             [4] Ethylene
Q.111 Highest boiling point is of:
                                                                                                                    [RPMT 1997]
         [1] Ethanol
                                     [2] Ether
                                                                 [3] Alkane
                                                                                             [4] Aldehyde
Q.112 The compound which does not react with sodium is:
                                                                                                                     [CBSE 1994]
                                     [2] CH<sub>3</sub>-O-CH<sub>3</sub>
                                                                 [3] CH<sub>3</sub>COOH
                                                                                             [4] CH<sub>3</sub>-CHOH-CH<sub>3</sub>
         [1] C_2H_5OH
Q.113 R-CH<sub>2</sub>-CH<sub>2</sub>OH can be converted into RCH<sub>2</sub>CH<sub>2</sub>COOH. The correct sequence of the reagents is[AIIMS 1997]
         [1] PBr<sub>3</sub>, KCN, H<sub>3</sub>O<sup>+</sup>
                                     [2] PBr<sub>3</sub>, KCN, H<sub>2</sub>
                                                                 [3] HCN, PBr<sub>3</sub>, H<sup>+</sup>
                                                                                             [4] KCN, H+
Q.114 Phenylmethanol can be prepared by reducing the benzaldehyde with:
                                                                                                                     [CBSE 1997]
         [1] CH<sub>3</sub>Br
                                     [2] Zn and HCl
                                                                 [3] CH<sub>3</sub>Br and Na
                                                                                             [4] CH<sub>3</sub>I and Mg
Q.115 When anisole is heated with HI, the product is :
                                                                                                               [CET Pune 1998]
         [1] Phenyl iodide and methyl idodie
                                                                 [2] Phenol and methanol
         [3] Phenyl iodide and methanol
                                                                 [4] Methyl iodide and phenol
Q.116 The ether that undergoes electrophilic substitution reaction is :
                                                                                                                  [JIPMER 2001]
         [a] CH<sub>3</sub>OC<sub>2</sub>H<sub>5</sub>
                                     [2] C_6 H_5 OCH_3
                                                                 [3] CH<sub>3</sub>OCH<sub>3</sub>
Q.117 When ether is exposed in air for sometime an explosive substance produced is
                                                                                                                    [RPMT 2002]
                                                                                             [4] Superoxide
         [1] Peroxide
                                     [2] TNT
                                                                 [3] Oxide
Q.118 Ether which is liquid at room temperature is :
                                                                                                                      [BVP 2002]
                                                                                             [4] None of these
         [1] C_2 H_5 OCH_3
                                     [2] CH<sub>3</sub>OCH<sub>3</sub>
Q.119 In the following reaction
                                                                                                                 [MP PMT 2002]
         C_2H_5OC_2H_5 + 4[H] \xrightarrow{\text{Red P} + HI} 2X + H_2O, X \text{ is :}
                                                                 [3] Butane
         [1] Ethane
                                     [2] Ethylene
                                                                                             [4] Propane
Q.120 An ether is more volatile than an alcohol having the same molecular formula. This is due to: [AIEEE 2003]
         [1] Dipolar character of ethers
                                                                 [2] Alcohols having resonance structures
         [3] Inter-molecular hydrogen bonding in ethers
                                                                 [4] Inter-molecular hydrogen bonding in alcohols
        Among the following compounds which can be dehydrated very easily is:
                                                                                                                    [AIEEE 2004]
         [1] CH<sub>3</sub>CH<sub>2</sub>CH(CH<sub>3</sub>)CH<sub>2</sub>CH<sub>2</sub>OH
                                                                 [2] CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>CH(OH)CH<sub>3</sub>
                                                                 [4] CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>OH
Q.122 Choose the correct molecular formula of the following molecules:
                                                                                                                   [VITEEE 2005]
                                     (ii) Propanal and
                                                                          (iii) n-propanol
         [1] CH<sub>3</sub>COCH<sub>3</sub>, CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>OH and CH<sub>3</sub>CH<sub>2</sub>CHO[2] CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>OH, CH<sub>3</sub>COCH<sub>3</sub> and CH<sub>3</sub>CH<sub>2</sub>CHO
         [3] CH_3CH_2CHO, CH_3COCH_3 and CH_3CH_2CH_2OH[4] CH_3COCH_3, CH_3CH_2CHO and CH_3CH_2CH_2OH
Q.123 The following reaction is an example RCOOR' + R"OH \xrightarrow{H^+} RCOOR" + R'OH
                                                                                                                   [VITEEE 2005]
         [1] Esterification
                                     [2] Saponification
                                                                 [3] Hydrolysis
                                                                                             [4] Transesterification
Q.124 An organic compound, C<sub>3</sub>H<sub>6</sub>O does not give a precipitate with 2,4-dinitrophenyl hydrazine reagent and does
         not react with metallic sodium. It could be
                                                                                                                  [VITEEE 2005]
         [1] CH_3 - CH_2 - CHO[2] CH_3 - CO - CH_3 [3] CH_2 = CH - CH_2OH[4] CH_2 = CH - O - CH_3
Q.125 The best reagent to convert pent-3-en-2-ol into pent-3-in-2-one is
                                                                                                                    [AIEEE 2005]
         [1] Acidic dichromate
                                                                 [2] Acidic permanganate
         [3] Pyridinium chloro-chromate
                                                                 [4] Chromic anhydride in glacial acetic acid
Q.126 Acid catalyzed hydration of alkenes except ethene leads to the formation of
                                                                                                                   [AIEEE 2005]
         [1] Primary alcohol
                                                                 [2] Secondary or tertiary alcohol
                                                                 [4] Mixture of secondary and tertiatry alcohols
         [3] Mixture of primary and secondary alcohols
        Methylphenyl ether can be obtained by reacting
                                                                                                                [J & K 2005]
         [1] Phenolate ions ane methyl iodide
                                                                 [2] Methoxide ions and bromobenzene
         [3] Methanol and phenol
                                                                 [4] Bromo benzene and methyl bromide
```

Q.128 The best method to prepare cyclohexene from cyclohexanol is by using -[IIT 2005] Conc. HCl + ZnCl₂ [2] Conc. H₃PO₄ [4] Conc. HCI Q.129 Which of the following compound is most acidic? [BCECE 2005] [1] CH₄ $[2] C_2 H_6$ [3] CH = CH [4] C₂H₅OH Q.130 Which of the following reaction is correctly represented -[Orissa JEE 2005] CH_3 CH_3 OH CH_3 OCH_3 $+CH_3Br[2]$ O[Orissa JEE 2005] Tertiary butyl alcohol gives tertiary butyl chloride on treatment with -[1] Conc. HCl/anhydrous ZnCl₂ [2] KCN [3] NaOCI [4] Cl₂ Q.133 The general moleculat formula, which represents the homologous series of alkanols is - [CPMT 2006] $[4] C_n H_{2n} O_2$ $[1] C_n H_{2n} O$ $[2] C_n H_{2n+1} O$ $[3] C_n H_{2n+2} O$ Q.134 Among the following the one that gives positive iodoform test upon reaction with I_2 abnd NaOH is -[AIEEE 2006] [3] PhCHOHCH₃ [4] CH₃CH₂CH(OH)CH₂CH₃ [1] C₆H₅CH₂CH₂OH [AIEEE 2007] **Q.135** In the following sequence of reactions, $CH_3CH_2OH \xrightarrow{P+I_2} A \xrightarrow{Mg} B \xrightarrow{HCHO}$ the compound 'D' is:

[1] n-propyl alcohol [2] propanal [3] butanal

[4] n-butyl alcohol

Qus.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
			J	-			- 1	_	_				13			10	17		19	20
Ans.	3	4	2	3	2	2	3	2	3	3	3	2	2	2	3	1	3	3	1	1
Qus.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
Ans.	4	1	3	1	1	3	1	3	2	2	2	3	1	2	2	1	1	1	3	1
Qus.	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
Ans.	4	1	1	1	2	4	2	4	4	2	1	4	3	3	2	4	3	2	2	3
Qus.	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
Ans.	2	2	2	1	2	1	2	1	1	4	1	1	3	1	2	1	4	4	4	1
Qus.	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100
Ans.	2	2	1	1	1	3	2	2	4	4	4	2	1	1	3	3	4	2	2	1
Qus.	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
Ans.	4	1	4	3	3	1	3	2	2	1	1	2	1	2	4	2	1	3	1	4
Qus.	121	122	123	124	125	126	127	128	129	130	131	132	133	134	135					
Ans.	3	4	4	4	3	2	1	2	4	1	1	1	3	3	1					