

1. Fundamentals of The Subject :

The hydroxy derivaties of alkanes are called alcohols.

$$\begin{array}{c} R \longrightarrow H \longrightarrow -H \\ \rightarrow OH \\ Alkane \end{array} \xrightarrow{-H} R \longrightarrow OH \\ alcohol \end{array}$$

or Alchols are monoalkyl derivative of water

$$H \longrightarrow 0 \longrightarrow H \longrightarrow 0$$

or Alcohols are hydroxy derivative of hydrocarbon

 $CH_2 = CH_2 \longrightarrow CH_2 = CH-OH$ (unsaturated alcohol) \rightarrow unstable

$$CH_{4} \longrightarrow CH_{3}OH$$
 (saturated alcohol)

2. Classification :

Alcohols are classifed according to the Number of 1, 2, 3 or more hydroxy group (–OH) present in the molecule – as

Monohydric alcohol \longrightarrow R–OH (one –OH gp)

(vic)

Dihydric alcohol –

[1] R–CH (gem) unstable

[2] R-CH-CH₂ OH OH

(Two-OH gps.)

Trihydric alcohol – (three – OH gps.)

e.g.

CH₂-CH-CH₂ (glycerol)

Polyhydric alcohol – Containing more than three –OH gp. e.g. Sorbitol

3. Monohydric Alcohols :

- General formula $C_n H_{2n+1} OH$ or $C_n H_{2n+2} O$
- Monohydric alcohols are further classified as :
- [a] Primary alcohols : –OH group attached on 1° carbon atom (gp. –CH₂OH)

e.g.
$$H-CH_2OH$$
 Methyl alcohol or Carbionol or wood spirit.
 CH_3-CH_2-OH Ethyl alcohol, Grain alcohol
 CH_3 -CH-CH_2OH Isobutyl alcohol

[b] Secondary alcohol : -OH gp. attached on 2° carbon atom (gp. >CH-OH)

eg. CH₃–CH–CH₃ OH Iso-propyl alcohol

[c] Tertiary alcohol : -OH group attached on 3° carbon atom, gp. -C-OH

4. Structure of Alcohol :

Alcohols are bent molecules. The carbon atom (linked with 'O' atom of –OH gp.) is sp³ hybridised. The central 'O' atom is also in sp³ state of hybridisiation. The bond angle is 105°.

CH₃CH₂CHCH₃

Sec. butyl alcohol

5. General Method of Preparation :

[a] By the hydrolysis of alkyl halide : It is a nucleophilic substitution reaction,

 $\text{R-X} + \text{KOH}(\text{aq.}) \rightarrow \text{R-OH} + \text{KX}$

* Aqueous NaOH or KOH favours substitution. Alcoholic NaOH or KOH favours elemination.

[b] Hydration of Alkenes : It is an electrophilic addition of H₂O.

$$[i] CH_2 = CH_2 + H_2SO_4 \longrightarrow CH_3 - CH_2.HSO_4 \xrightarrow{H_2O} CH_3CH_2OH$$

[ii] Hydroboration of alkenes :

$$6CH_{2} = CH_{2} + \underset{\text{Diborane}}{\text{B}_{2}H_{6}} \longrightarrow 2(CH_{3}CH_{2})_{3}B \xrightarrow{H_{2}O/\text{NaOH}}_{\text{oxidation}} \rightarrow \underset{\text{ethanol}}{6C_{2}H_{5}OH}_{\text{ethanol}}$$

The net result of this reaction is hydration of an alkene against Markownikoff's rule.

[c] By the hydrolysis of ethers :

$$\begin{array}{c} R-O-R' + H_2O \xrightarrow[Heated]{\text{dil. } H_2SO_4} \\ Heated \end{array} R-OH + \begin{array}{c} R'OH \\ alcohols \end{array}$$

[d] By the hydrolysis of esters :

$$R-C-OR'+HOH \xrightarrow{H^+ \text{ or } OH^-} R-COOH+R'OH$$

[e] By Grignard reagent : All the three types of alcohols (Pr., Sec. & Tert.) can be prepared by this method.[I] With Oxygen :

$$RMgX + O_2 \rightarrow R - O - MgX \xrightarrow{HOH} R - OH + Mg \xrightarrow{V} Y$$

[II] With epoxide :

$$\operatorname{RMg} X + \operatorname{CH}_2 - \operatorname{CH}_2 \longrightarrow \operatorname{R.CH}_2 - \operatorname{CH}_2 - \operatorname{OMg} X \xrightarrow{\operatorname{HOH}} \operatorname{RCH}_2 \operatorname{CH}_2 \operatorname{OH} + \operatorname{Mg} \bigvee_X \operatorname{CH}_2 \operatorname$$

chino. or

[iii] With carbonyl compounds :

[f] By the reduction of Carbonyl Compounds : Reduction of aldedyde gives \rightarrow primary. alcohol

$$\begin{array}{c} R \\ I \\ R-C=O \xrightarrow{\text{LiAlH}_4 \text{ or } NaBH_4} \\ \hline \text{or } C_2H_5OH / Na \end{array} \xrightarrow{\begin{array}{c} R \\ I \\ R-CH-OH \\ (Primary alcohol) \end{array}}$$

Reduction of ketones gives \rightarrow Secondary alcohol

$$\begin{array}{c} H \\ I \\ R-C=O \end{array} \xrightarrow{\text{LiAlH}_4 \text{ or } NaBH_4} \\ \hline Or C_2H_5OH / Na \end{array} \xrightarrow{H} \begin{array}{c} H \\ I \\ R-CH-OH \\ (Secondary alcohol) \end{array}$$

tertiary alcohols can not be obtained by reduction.

[g] By reduction of carboxylic acids and their derivatives :

* Reduction of RCOOR' also give R'-OH with RCH₂OH

By the action of nitrous acid on primary amine :

 $R-NH_2 + HNO_2 \longrightarrow R-OH + N_2 + H_2O$ $C_2H_5NH_2 + HNO_2 \longrightarrow C_2H_5OH + N_2 + H_2O$

The reaction can be explained as :

[h]

$$\begin{array}{c} CH_{3}CH_{2} \\ H_{1} \\ OH \end{array} \xrightarrow{} NO \end{array} \xrightarrow{} CH_{3}CH_{2}OH + N_{2} + H_{2}O \\ \end{array}$$

* But CH₃NH₂ give CH₃OCH₃ as a major product with HNO₂.

[i] By fermentation of sugar :

$$[i] \qquad \begin{array}{c} C_6H_{12}O_6 \\ \text{glucose or fructose} \end{array} \xrightarrow{Zymase} 2C_2H_5OH + 2CO_2 \end{array}$$

$$[ii] \qquad \begin{array}{c} C_{12}H_{22}O_{11} \\ Cane \ sugar \end{array} + H_2O \xrightarrow[Yeast]{} Veast \xrightarrow{} C_6H_{12}O_6 + C_6H_{12}O_6 \\ \hline \\ Glucose & Fructose \\ \hline \\ Zymase \\ 2C_2H_5OH + 2CO_2 \end{array}$$

Fermentation is the slow decomposition of complex organic compounds into smaller compounds by the activity of enzymes.

- [iv] In this process we take yeast cells (living organism containing complex, nitrogenous substances)
- [v] Yeast cell generally contain invertase, Maltase, Zymase, enzymes.

cot

[A] Preparation of wash from Molasses :

- [i] 10% to 15% Ethyl alcohol is called wash.
- [ii] Molasses is the waste product obtained after getting cane sugar crystal.
- [iii] Molasses contain 30% cane sugar (sucrose) and 32% invert sugar (mixture of glucose and fructose)
- [iv] Molasses is diluted with water to make about 10% sugar solution.
- [v] In above solution, a small amount of $(NH_4)_2SO_4$ and some yeast cells are added.

Here $(NH_4)_2SO_4$ is used as a food for yeast cells.

- [vi] The above solution is taken in large fermentation tank. The temp. of this tank is maintained at about 25 to 35°C.
- [vii] The fermentation takes place and alcohol is formed within 3 to 5 days.
- [viii] The enzyme invertase present in yeast cells converts sucrose to invert sugar.

$$\begin{array}{ccc} C_{12}H_{22}O_{11} \ + \ H_2O & \xrightarrow{Invertase} & C_6H_{12}O_6 \ + \ C_6H_{12}O_6 \\ \text{Sucrose} & \text{Sucrose} \end{array}$$

[ix] the other enzyme zymase converts invert sugar to alcohol

$$C_6H_{12}O_6 \xrightarrow{Zymase} 2C_2H_5OH + CO_2$$

glucose or fructose

[x] The alcohol obtained in above method is called as WASH.

[B] Preparation of WASH from starch :

- [i] Wash is obtained from starchy material like rice, potatoes, corn etc
- [ii] The molecular formula for starch is $(C_6H_{10}O_5)_n$
- [iii] Starchy materials are heated in superheated steam under pressure at about 140–150°C. The cell walls are ruptured explosing the starch grannules producing milky wash. This soln. is called as **Mashing**.
- [iv] Moist barley seeds are spreaded in a dark room, temp is maintainted at about 15°C for germination. After 2 or 3 days the temp. of room is raised to 60°C to stop the germination. These germinated barley seeds are technically called as **MALT**. Malt contains an enzyme called as **Diastase**.
- [v] The malt is added to above Mashing solution. The enzyme diastase present in MALT hydrolysis starch to maltose soln. The temp. of this soln. is maintained at about 50°C. The process is called as saccharification.

$$2(C_6H_{10}O_5)_n + nH_2O \xrightarrow[diastase]{50°C} nC_{12}H_{22}O_{11}$$
Maltose

The sweat solution of maltose is called **WORT**.

[vi] Fermentation of wort solution :

In above maltose solution yeast cells are added. The temp. is maintained at about 25 to 35°C. The enzyme maltase present in yeast cells hydrolyses maltoseto glucose.

$$nC_{12}H_{22}O_{11} + nH_2O \longrightarrow 2nC_6H_{12}O_6$$
_{Maltose}
glucose

The other enzyme zymase present in yeast cells decomposes glucose to C_2H_5OH .

 $C_6H_{12}O_6 \xrightarrow{zymase} 2C_2H_5OH + CO_2$

- [vii] The alcohol obtained in above method is called as **WASH**.
 - ** Preparation of Raw spirit from WASH
- [i] Wash is now subjected to distillation in coffey's stills.
- [ii] The alcohol obtained by above method is called as **Raw spirit**. It contains 90% alcohol
 - ** Preparation of Rectified spirit from Raw spirit :

Raw spirit <u>distillation</u> → Rectified spirit (95.5% ethanol)

** Preparation of absolute alcohol from rectified spirit.

AZEOTROPIC DISTILLATION

- 6. **Properties :** Volatile, toxic & inflammable.
 - * Lower alcohols $(C_1 C_{11})$ are colourless liquid but highers $(C_{12} \& above)$ are solids.
 - * Lower alcohols are soluble in water due to H-bonding.

but solubility falls with rise in molecular wt. as hydrocarbon character of molecule increases.

* Alcohols have high B.P. than parent alkane, it is due to asociation of alcohol molecules with H-bonding

Among isomeric alcohols the decreasing order of M.P. & B.P. is :

pr. alcohol > sec. alc. > tert. alc.

* Alcohol are neutral substance

thus the alcohols are weaker acid than water, lower alcohols gives solid addition comps. with anhydrous metallic salts like – CaCl₂ & MgCl₂.

CaCl₂.4CH₃OH, MgCl₂.6CH₃OH

So $CaCl_2$ can not be used as drying agent of alcohols.

7. Chemical Properties :

In alcohols the chemical properties are due to hydroxyl gp. (-OH),

- * So in alcohols the reaction may occurs in three ways as follows -
- [a] Reaction involving cleavage of O—H bond i.e. involving only H atom.
- [b] Reaction involving –OH gp as a whole i.e. cleavage of C—OH bond.
- [c] Reaction involving complete molecule of alcohol.

7.1 Reaction Involving Cleavage of O—H Bond :

Such reaction involving replacement of H-atom of –OH gp. represent Bronsted acid nature of alchols. Its decreasing order is – Methyl alcohol > 1° > 2° > 3° alcohols.

$$\begin{array}{c} H\\ H-C-O & \to H\\ H\\ H\end{array}$$

 $\begin{array}{c} \text{Methanol} \\ (\text{Partial ionic character of } \overset{\delta-}{O-H}) \end{array}$

Due to +I effect of CH_3 gps. –ve charge on O-atom increases and hence tendency to release H-atom decreases.

[1] Action of active metals : (Strong electropositive metals like Na, K, Ca & Mg)-

 $R-OH + Na \longrightarrow R-ONa + 1/2 H_2$

R-ONa (Alkoxides) are not organometallic compounds.

[2] Esterification : (Reaction with Carboxylic acids) :

 $R-COO[H+HO]-R' \xrightarrow{H_2SO_4} R-CO-OR'+H_2O$

conc. H_2SO_4 is used as catalyst as well as dehydrating agent.

 $\begin{array}{c} \mathsf{CH}_3\mathsf{COOH} + \mathsf{HOC}_2\mathsf{H}_5 \xrightarrow[]{\Delta} \mathsf{CH}_3\mathsf{COOC}_2\mathsf{H}_5 + \mathsf{H}_2\mathsf{O} \\ \text{acetic acid} & \text{ethanol} & \overset{\mathsf{conc.} \ \mathsf{H}_2\mathsf{SO}_4}{\Delta} \xrightarrow[]{\Delta} \mathsf{CH}_3\mathsf{COOC}_2\mathsf{H}_5 + \mathsf{H}_2\mathsf{O} \\ \text{Ethyl acetate} \end{array}$

Rate of reaction decreases on increasing size of alkyl group (steric effect). Decreasing order is :

$$CH_3OH > C_2H_5OH > (CH_3)_2CHOH > (CH_3)_3COH [1^\circ > 2^\circ > 3^\circ]$$

[3] Acetylation (Reaction with acetyl chloride and acetic anhydride) – H(of–OH) replaced by CH₃CO–gp.

 $\begin{array}{c} R-OH+ CH_{3}COCI \xrightarrow{\Delta} CH_{3} - C - OR + HCI \\ Acetyl chloride \xrightarrow{pyridine} CH_{3} - C - OR + HCI \\ O \\ alkyl acetate \end{array}$

$$R-OH + (CH_3CO)_2O \xrightarrow{\Delta} R-O-CO-CH_3 + CH_3COOH$$

[4] Action of Grignard's reagent – (Alkane is formed)

 $R-OH + R'MgX \longrightarrow R-O-MgX + R'H$

 C_2H_5OH (ethanol) + CH_3MgBr (GR) $\longrightarrow C_2H_5OMgBr$ + CH_4

[5] Replacement of H by alkyl goups :

 $\begin{array}{c} \text{R-OH} + \begin{array}{c} \text{CH}_2\text{N}_2 \xrightarrow{(\text{R'O})_3\text{Al}} \\ \text{Diazomethane} \end{array} \xrightarrow{\text{R-O-CH}_3} \begin{array}{c} \text{R-N}_2 \\ \text{Alkyl methyl} \\ \text{ether} \end{array}$

 $R-OH + Na \longrightarrow R - ONa+1/2H_2$

- $R ONa + XR' \longrightarrow R O R' + NaX$
- [6]

Oxidation : Into aldehydes and ketons depending upon the alcohol.

$$\begin{array}{c} H & OH \\ CH_{3}CH_{2}OH & \xrightarrow{O} -H \\ Pr. alcohol & \xrightarrow{-H} OH_{3}C = O & \xrightarrow{O} CH_{3}C = O \\ OH & OH \\ CH_{3}-CH-CH_{3} & \xrightarrow{O} CH_{3}C-CH_{3} \\ sec alcohol & \xrightarrow{O} CH_{3}C-CH_{3} \\ acetone \end{array}$$

7.2 Reaction Involving –OH bonds as the whole i.e. cleavage of C-OH Bond :
The –OH gp. of alcohol having two lone pair of of behaves as Lewis base. The reactivity order of the alcohols is
(Basic nature) tert. -> sec. > pr.
In tert. alcohol --ve charge on O-atom increases due to +1 effect of three –CH₃ gps. This increases the tendency
of O-atoms to donate electron pair or to show cleavage of C-O bond.
[1] Action of halogen acids :
R-CH₂-OH+HCI =
$$\frac{2nCy}{\Delta}$$
 R-CH₂-CI+H₂O
R-CH+OH + HCI = $\frac{2nCy}{\Delta}$ R-CH₂-CI+H₂O
R-CH+OH + HCI = $\frac{2nCy}{\Delta}$ R-CH₂-CI+H₂O
R-OH+HHSO, = $\frac{2nCy}{\Delta}$ R-CH₂-CI+HO
R-OH+HHSO, = $\frac{2nCy}{\Delta}$ R-OH₂ (Alkyl nitrate)
CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-HCI
(B) Reaction with thiory indices is
3R-OH + PCI₃ = $\frac{2nCy}{\Delta}$ R-CH₂-CI₃ + HO
(B) Reaction with thiory choirde (SCC)₁ :
R-OH + PCI₃ = $\frac{2nCy}{\Delta}$ R-CH + SO₂ (gas)[†] H+GI (gas)[†]
[5] Reaction with thiory CH₂OHO + 2HCI (Oxidation)
CH₂CH₂OH + CH₂(dry) = $\frac{2nCy}{\Delta}$ CH₂OHO + 2HCI (Oxidation)
CH₂CH₂OH + SO₂ = $\frac{2nCy}{\Delta}$ CH₂OHO + 2HCI (Oxidation)
CH₂CH₂OH + SO₂ = $\frac{2nCy}{\Delta}$ CH₂OHO + 2HCI (Oxidation)
CH₂CH₂OH + SO₂ = $\frac{2nCy}{\Delta}$ CH₂OHO + 2HCI (Oxidation)
[7] Reduction :
[1] Dehydration: (Removal of H₂O) = $\frac{100^{-2}}{\Delta}$ CH₂CH₃ + H₂O
[2] Reaction Involving Complete Molecule of AlcohoI :
[1] Dehydration: (Removal of H₂O) = $\frac{100^{-2}}{\Delta}$ CH₂CH₃CH₃ = $\frac{2nCy}{\Delta}$ CH₃CH₃ + $\frac{2nCy}{\Delta}$
 $\frac{2nCy}{\Delta}$ CH₃-CH₃ + H₃O
 $\frac{2nC}{\Delta}$ CH₃-CH₃ - CH₃ - CH₃ - CH₃ + H₂O
 $\frac{2nCy}{\Delta}$ CH₃-CH₃ - CH₃ + H₃O

[2] Dehydrogenation :

Pri. alcohol : $CH_3CH_2OH \xrightarrow{Cu}{300^{\circ}C} CH_3CHO (Acetaldehyde) + H_2$

So this reaction is useful is distinction of pr. sec. & tert. alcohols.

[3] Acetal formation :

$$CH_{3}-C=O \xrightarrow{ROH} CH_{3}-CH \xrightarrow{OR} \xrightarrow{ROH} CH_{3}-CH \xrightarrow{OR} \xrightarrow{Acetal} OR$$

8. Uses:

9.

[i] In bevarage Industry [iv] As solvent for medicine [ii] As fuel–spirit lamp [v] As an antifreeze [iii] As antiseptic – spirit

Distinction Between Pr., Sec. & Tert. Alcohols :

9.1 Lucas test : a mixture of HCI_(conc.) and anhydrous ZnCI₂ is called Lucas reagent.

Primary alcohol $\xrightarrow{ZnCl_2 + HCl}$ No turbidity at room temp.

Secondary alcohol $\xrightarrow{ZnCl_2 + HCl}$ Turbidity appear in cold after 5–10 minute

Tertitary alcohol $\xrightarrow{ZnCl_2 + HCl}$ turbidity comes immediately

9.2 Catalytic dehydrogenation :

Primary alcohol $\xrightarrow{Cu}_{300^{\circ}C}$ aldehydes + H₂

Sec. alcohol $\xrightarrow{Cu}_{300^{\circ}C}$ ketones + H₂

Tert. alcohol $\xrightarrow{Cu}_{300^{\circ}C}$ Alkene + H₂O

9.3 Oxidation test :

 $\begin{array}{c} \mathsf{CH}_3\mathsf{CH}_2\mathsf{OH} \\ \texttt{Primary alcohol} \end{array} \xrightarrow[room \ temp.]{\text{acidified} \ \mathsf{K}_2\mathsf{Cr}_2\mathsf{O}_7 \\ room \ temp.} \end{array} \to \mathsf{CH}_3\mathsf{CHO}$

$$\begin{array}{c} \mathsf{CH}_{3}-\mathsf{CH}-\mathsf{OH} & \xrightarrow{\mathsf{K}_{2}\mathsf{Cr}_{2}\mathsf{O7}} & \mathsf{CH}_{3}-\mathsf{C}=\mathsf{O} \xrightarrow{[\mathsf{O}]} & \mathsf{CH}_{3}\mathsf{COOH}+\mathsf{HCOOH} \\ & \mathsf{CH}_{3} & \mathsf{CH}_{3} \end{array}$$

secondary alcohol

tert. alcohol ------ No change [due to no oxidation]

- 9.4 Victor meyer test : This is colour test for alcohol (pri. sec, & tert.)
 - Pr. alcohol -----> Red colour

sec. alcohol \longrightarrow Blue colour

tert. alcohol → No colour

In this test. primary, secondary or tertiary alcohols are first changed in to thier respective nitro alkanes, which gives different colours on reacting with Nitrous acid.

Primary alcohol	Secondary alcohol	Tertiary alcohol	
$CH_3 - CH_2 - OH$	$CH_3 - CH - CH_3$ OH $\downarrow P / I_2$	$CH_{3} - CH_{3} - C$	
$CH_3 - CH_2 - I$ $AgNO_2$	$CH_3 - CH - CH_3$	CH_{3} $CH_{3} - C - CH_{3}$ I $AgNO_{2}$	0
$CH_3 - CH_2 - NO_2$	$\begin{array}{c} CH_3 - CH - CH_3 \\ \downarrow \\ NO_2 \\ \downarrow \\ HNO_2 \end{array}$	CH_{3} $CH_{3} - C - CH_{3}$ NO_{2} HNO_{2}	,or
CH ₃ -C-NO ₂ ∥ N-OH Nitrolic acid ↓ NaOH	CH_3 $CH_3 - C - NO_2$ $N = O$ $Pseudonitrol$ $MaOH$	No reaction NaOH	
Sod. Salt of nitrolic acidBlue colour solutionBlood red colour		Colour less solution	

10. Important Facts about Alcohols :

- [1] Toxicity \rightarrow ethyl alcohol < lso propyl alcohol < methyl alcohol
- [2] Alcohol contents in drinks : Whisky = Rum = Brandy > Linc

35 - 40%

Whisky = Rum = Brandy > Undisttiled > Beer < Cidar

♦ 8 – 10% 3–6% 2–6%

- [3] Rectified spirit The content obtained afterrectification of fermented liquid.
- [4] Absolute alcohol Ethyl alcohol 99.5% 100%
- [5] **Power alcohol** Rectified spirit + C_6H_6 + Petrol for generation of power
- [6] Methylated spirit Methanol + Pyridine + mineral naptha + Rectified spirit.
- [7] Proof spirit (P.S.) the % of alcohol is expressed in term of proof spirit is a mix. of ethanol and H₂O containing 57.1% alcohol by volume.
 - -10% under proof means, 100 volume of sample containing 90 volume of P.S.
 - -10% over proof means 100 vol. of sample containg 100 volume of P.S.
 - -A sample is called over or under proof as it is stronger or weaker than proof spirit.
- [8] 70% CH₃OH is known as **wood spirit**.
- [9] 90% C_2H_5 OH is known as **Raw spirit**.
- [10] C_2H_5OH is technically called **WASH**.
- [11] **Recitified spirit** contains 95.5% alcohol and 4.5% H₂O.
- [12] Azeotropic rectified spirit is known as Azeotrope. It boils at 78.15°C

DIHYDRIC AND POLYHYDRIC ALCOHOL

- 11. Ethylene Glycol: (or glycol, 1, 2-ethanediol CH2OH.CH2OH) a dihydric alcohol.
- 11.1 **Preparation :**

[b]

[1]

[2]

[a] From ethylene :

ethylene iodide is unstable due to big size of lodine.

[8] Condensation : With dimethyl terephthalate gives polymer Dacron or terylene

HO-
$$CH_2CH_2$$
-OH+ CH_3O - C - C - $COOCH_3$ +OHCH₂ CH_2OH
HOCH₂- CH_2 - O - C - C - C - C - CH_2 - CH_2 - O
(Dacron or terylene)

11.3 Uses :

- -For making glycol dinitrate (Explosive) dioxan (solvent)
- -For making terylene fibre.

-As an antifreeze.

- 12. Glycerol : (glycerine, 1, 2, 3 propantriol)
 - It is trihydric alcohol.
 - It contain two primary and one secondary alcoholic group.
 - It is the most viscous liquid.
 - It decompose on heating at its B.P. hence purified by vaccum distillation.
 - It is found in animal and vegetable fats and oils, which are triesters of glycerol with higher fatty acids.

12.1 Preparation :

[1] From fats and oils : by hydrolysis

[2] By fermentation of sugars :

$$C_{6}H_{12}O_{6} \xrightarrow[Na_{2}SO_{3}]{yeast} C_{3}H_{8}O_{3} + CH_{3}CHO + CO_{2}$$

[3] From propene (Synthesis)

12.2 Properties :

- It is colourless, odourless, viscous and hygroscopic liquid, sweet & non-toxic in nature.
- Soluble in water due to three -OH bond for H-bonding.
- High viscocity & B.P. due to strong H-bonding.

Chemical : gives reactions of primary & secondary alcoholic group

- α CH₂–OH–Pr. alcoholic gp. *Pr. OH group are more reactive than sec. OH group
- β CH–OH–Sec.
- α' ĊH₂–OH–Pr.

- Glycerol trinitrate is an yellow oily, poisonous liquid and causes headache.

- It explodes violently when heated.

- It is a safer explosive when absorbed on kieselguhr and known as dynamite. Source of other explosive (from glycerol trinitrate) are :

[a] Blasting gelatin. a mixture of glycerol trinitrate (GTN) + cellulose nitrate (gum cotton or GC)

[b] $\textbf{Cordite} \rightarrow \textbf{glycerol trinitrate + guncotton + vaseline}$

[6] Action of CH_3COOH :

[10] Oxidation of glycerol with :

- [a] dil. $\text{HNO}_3 \rightarrow \text{glyceric}$ acid
- [b] Conc. $HNO_3 \rightarrow glyceric + tartonic acid$
- [c] **Bismith nitrate** \rightarrow Mesooxalic acid
- [d] Fenton's reagent (H_2O_2 + FeSO₄) \rightarrow glyceraldehyde dihydroxy acetone
- [e] Solid $KMnO_4 \rightarrow Oxalic soild + CO_2$

12.3 Uses:

- As freeze
- In the preparation of plastic & synthetic fibre
- In the prepartion of explosive like dynamite and cordite.
- As a lubricant in watches.
- In the preparation of good quality of soap hand lotions, shaving cream etc.
- As preservative

12.4 Dunstan test for glycerol :

Phenolphthaline drop in borax solⁿ \rightarrow Pink colour Addition of glycerol \rightarrow discharge pink colour on heating pink colour again in cold. appears.

$\mathbf{P}_{\text{henol}}$ (C₆H₅OH)

- Phenol is also known as carbolic acid or Benzenol or hydroxy benzene.
- In phenol –OH group is attached to sp^2 hybridised carbon
- It was discovered by Runge in the middle oil fraction of coaltar distillation and named it carbolic acid (carbo = coal; oleum = oil)
- It is also present in traces in human urine.

Methods of preparation :

- [1] From Benzene sulphonic acid : When sodium salt of benzene sulphonic acid is fused with NaOH phenol is obtained. $C_6H_5SO_3Na + NaOH \rightarrow C_6H_5OH + Na_2SO_3$
- [2] From benzene diazonium chloride : When benzene diazonium chloride solution is warmed phenol is obtained with evolution of nitrogen.

$$\bigcup_{\Delta} \overset{\mathsf{N} = \mathsf{N} - \mathsf{CI}}{\xrightarrow{\mathsf{H}_2\mathsf{O}}} \overset{\mathsf{OH}}{\longrightarrow} + \mathsf{N}_2 + \mathsf{H}\mathsf{CI}$$

[3] By distilling a phenolic acid : with sodalime (decarboxylation)

[4] **From Gignard reagent :** The grignard reagent on reaction with oxygen and subsequent hydrolysis by acid yields phenol

$$C_6H_5MgBr \xrightarrow{[O]} C_6H_5OMgBr \xrightarrow{H_2O} C_6H_5OH + MgBrOH$$

[5] From bezene :

[6] Industrial preparation of phenol : Phenol can be prepared commercially by : [a] Middle oil fraction of coaltar distillation [b] Raschig process

[c] Dow's process

[b] Raschig process [d] Cumene

[a] Middle oil fraction of coaltar :

Coaltar $\xrightarrow{\text{Fractional}}$ Middle oil (172–230° C)

[b] From cumene : (Isopropyl benzene) : Curmene is oxidised with oxygen in to cumene hydro peroxide in presence of a catalyst. This is decomposed by dil. H_2SO_4 in to phenol and acetone.

[c] Raschig process : Chlorobenzene is formed by the interaction of benzene HCl and air at 300°C in presence of catalyst CuCl₂ + FeCl₃. It is hydrolysed by superheated steam at 425°C to form phenol and HCl.

 $C_6H_6 + HCI + 1/2O_2 \xrightarrow{CuCl_2/FeCl_3} C_6H_5CI + H_2O$

 $C_6H_5CI \text{ (steam)} + H_2O \xrightarrow{425^\circ C} C_6H_5OH + HCI$

$$C_6H_5CI + NaOH \xrightarrow{Cu-Fe}{300°C} + NaCI$$

OH

2. Physical Properties :

- * Phenol is a colourless, hydroscopic crystalline solid.
- * It attains pink colour on exposure to air and light.

$$C_6H_5OH - O = O = O - O + OC_6H_5$$

Phenoquinone (Pink colour)

- * It is poisonous in nature but acts as antiseptic and disinectant.
- * Phenol is silghtly soluble in water, readily soluble in organic solvents.
- * Solubility of phenol in water is much lower than alcohols because of larger hydrcarbon part in the molecule.
- * Due to intermolecular H–Bonding, phenol has relatively high B.P. than the corresponding hydrocarbons, aryl halides etc.

3 Chemical Properties :

3.1 Acidic Nature : Phenol is a weak acid. The acidic nature of phenol due to formation of stable phenoxide ion in solution.

$$C_6H_5OH + H_2O = C_6H_5O^- + H_3O$$

The phenoxide ion is stable due to resonance.

- * The negative charge is spread through out the benzene ring which is stabilising factor in the phenoxide ion.
- * Electron with drawing groups (-NO₂, -CI) increase the acidity of phenol while electron releasing groups (-CH₃ etc.) decrease the acidity of phenol.
- * Phenol is stronger acid than alcohols but weaker than the carboxylic acids and even carbonic acid.
- * The acidic nature of phenol is observed in the following :
- [i] Phenol changes blue litmus to red.
- [ii] Highly electron positive metals react with phenol.

$$2C_6H_5OH + 2Na \rightarrow 2C_6H_5ONa + H_2$$

[iii] Phenol reacts with strong alkalies to form phenoxides

$$C_6H_5OH + NaOH \rightarrow C_6H_5ONa + H_2O$$

[vi] However phenol does not decompose Na_2CO_3 or $NaHCO_3$ because phenol is weaker acid than carbonic acid. $C_6H_5OH + Na_2CO_3$ or $NaHCO_3 \rightarrow No$ reaction

3.2 Reaction due to –OH group :

[1] Reaction with PCl_5 : Phenol reacts with PCl_5 to form chloro benzene. The yield of chlorobenzene is poor and mainly triphenyl phosphate is formed.

$$C_6H_5OH + PCI_5 \rightarrow C_6H_5CI + POCI_3 + HCI_5$$

 $3C_6H_5OH + POCI_3 \rightarrow (C_6H_5)_3PO_4$ 2HCl

[2] Reaction with Zn dust : When phenol is distilled with zinc dust benzene is obtained.

$$C_6H_5OH + Zn \rightarrow C_6H_6 + ZnC$$

[3] Reaction with NH₃: Phenol reacts with NH₃ in presence of anhydrous ZnCl₂ to form aniline.

$$C_6H_5OH + NH_3 \xrightarrow{ZnCl_2} C_6H_5NH_2 + H_2O$$

[4] Reaction with FeCl₃: Phenol gives violet colouration with FeCl₃ solution (netural) due to formation of a complex. $C_6H_5OH + FeCl_3 \rightarrow Voilet colour$

* This reaction is used to differentiate phenol from alcohols.

[5] Acetylation : Phenol reacts with acid chlorides or acid anhydrides in alkali solution to form phenyl esters.

$$C_{6}H_{5}OH + CICOCH_{3} \xrightarrow{\text{NaOH}} C_{6}H_{5}OC - CH_{3}$$

$$C_{6}H_{5}OH + CI - C_{6}C_{6}H_{5} \rightarrow C_{6}H_{5}O - CC_{6}C_{6}H_{5}$$

This reaction is called Schotten–Baumann reaction.

[6] Ether Formation : Phenol reacts with alkyl halides in alkali solution to form phenyl ethers.

$$C_{6}H_{5}OH + NaOH \longrightarrow C_{6}H_{5}ONa \xrightarrow{RX} C_{6}H_{5}OR$$
*
$$C_{6}H_{5}OH + CH_{2}N_{2} \longrightarrow C_{6}H_{5}OCH_{3} + N_{2}\uparrow$$

[7] Reaction with P_2S_5 : $5C_6H_5OH + P_2S_5 \longrightarrow 5C_6H_5SH + P_2O_5$

3.3 Reaction of Benzne Ring : The –OH group is ortho and para directing. It activates the benzene nucleus.

[1] Halogenation : Phenol reacts with bromine in CCl₄ to form mixture of o-and p-bromo phenol.

*Phenol reacts with bromine water to from a white ppt. of 2, 4, 6 tribromo phenol.

[2] Nitration :

[a] Phenol reacts with dil. HNO₃ at 5–10°C to form o– and p– nitro phenols.

[b] When phenol is treated with conc. HNO₃ in presence of conc. H₂SO₄ 2,4,6–trinitro phenol (picric acid) is formed.

[3] Sulphonation :

Phenol reacts with conc. H_2SO_4 to form mixture of o- and p- hydroxy benzene sulphonic acid.

[4] Friedel–Craft's reaction :

Phenol when treated with methyl chloride in presence of anhydrous AICl₂ p-cresol is main product.

[5] Gattermann aldehyde synthesis :

When phenol is treated with liquid HCN and HCl gas in presence of anhydrous AlCl₃ yields mainly p–hydroxy benzaldehyde.

$$HCI + HCI \xrightarrow{AICI_3} HN = CHCI$$

[6] Reimer–Tiemann reaction : Phenol on refluxing with chloroform and NaOH (aqueous) followed by acid hydrolysis yields o–hydroxy benzaldehyde. When CCl₄ is used salicylic acid is formed.

[7] Kolbe's Schmidt reaction : This involves the reaction of C_6H_5ONa with CO_2 at 140°C followed by acid hydrolysis salicylic acid is formed.

[8] Hydrogenation : Phenol when hydrogenated in presence of Ni at 150–200° C forms cyclohexanol.

[11] Coupling reactions :

[a] Phenol couples with benzene diazonium chloride in presence of an alkaline solution to form a dye(p-hydroxy azobenzene)

$$\bigcirc$$
 N₂Cl + \bigcirc OH $\xrightarrow{\text{NaOH}}$ \bigcirc N = N $\xrightarrow{\text{O}}$ OH $\xrightarrow{\text{O}}$ OH $\xrightarrow{\text{p-hydroxy azobenzene (Orange dye)}}$

[b] Phenol couples with phthalic anhydride in presence of conc. H₂SO₄ to form a dye (phenolphthalien)

[12] **Condensation with formaldehyde :** Phenol condenses with HCHO (excess) in presence of NaOH to form a polymer known as bakelite.

[13] Liberman's nitroso reaction : When phenol is reacted with NaNO₂ and conc. H₂SO₄ it gives a deep green or blue colour which changes to red on dilution with water. When made alkaline with NaOH original green or blue colour is restored.

The reaction is used as a test of phenol.

3.4 Test of Phenol :

- [1] Phenol turns blue litmus to red.
- [2] Aqueous solution of phenol gives a violet colour with a drop of ferric chloride.
- [3] Phenol gives Lieber mann's nitroso test.

 $Phenol in \ conc. \ H_2SO_4 \xrightarrow[-excess of water]{NaNO_2} Red \ colour \xrightarrow[NaOH excess]{NaOH excess} Blue \ colour$

- [4] Aqueous solution of phenol gives a white ppt. of 2,4,6 tribromophenol with bromine water.
- [5] Phenol combines with phthalic anhydride in presence of conc. H₂SO₄ to form phenolphthalein which gives pink colour with alkali.
- [6] With ammonia and sodium hypochlorite, phenol gives blue colour.

3.5 Differences between phenol and alcohol (C₂H₅OH) :

- [1] Phenol is more acidic than aliphatic alcohol due to resonance in phenoxide ion.
- [2] Phenol gives violet colour with FeCl₃ while aliphatic alcohol does not give.
- [3] Phenol gives triphenyl phosphate with PCl₅ while aliphatic alcohol gives alkyl chloride.
- [4] Phenol has phenolic odour whereas alcohol has pleasent odour.
- [5] Phenol on oxidation gives quinone while alcohol gives aldehyde or ketone and acids.

3.6 Uses of Phenol :

Phenol is used :

- [1] As an antiseptic in soaps and lotions.
- [2] In manufacutre of azodyes, phenolphthalein, picirc acid (explosive), cyclohexanol (Solvent for rubber), plastic (bakelite) etc.
- [3] In manufacture of drugs like aspirin salol, phenacetin etc.
- [4] As preservation for ink.

	Test/ Reaction		Alcohol	Phenol
11.	1	Litmus test	No reaction	Blue litmus red
	2	FeCl ₃ solution	No reaction	Violet colour
	3	Benzene diazonium salt	No reaction	Yellow or orange azo dye
	4	Br ₂ water	No reaction	2,4, 6 -tribromophenol

Ether

- Ethers are as dialkyl derivatives of water $\begin{pmatrix} H \\ H \end{pmatrix} O \rightarrow R \\ R \end{pmatrix}$ or anhydride of alcohols

 $\text{ROH} + \text{HOR} \rightarrow \text{ROR}$ or mono alkyl derivative of alcohol $\text{R-OH} \rightarrow \text{ROR}.$

– General formula is $C_n H_{2n+2} O$

- Classification : These may be classified as :

 [a] Simple or symmetrical ether. e.g. R–O–R
 [b] Mixed or unsymmetrical ether e.g. R–O–R'
- 2. Structure :

- The molecule of ether is bent due to lone pair of electron - bond electron repulsion.

- The bond angle is 110° It is greater than of water 105° due to the repulsion between bulky alkyl gps.
- Due to bent structure, it posses dipole moment and hence is polar in nature.
- 3. Preparation :
- [1] By dehydration of alcohols :

$$[a] R-\underline{OH+H}O-R \xrightarrow{Conc. H_2SO_4} R-O-R+H_2O$$

[b] 2ROH(vapour)
$$\xrightarrow{Al_2O_3}{250^\circC}$$
 ROR + H₂O

The secondary and tertiary alcohols give \rightarrow alkenes.

[2] From alkyl halides :

$$R-X + Ag_2O + X-R \xrightarrow{heat} R-O-R + 2AgX$$
(dry in ether)

Mixed ethers may also be prepared, e.g.

$$C_{2}H_{5}OH + H_{2}SO_{4} + (CH_{3})_{3}COH \rightarrow \begin{array}{c} CH_{3} \\ CH_{3} - C - OC_{2}H_{5} \\ CH_{3} \\ tertiary butyl ethyl ether. \end{array} + H_{2}O$$

[3] Williamson synthesis : This reation obeys SN² mechanism.

To prepare t-butyl methyl ether, the reaction will be :

$$CH_{3}-C-O[Na + Br]CH_{2}CH_{3} \longrightarrow H_{3}C-C-O-CH_{2}CH_{3} + NaBr$$

$$CH_{3} \qquad CH_{3} \qquad CH_{3}$$

$$CH_{3} \qquad CH_{3}$$

$$CH_{3} \qquad CH_{3}$$

$$CH_{3} \qquad CH_{3}$$

$$CH_{3} \xrightarrow{CH_{3}} CH_{3} \xrightarrow{CH_{3}} CH_{3} \xrightarrow{CH_{3}} CH_{3} \xrightarrow{CH_{3}} CH_{3} \xrightarrow{CH_{3}} CH_{3} \xrightarrow{CH_{3}} CH_{2} \xrightarrow{CH_{3}} CH_{3} CH_{3} \xrightarrow{CH_{3}} CH_{3} \xrightarrow{CH_{3$$

[4] By the reaction between an alcohol and diazomethane :

> (C₂H₅O)₃ AI \rightarrow R–O–CH₃ + N₂ $R - O - H + CH_2N_2$ Diazo methane Methyl alkyl ether

4. **Properties :**

- Liquid ethers are highly volatile and vapours are highly inflammable.
- Their B.P. are lower than Isomeric alcohols because ether can not associate with H-bonding.
- Sparingly soluble in water, since due to bulky alkyl groups, oxygen of Ether is incapable of forming H-bonding with H₂O moelcules.
- As bond angle of C-O-C 110° thus dipole moment of two C-O bonds does not cancel out each other, As a result ethers are slightly polar and have a net dipole moment.

Chemical nature :

- Ethers are less reactive.
- The chemical properties of ethers are due to
- \rightarrow Alkyl group.
- \rightarrow lone pairs of electrons on oxygen
- \rightarrow Cleavage of C–O bond.

4.1 Reaction due to alkyl group :

i. Combustion :

$$C_2H_5OC_2H_5 + 6O_2 \rightarrow 4CO_2 + 5H_2O_{(explosive mixture)}$$

ii. Halogenation : Alkyl group of ethers give subsitution reactions, to give α , α '-halogenated ethers.

$$\begin{array}{c} CH_{3}CH_{2}OCH_{2}CH_{3} \xrightarrow{Cl_{2} Dark} CH_{3}CHCI OCHCI CH_{3} \\ e ther & \alpha \alpha' \text{ dichloro diethyl ether} \end{array}$$

$$CH_{2}CH_{2}OCH_{2}CH_{2} \xrightarrow{Cl_{2} sun light} C_{2}Cl_{2}OCl_{2}C_{2}$$

4.2 Reaction due to O-atom :

[A] Basic nature : due to presence of two lone pair of electron on oxygen atom ether behaves as Lewis base

$$[i] \qquad \stackrel{R}{\underset{R}{\longrightarrow}} \stackrel{ii}{\underset{R}{\longrightarrow}} + HCI \rightarrow \stackrel{R}{\underset{R}{\longrightarrow}} \stackrel{O}{\underset{R}{\longrightarrow}} H^{\dagger} C \vdash$$
$$R_{2}O^{\dagger} HCI + H_{2}O \rightarrow R_{2}O + HCI$$

Oxonium salt. ether regeneration

[ii]
$$R \xrightarrow{\text{Cold}} H^{+} \text{HSO}_{4}^{-} \xrightarrow{\text{Cold}} R \xrightarrow{\text{Cold}} H^{+} \text{HSO}_{4}^{-} \text{(di alkyl oxonium hydrogen sulphate)}$$

CH₃CH₂OCH₂CH₃

$$\begin{array}{cccc} [\text{iii}] & & \mathsf{R} - \overset{\bullet}{\mathsf{O}} + \mathsf{BF}_{3} & \longrightarrow & \begin{bmatrix} \mathsf{R} - \mathsf{O} \to \mathsf{BF}_{3} \\ & & \mathsf{Lewis} \\ & & \mathsf{R} & \mathsf{acid} & & \begin{bmatrix} \mathsf{R} - \mathsf{O} \to \mathsf{BF}_{3} \\ & & \mathsf{R} \end{bmatrix} \\ & & \mathsf{Co-ordination \ complex} \end{array}$$

AICl₃, RMgX etc. also form such complexes.

[B] Formation of ether peroxides :

- [iii] Solvent for oil, fats, resins, Grignard reagent.
- [iv] For providing inert & moisture free medium e.g. Wurtz reactions.
- [v] In perfumery.
- $\label{eq:constraint} [vi] \qquad \text{Di-isopropyl ether} \to \text{Petrol as an antiknock compoundx}.$