Exercise # 1

Q.1	Nitrobenzene has a smell similar to that of :					
	(I) Benzaldehyde [2] Formaldehyde	[3] Acetaldehyde	[4] Salisylaldehyde			
Q.2	Nitration mixture contains both conc. H ₂ SO ₂	and conc. HNO ₃ Here H	INO ₃ works as :			
	[1] An aprotic solvent [2] An acid	[3] A base	[4] An oxidant			
Q.3	Select a reaction where nitrobenzene gives	0 & p substituted product	::			
	[1] With solid KOH	[2] With conc. H ₂ SO ₄				
	[3] With conc. H ₂ SO ₄ and F.HNO ₃	[4] With Cl ₂ and cataly	st			
Q.4	An example of nucleophilic aromatic substitu	ution reaction is :				
	[1] $C_6H_5NO_2/H_2SO_4$ [2] C_6H_5OH/HNO_3	[3] C ₆ H ₆ /CH ₃ CI/AICI ₃	[4] C ₆ H ₅ NO ₂ /KOH			
	[1] Nitrosobenzene [2] Nitrobenzene	[3] Benzene	[4] Toluene			
Q.6	In the reaction sequence:					
	$A \xrightarrow{SnCl_2/HCl} B \xrightarrow{NaNO_2/HCl} C \xrightarrow{H_2Ol}$	$^{\prime}\!$	are –			
	[1] Benzene, nitrobenzene, aniline	[2] Nitrobenzene, anilin	e and azo-compound			
	[3] Nitrobenzene, benzene, aniline	[4] Benzene, amino cor				
Q.7	In the reaction sequence identify the function					
	·		,			
	$A \xrightarrow{Sn/HCI} B \xrightarrow{HNO_2} C \xrightarrow{C_2H_5OH} C_6$	₆ H ₆ -				
	[1] NO ₂ , NH ₂ , N=N [2] NO ₂ , NH ₂ , OH	$[3] - OH - NH_2, -NO_2$	$[4] - NH_2, -NO_2, -N=N$			
Q.8	In order to isolate azoxy benzene as the chief					
	[1] Alkaline sodium arsenite	[2] Alkaline glucose sol[4] Alkaline sodium sta	ution			
Q.9	Using Fe-Water-HCI, which one of the follow	ring reaction is possible [I	Here $\phi = C_6 H_5$]			
	$[1] \phi - NO_2 \rightarrow \phi - NH - NH -$	$[2] \phi \text{-NO}_2 \rightarrow \phi \text{-NH}_2$				
	$[3] \phi - NO_2 \rightarrow \phi - NHOH$	$[4] \phi - NO_2 \rightarrow \phi - N = N - \phi$				
Q.10	NO ₂ group in benzene nucleus;					
	[1] Activates the ring	[2] Deactivates the ring				
	[3] Supress the ring	[4] Keeps the ring unaff	ected			
Q.11	Isomeric change of phenyl hydroxylamine yi					
	[1] Mono functional compound	[2] Nitroso compound				
	[3] Bifunctional compound	[4] Secondary amino co				
Q.12	Which one of the following aromatic amino c		vith HNO ₂ ;			
	[1] Phenylamine	[2] Benzylamine				
	[3] N-methylaniline .	[4] Aniline.				
Q.13	Reaction of nitrobenzene with sodium arsen	•	5.43.Nr.			
	[1] Azoxy benzene [2] Azobenzene	[3] Hydrazobenzene	[4] Nitrosobenzene			
Q.14	Both reduction and rearrangement occur in t					
	[1] Sodium phenate + CO ₂ → Sodium salicy	/late				
	[2] Nitrobenzene → p-Aminophenol					
	[3] Aniline → Sulphanilic acid					
	[4] Acetamide → Methylamine					

Q.15		•	nd A on treatment \ a black precipitate			_	l subsequent filtration in ammonical silve e group :		
	[1] –(СООН	[2] -NO ₂	[;	3] <i>-</i> CHO		[4] –NH ₂		
Q.16	Whic	ch product we ca	nnot isolate if the r	nitroben	zene is su	bjected to re	eduction in alkaline medium:		
	[1] Azoxybenzene				2] Hydrazo	benzene			
	[3] A	zobenzene		[4	4] Nitrosob	enzene			
Q.17	Whic	ch of the followin	g compound canno	ot be pro	duced if I-	propane am	ine is treated with NaNO ₂ and HCI:		
	[1] Pı	ropane-I-ol	[2] Propane-2	-ol [3] 2-Chlord	propane	[4] 2-Propaneamine		
Q.18	Fast	heating of urea	yields :						
	[1] C	yanuric acid	[2] Carbamic a	icid [3	3] Parabar	nic acid	[4] Barbituric acid		
Q.19	The	correct set of the	e products obtained	d in the f	ollowing r	eactions :-			
	[4] D	CN reduction	[2] RCN (i) CH ₃	MgBr	[O] DNO	hydrolyeis	[4] RNH . HNO2		
	[I]K	CN	[2] RCN (ii)H	20	[3] KNC .	- ilyuloiysis	[4] RNH ₂		
	The	answer is :							
		Α	В	С		D	A .		
	[1]	2°Amine	Methyl ketone	1°A	mine	Alcohol			
	[2]	1 ° Amine	Methyl ketone	1°A	mine	Alcohol			
	[3]	2° Amine	Methyl ketone	2° Ar	mine	Acid			
	[4]	2° Amine	Methyl ketone	2° Ar		Anhydride			
Q.20			doil is given by the	•					
	[1] C	arbylaminoalkar	e [2] RNCS	[;	B] RCNO		[4] RCNS		
			Ö						
Q.21	For t	he elimination o	 f - C - group of amid	de follov	ving reacti	on is used :			
	[1] Hofmann hypobromite reaction [2] Kolbe reaction								
		, ,	tion [4] Liebermanr	-	•				
Q.22			heating the compo						
		ormamide			2] Amide c	f carbamic a	acid		
	[3] S	uccinimide		[4	- 4] Carbam	ic acid			
Q.23	Third	member of hon	nologous series of	dimethy	l amine				
	[1] CI	H ₃ -CH ₂ -NH-CH ₂	-CH ₃	[2	2] CH ₃ -NH	-CH ₂ -CH ₂ -C	H ₃		
	[3] CI	H ₃ -NH-CH(CH ₃)	2	[4	4] 2 and 3	are correct			
Q.24	How	many centres a	re available for H-b	onding	in the prot	onated dieth	yl amine :		
	(I) 1		[2] 2	[;	3] 3		[4] 4		
Q.25	0	CONH ₂ + NaOH the following cor	•	A. Urea	is obtained	d if product 'A	A' is obtained in the above reaction reacts		
	[1] PI	hosgene	[2] Ethyl uretha	ane [3] Ethyl ca	rbonate	[4] All the above		
Q.26	B ←	A (CH ₃) ₂ CHN	∕lgBr <u>CINH</u> 2 A	, A and	B repectiv	ely are :			
			I-propane amine a						
		rimary amine, al							
	[3] Is	opropyl amine, p	propane						
		II the above							

Q.27	What are the names of [a] RMgCI + CINH ₂ \rightarrow F [b] (CH ₃) ₃ C-OH + HCN [c] CH ₃ CONH ₂ + KOH	$RNH_2 + MgCl_2 \\ + H_2 SO_4 \rightarrow (CH_3)_3 C_3$		
	[d] CH ₃ CN + 4HNa/a	$\xrightarrow{\text{lc.}} \text{CH}_3\text{CH}_2\text{NH}_2$		
	[1] Ritter, Hofmann, Me [3] Hofmann, Ritter, Gri	•	[2] Grignard, Ritter, Hof	mann, Mendius
Q.28	RCOCI NaN3 A	$\stackrel{-N_2}{\longrightarrow}$ R-N=C=O	\xrightarrow{OH} B. The name of the	e reaction and the endproduct would be-
	[1] Curtius degradation, [3] Schmidt reaction, pr		[2] Curtius degradation [4] Schmidt reaction, se	
Q.29	Which compound is sol	luble in water :		
0.20	[1] (CH ₃) ₂ NH ₂ Cl ⁻	0 0	0 0	[4] All the above
Q.30	Ethylamine on oxidation [1] Acetaldehyde	[2] Ethylamine oxid	•	[4] Acetamide
Q.31	Most basic compound i			[4] / testarride
	[1] NH ₃	[2] RNH ₂	[3] R ₂ NH	[4] R ₃ N
Q.32	· ·		hile aniline is basic t	0
	[1] More, less	[2] Less, more	[3] Both	[4] None
Q.33	CH ₃ CH ₂ CONH ₂ NaOl	H → A	-00	
	Aqueous solution of A:			
	[1] Turns blue litmus to	red	[2] Turns red litmus to I	blue
	[3] Does not effect the I		[4] Decolourise the litm	
Q.34			ntaining compound is not	
	[1] Primary amine + Hin		[2] Bromoethane + sod	·
	[3] Primary amine + Tild			rbon disulphide + Mercuric chloride
Q.35			berate nitrogen with HNC	
0.20			[3] Secondary amine	[4] Alkanamide
Q.36	Conversion, —COOH —	_		[4] Chloromino
Q.37	[1] Sodium azide Which of the following p	[2] Hydrazoic acid		[4] Chloramine
Q.37	[1] CH ₃ NCO, CH ₃ NC	dali wili ylelu primary	[2] CH ₃ CN, CH ₃ NC	
	[3] (CH ₃) ₂ NH, CH ₃ –CH	I = NOH	[4] None of the above	
Q.38	02			rields a compound whose formula would
	[1] (BH) ⁺ . AuCl ₄ ⁻¹	[2] (BH ₂)+AuCl ₄ -2	[3] BH+ . HAuCl ₄ ⁻¹	[4] B . AuCl ₄
Q.39	Tilden's reagent is:			
	$\mathrm{[1]C_6H_5SO_2CI}$	[2] NOCI	[3] CINH ₂	[4] (C ₂ H ₅) ₂ Zn
Q.40	The order of basic chara	acter of $\mathrm{CH_3NH_2}$ and	(CH ₃) ₃ N is:	
	$[1] CH_3NH_2 < (CH_3)_3N$		$[2] CH_3NH_2 > (CH_3)_3N$	
	[3] $CH_3NH_2 = (CH_3)_3N$		[4] None of the above	

Q.41	Which of the following of	compound is an isome	er of urea :				
	[1] Glycine,		[2] Ammonium cyanide				
	[3] Ammonium cyanate	•	[4] Ammonium carbama	te			
Q.42	Reduction of acetaldox	ime gives :					
	[1] Ethylamine	[2] Acetaldehyde	[3] Dimethylamine	[4] Methylcarbamide			
Q.43	Which of the following of	compound liberates C	O ₂ when treated with Nat	HCO ₃ :			
	141 OLL OOOLI NIII	[0] O.L. NILI	$\oplus \Theta$ [3] $(CH_3)_4NOH$	⊕ Θ			
	[1] CH ₃ COCH ₂ NH ₂	0 2	• .	[4] CH ₃ NH ₃ CI			
Q.44	C ₂ H ₅ NH ₂ cannot be pre						
0.45	[1] C ₂ H ₅ NO ₂	[2] CH ₃ CH = NOH	_ 0	[4] CH ₃ CN			
Q.45	Methylamine on treatm compound is:	nent with chloroform	and ethanolic caustic all	kali gives foul smelling compound, the			
	[1] CH ₃ NCO	[2] CH ₃ CNO	[3] CH ₃ CN	[4] CH ₃ NC			
Q.46	The reagent used in the	e conversion of C ₂ H ₅ N	$\mathrm{IH_2}$ to $\mathrm{C_2H_5Cl}$ would be :				
	[1] Sulphuryl chloride	[2] Thionyl chloride	[3] Nitrosyl chloride	[4] Phosphoryl chloride			
Q.47	Formation of parabanic	acid from oxalic acid	and urea is carried out in	presence of :			
	[1] Phosphoryl chloride		[2] Phosphorus trichloric	de			
	[3] Phosphorus pentach	nloride	[4] None of the above	>			
Q.48	Mendius reaction involv	es the reduction of :					
	[1] Cyanoalkanes		[2] Alkyl isocyanides				
	[3] Oximes		[4] Nitroalkanes				
Q.49	Which one of the follow	ing compound will yie	eld 1º amine on hydrolysis	3:			
	[1] Nitroalkane	[2] Cyanoalkane	[3] Alkyl isocyanate	[4] All the above			
Q.50	Which of the following of	compound gives the s	mell of mustard oil :				
	[1] Alkyl isocyanate		[2] Alkyl isothiocyanate				
	[3] Alkyl isocyanide		[4] Alkyl isonitrile				
Q.51	Apart from CO ₂ and H ₂	O one more product is	s formed in the reaction o	f urea and nitrous acid. The product is:			
	[1] NH ₃	[2] N ₂	[3] CO	[4] O ₂			
Q.52	Urea can be prepared for	rom :					
	[1] Urethane	[2] Ethyl carbonate	[3] Cyanamide	[4] All the above			
Q.53	Iso-urea is a tautomeric	form of :					
	[1] Carbonic acid		[2] Carbamide				
	[3] Ammonium carbona	te	[4] Cyanamide				
Q.54	Step involved in the Wo	ohler's synthesis is :					
	[1] $NH_4CNO \rightarrow NH_2CO$	NH_2	${\rm [2]H_2NCNNH_2CONH_2}$				
	[3] 3HCNO \rightarrow H ₃ C ₃ N ₃ C	D_3	[4] None of the above				
Q.55	Conversion of ammonia	um cyanate to urea is	done by :				
	[1] Pyrolysis	[2] Alkylation	[3] Rearrangement	[4] Elimination			
Q.56	Which one of the follow	ing reaction gives sulp	phamic acid :				
	[1] Urea + fuming sulph	uric acid	[2] Urea + Thionly chlori	de			
	[3] Urea + sulphuryl chl	oride	[4] Urea + sulphurous a	cid			
Q.57	In the formation of urea	from carbon monoxid	de, it is essential to prepa	re first the compound:			
	$[1](C_2H_5)_2CO_3$	[2] COCI ₂	$[3]\mathrm{H_2NCOOC_2H_5}$	[4] H ₂ NCOONH ₄			

Q.58	The product formed from	om the reactants NH ₂	CONH ₂ and Br ₂ , NaOH w	vould Be :				
	[1] NaOBr, Na, CH ₂ , H	- I ₂ O	[2] NaBr, CO ₂					
	[3] NaBr, H ₂ O	_	[4] NaBr, H ₂ O, N ₂ , CO	2				
Q.59	Which form of the, barbituric acid serves as sedative and hypnotic:							
	[1] Keto form	[2] Enol form	[3] Resonating form	[4] Charged form				
Q.60	Parabanic acid is anot	her name of :						
	[1] Malonyl urea	[2] Oxalyl urea	[3] Dimethylol urea	[4] None of the above				
Q.61	Urea is strong base th	an ordinary amides b	ecause :					
	[1] Urea molecule con	tains two - NH ₂ group	s [2] Protonated urea sho	2] Protonated urea shows resonance				
	[3] Urea itself shows re	esonance	[4] Deprotonated urea	shows resonance				
Q.62	A reaction in which an name:	organic compound is	synthesized from purely i	norganic compound is associated with the				
	[1] Wohler	[2] Williamson	[3] Fischer - Tropsch	[4] Kolbe				
Q.63	Excretion of urea by a	grown up man per da	ay is nearly :					
	[1] 25 - 30 gm.	[2] 1 - 5 gm.	[3] 40 - 50 gm.	[4] 10 - 20 gm.				
Q.64	A mixture of 1°, 2° and							
	[1] 1º amide + caustic	•	[2] Methyl halide and a					
	[3] Cyclic imide + H ₃ C		[4] Alkyl isocyanide +	, <u>-</u>				
Q.65	-	•		loride and gives the main product				
	[1] Ethyl carbylamine	[2] Ethyl isonitrile	[3] Ethyl isothiocyanat	e [4] Ethyl thiocyanide				
Q.66	Aqueous solution of m	-						
	[1] Acidic	[2] Basic	[3] Neutral	[4] Amphoteric				
Q.67	CH ₃ CONH ₂ Br ₂ /KOH	$A \longrightarrow A \longrightarrow CHCl_3/KOH \longrightarrow$	$B \xrightarrow{H_3O^+} CH_3NH_2$					
	What are A' and B respectively :							
	[1] CH ₃ NH ₂ , CH ₃ NC		[2] CH ₃ CH ₂ NH ₂ , CH ₃ C	:H ₂ NC				
	[3] CH ₃ NH ₂ , CH ₃ CH =	: NH	[4] None of the above	2				
Q.68	Gabriel reaction for the							
	[1] 1º amide	[2] 2º amide	[3] Cyclic imide	[4] Aliphatic amide				
Q.69	If alkyl group of the co	mpound R - CH = NH	l is replaced by hydrogen	atom, it would be:				
	[1] Acetaldimine	[2] Methyleneamin	e [3] Formaldimine	[4] None of these				
Q.70	Which one of the follow	wing tests can be use	d to identify primary amir	no group in a given organic compound :				
	[1] lodoform test		[2] Victor Meyer's test					
	[3] Carbylamine reacti	on	[4] Libermann's reaction	on				
Q.71	A compound contains	38.8% C, 16.0% H ar	nd 45.2% N. The formula	of the compound would be				
	[1] CH ₃ NH ₂	[2] CH ₃ CN	[3] C ₂ H ₅ CN	[4] (CH ₃) ₂ NH				
Q.72	Schotten-Baumann re	action involves :						
	[1] Acylation	[2] Benzoylation	[3] Esterification	[4] Amination				
Q.73	$CH_3CONH_2 \xrightarrow{?} CH_3CONH_2 CH_3CONH_2 \xrightarrow{?} CH_3CONH_2 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3$	$H_3CN \xrightarrow{reduction} ar$	mine					
	In the first step oxide	of this nonmetal is tal	ken:					
	[1] P	[2] N	[3] S	[4] CI				

Q.74	When hydrogen aton ment product of :-	n of isocyanic acid is re	eplaced by methyl group	, the compound is nothing but a rearrange-				
	[1] Acetyl nitrene	[2] Ethyl nitrite	[3] Cyanic acid	[4] Ethyl nitrate				
Q.75	CH ₃ CI <u>KCN</u>	$\stackrel{+4H}{\longrightarrow}$ A NaNO ₂ /HCI	Ethanol + ?					
	Apart from ethanol a	s the main product and	d the other products wou	ld be :				
	[1] Ethylene	[2] Ethyl nitrite	[3] Ethyl chloride	[4] All the above				
Q.76		itrogen is released in tl		• •				
	[1] RCONH ₂ + NaNH	•	[3] Both the above	[4] None of the abvoe				
Q.77	-		character (CH ₃) ₃ N < (CH					
	[1] Steric hindrance of bulky methyl group							
	[2] Higher volatility of 3° amine							
	[3] Decreased capac	ity for H-bond formatio	n with H ₂ O					
	[4] Decreased electro	on - density at N-atom	_					
Q.78	Ethaneamine can be	obtained if the following	ng compound is heated	with [KOH +. Br ₂] :				
	[1] Ethanamide	[2] Methanamide	[3] Propionamide	[4] All the above				
Q.79	The strucutres of (CN	N ₃) ₄ N ⁺ and NH ₃ are :						
	[1] Square pyramidal	and Trigonal Pyramida	al [2] Tetrahedral and Tr	igonal Pyramidal				
	[3] Trigonal pyramida	l and Tetrahedral	[4] Square planar and	square pyramidal				
Q.80	[A] CH ₃ CONH ₂ + KC	OH + Br ₂ [B] CH	₃ COOH + soda lime	[C] CH ₃ COOAg +Br ₂				
	All the three reaction	s show similarity in :						
	[1] Descending of ca	rbon atoms	[2] Ascending of carb	on atoms				
	[3] Both the above	A .	[4] None of the above					
Q.81	[NaNO ₂ + HCl] gives	effervescence with the	e following compound:					
	[1] Acetamide	[2] Urea	[3] Ethane amine	[4] All the above				
Q.82	Weakest amine is:	_(),						
	[1] Aniline	[2] Methylamine	[3] Dimethyl amine	[4] Ethylamine				
Q.83	On analysis, an orga		ınd to contain 74% C, 8.6	65%; Hand 17.3% N. What is the empirical				
	[1] C ₅ H ₈ N	[2] C ₁₀ H ₁₂ N	[3] C ₅ H ₇ N	[4] C ₁₀ H ₁₄ N				
Q.84	If primary amines are	e treated with ketones	the product is :					
	[1] Urea	[2] Guanidine	[3] Amide	[4] Schiff's base				
Q.85	Gabriel phthalimide	reaction is used in the	synthesis of :-					
	[1] Primary aromatic	amines	[2] Secondary amines	5				
	[3] Primary aliphatic	amines	[4] Tertiary amines					
Q.86	N-ethyl- N-methyl- I-ր	oropane amine is :						
	[1] 1° amine	[2] 2° amine	[3] 3° amine	[4] All the above				
Q.87	When ethylamine is except :	treated with sodium n	itrite and dil. hydrochlor	ic acid the following products are formed,				
	[1] Chloroethane	[2] Ethene	[3] Ethanol	[4] Nitroethane				
Q.88	Least availability' of I	one pair of electrons is	s associated with the follo	owing compound :				
	[1] NH ₂ CONH ₂	[2] CH ₃ CH ₂ NH ₂	[3] CH ₃ NHCH ₂ CH ₃	[4] (CH ₃) ₃ N				

Q.89	Which of the following product cannot be pre	epared by the reaction rela	ated to Hofmann :						
	[1] R - N \equiv C [2] RCH ₂ NH ₂	$\text{[3] R-NHSO}_2\text{C}_6\text{H}_5$	[4] $R - N = C = S$						
Q.90	$CH_3CONH_2 \xrightarrow{PCI_5} A \xrightarrow{Na/EtOH} B$								
	Reaction II is called:								
	[1] Clemensen [2] Stephen	[3] Mendius	[4] Bauveault-blank reductio						
Q.91	Which of the following compound gives deep	violet colour with copper	sulphate and NaOH solution-						
	[1] Biuret	[2] Aminomethanamide							
	[3] Barbituric acid	[4] Parabanic acid							
Q.92	Hinsberg reagent is used to distinguish betw	reen:							
	[1] –CHO, C = O.	[2] –CH ₂ OH, > CHOH,							
	[3] -O-, -OH	[4] –NH ₂ , –NH–, –N–							
Q.93	Lowest boiling point will be of the compound								
	[1] Ethylamine	[2] Ethylmethylamine							
	[3] I-propaneamine	[4] N, N-dimethylmethal	ne amine						
Q.94	In which of the following acid - COOH group	is not there:							
	[1] Tartaric acid [2] Acrylic acid	[3] Maleic acid	[4] Parabanic acid						
Q.95	COOH group is present in the following com								
	[1] Picric acid [2] Parabanic acid	[3] Barbituric acid	[4] Glycine						
Q.96	$CHCl_{3} \xrightarrow{O,hv} A \xrightarrow{NH_{3} \to B} B$ $AlCl_{3} \xrightarrow{Benzene} C$	CO'O							
	Compounds A, B and C respective are:								
	[1] Phosgene, urea and benzoic acid	[2] Phosgene, formamic	de and benzoyl chloride						
	[3] Carbonyl chloride, urea and benzoyl chlorid		•						
Q.97	Which of the following compound is not hete	erocyclic :	·						
	[1] Malonyl urea [2] Ethylene oxide	[3] T.N.T. (explosive)	[4] Furan						
Q.98	Which of the following compounds are corre	ctly matched with the corr	esponding formula:						
	[A] Carbamic acid, NH ₂ CONH ₂	[B] Urethane, H ₂ N - CO	OC ₂ H ₅						
	[C] Cyclic ether, OLL	[D] Amide of carbamic a	acid NH-COOH						
	Code is: $CH_2 - CH_2$	[5]7 imag or our barrier of	300,111,200011						
	[1] A, B [2] B, D	[3] B, C	[4] A, D						
Q.99	Reaction for the estimation. of urea is:								
	(I) Urea + acetic anhydride	[2] Urea + oxalic acid							
	[3] Urea + acetyl chloride	[4] Urea + alkaline hypo	bromite solution						
Q.100	Urea \xrightarrow{A} $H_2N - CN + SO_2 + 2HCI$								
	Semicarbazide								
	A and B are respectively:								
	[1] Sulphuryl chloride, acetyl chloride	[2] Thionyl chloride, hyd	drazine						
	[3] Nitrous acid, acetic anhydride	[4] Thionyl chloride, phe	enyl hydrazine						

[4] Thionyl chloride, phenyl hydrazine

[3] Nitrous acid, acetic anhydride

Q.101	The product obtained bromide, the compoun		plysis of C_2H_5 – $N = C =$	O when treated with t-butyl magnesium			
	[1] t-butylamine	[2] n-butylamine .	[3] Isobutane	[4] n-butane			
Q.102	Which of the following	property of urea is ex	plained by resonance :				
	[1] High m.p.	[2] Mono acid base	e [3] Solubility	[4] All the above			
Q.103	A prolong reaction bet	ween- urea and forma	ldehyde leads to the forr	nation of :			
	[1] Resin	[2] Additive polyme	r [3] Homopolymer	[4] None of these			
Q.104	On heating urea and c	austic soda solution,	the liberated gas is :-				
	[1] N ₂	[2] CO ₂	[3] NH ₃	[4] N_2 and NH_3			
Q.105	Reactants of reaction	- I are : CH ₃ CONH ₂ , k	ЮН, Br ₂				
	Reactants of reaction-	II are: CH ₃ NH ₂ , CHC	CI ₃ , KOH				
	The intermediate spec	ies of reaction-I and re	eaction-II are respectively	y:			
	[1] Carbonium ion, carl	pene	[2] Nitrene, carbene	~O`			
	[3] Carbene, nitrene		[4] Carbocation, carba	nion			
Q.106	0.4 gm. of impure urea in quantity of pure urea in		r ₂ and NaOH produces	112 ml. of nitrogen at NTP. What was the			
	[1] 0.1 gm.	[2] 0.2 gm.	[3] 0.3 gm.	[4] 0.4 gm.			
Q.107	The percentage of C, H the compound is:	Hand N in an organic c		d 28 respectively. The empirical formula of			
	[1] C ₂ H ₁₂ N	[2] C ₃ H ₁₂ N	[3] CH ₆ N	[4] CH ₄ N			
Q.108	A compound of molecuin dilute NaOH solution			sulphonyl chloride gives a product soluble			
	[1] CH ₃ - CH - NH ₂ CH ₃	[2] CH ₃ -NH-C ₂ H	₅ [3] (CH ₃) ₃ N	[4] All of these			
Q.109	N,N-dimethylacetamic						
	[1] Acetyl chloride and		[2] Acetyl chloride and ethaneamine				
	[3] Acetyl chloride and		[4] Acetyl chloride and diethylamine				
Q.110	Solubility of ethylamin	e in water is due to :					
	[1] Low molecular weig	ht	[2] Ethyl group as present in ethyl alcohol				
	[3] Formation of H-bon	ding with water	[4] Being a derivative of ammonia				
Q.111	RNH ₂ + CHCl ₃ + 3KO	$H(alc.) \rightarrow A + 3KCI +$	3H ₂ O				
	From the product 'A',						
	[1] Ammonolysis	[2] Reduction	[3] Oxidation	[4] Hydrolysis			
Q.112	Reaction for the prepa	ration of 1° amine is :					
	[1] Hofmann carbylami	ne reaction	[2] Hofmann mustard	oil reaction			
	[3] Hofmann bromamic	le reaction	[4] Lieberman nitroso	reaction			
Q.113	Effervescence are give	en by which of the follo	wing. compounds, wher	treated with [NaNO ₂ + HCI]			
	[1] RCOOH	[2] RCH ₂ NH ₂	[3] RCH ₂ OH	[4] None			
Q.114	Lowest value of pKb w	ill be of -					
	[1] NH ₃	[2] (CH ₃) ₂ NH	[3] (CH ₃) ₃ N	[4] CH ₃ NH ₂			
Q.115	Hofmann's rearrangen	nent during the conve	rsion of- an amide to ami	ne is :			
	[1] Intramolecular	[2] Intermolecular	[3] Both	[4] None.			

- Q.116 The basic character of amines can be explained:-
 - [1] In terms of Lewis and Arrhenius concept
 - [2] In terms of Lowry and Bronsted concept
 - [3] In terms of Lewis an Lowry Bronsted concept.
 - [4] Only by Lewis concept
- **Q.117** t-butyl isocyanide on reduction gives:
 - [1] t-butylamine.

[2] t-butyl methylamine

[3] t-butylethylamine

[4] None

Q.118 The reaction: $[C_2H_5Br + NH_3]$ is in fact an example of :

- [1] Ammonolysis only
- [2] Nucleophilic substitution only
- [3] Ammonolysis as well as nucleophilic substitution
- [4] None
- Q.119 Which of the following reagents converts carbamide into ammonium chloride and CO₂:

[2] dil. HCI

[3] Urease

[4] H₂O and heat

Q.120 How many primary amines can be formulated by C₃H_oN and how many 1° hydrogen are associated with carbon atoms .of each compound:

[1] Two primary amines [3, 6]

[2] One primary amine [3]

Answer-key

	[3] Three primary amines [3, 6, 6] [4] Two primary amines [5, 6]																								
Qus.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
Ans.	1	3	1	4	2	2	1	3	2	2	3	2	1	2	2	4	4	1	2	2	1	2	4	2	4
Qus.	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	EO
Ans.	4	2	2	4	1	1	1	2	3	3	2	1	1	2	2	3	1	4	3	4	3	1	1	3	50
Qus.										- 00	~	~	ස	64	65	66	67	68	~					~	2
	51	52	53	54	55	56	57	58	59	60	61	62	လ	04	w	8	OI	w	69	70	71	72	73	74	\rightarrow
Ans.		52	53	54	55	56	57	58	59	2	2	1	1	2	3	2	1	3	3	70	71	72	73		2
Ans. Qus.	2																_							74	2 75
	2 76	4	2	1	3	1	2	4	2	2	2	1	1	2	3	2	1	3	3	3	1	2	1	74 1	2 75 4
Qus.	2 76 3	4	2 78	1 79	3 80 1	1 81	2 82	4 83	2 84	2 85	2 86	1 87	1 88	2 89	3 90	2 91 1	1 92	3 93	3 94	3 95	1 96	2 97	1 98	74 1 99	2 75 4 100

Exercise # 2

Q.1	Urea does not produc	e ammonia gas if heate	ed with the reagent :- [3] Urease	[4] Hydrazina
Q.2	Chloroplatinic acid is		[3] Olease	[4] Hydrazine
Q.Z	[1] Dibasic acid	a [2] Monobasic acid	[3] Tribasic acid	[4] None of these
Q.3			e product. The intermeda	
Q. 5		511. give 011314112 as the	e product. The intermede	nes of the reaction are.
	O [a] CH ₃ -C -NHBr			O Br
	[a] CH ₃ – C –NHBr	[b] CH ₃ -N=C-O	[c] CH ₃ NHBr	[d] CH ₃ -C-N
	The correct energy is			\ Br
	The correct answer is [1] a, b	[2] a, c	[3] b, d	[4] c, d
Q.4		eaction is used in the pr		[+] C, U
Q. 7	[1] Secondary amine	saction is used in the pr	[2] Primary aliphatic an	nine
	[3] Primary aromatic a	amine	[4] Tertiary amine	
Q.5	Which compound doe		[4] Tertiary arrille	O,
Q. 0	[1] Propene	[2] Phenyl amine	[3] Phenol	[4] Chloroform
Q.6	'			= 45.2%. The formula of the compound is:
4.0	[1] CH ₃ NH ₂	[2] CH ₃ CN	[3] C ₂ H ₅ CN	[4] CH ₂ (NH ₂) ₂
Q.7	(CH ₃) ₄ NOH is basic th	0	[0] 02.50	[1] -1.2/2
	[1] More	[2] Less	[3] Both the above	[4] None of the above
Q.8		CONHø. The class nam		
	[1] Anilide		[3] Amine	[4]. None of these
Q.9			DOH) ₂ . proves that urea i	
	[1] Diacid base	_	[3] Both the above	[4] None of these
Q.10	Oxalic acid + Urea —	$\xrightarrow{POCl_3} Cyclic compounds$	und Number of sp ² hybrid	dised carbon in the cyclic compound are:
	[1] 2	[2] 5	[3] 3	[4] 1
Q.11		not respond to carbylar	mine reaction :	
	[1] Isopropylamine	[2] -Diethylamine	[3] t-Butylamine	[4] Sec-Butylamine
Q.12		s C_2H_5 -N=C-S. Thus C_2	compound A is :	
	[1] C ₂ H ₅ NH ₂	$\mathrm{[2]C_2H_5NHC_2H_5}$	[3] CH ₃ -CH=NOH	[4] CH ₃ CH ₂ NO ₂
Q.13	Ammonolysis of alkyl	halide gives :		
	[1] Primary amine		[2] Secondary amine	•
	[3] Tertiary amine			nd quaternary compound
Q.14		hydrolysis yields prima		
	[1] Nitroparaffin	[2] Alkylcyanide	[3] Oxime	[4] Alkyl isocyanide
Q.15		ned to red by the comp		ra politico-
0.40	[1] ROH	[2] RNH ₂	[3] RN ⁺ H ₃ OH ⁻	[4] RN ⁺ H ₃ Cl ⁻
Q.16	In which case alkylan	nine is not formed :		
	[1] R–X + NH $_3$ \rightarrow		[2] R-CH=NOH + [H] -	Na alc.
	[3] R-CN + H ₂ OH	⊦ 	[4] RCONH ₂ + 4[H]	LiAlH ₄ →
	_		_	

Q.17	Keeping aside one reaction	all other reaction are	e connected with the nar	ne of one scientist only:
Q. 17	recepting aside one reaction	, an onior reaction an	5 00111100t0a With the Har	ile of othe bole itiet of ity

- [1] Reaction-1, $CH_3CONH_2 \xrightarrow{ROH Br_2}$
- [2] Reaction-2, A \xrightarrow{x} CH₃-NH–COC₆H₅
- [3] Reaction-3, A $\xrightarrow{Y+Z}$ CH₃-N=C=S [4] Reaction-4, A \rightarrow CH₃-N \equiv C

Nitration of nitrobenzene in presence of fuming nitric acid will generate a: **Q.18**

[1] Solid product

[2] Gaseous product

[3] Semi-solid product

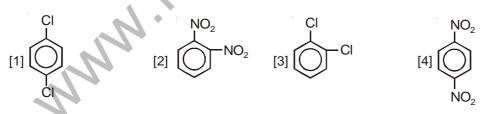
[4] Liquid product

Q.19
$$C_6H_5NO_2 \xrightarrow{SnCl_2/HCl}$$
 A $\xrightarrow{NaNO_2/HCl}$ B \rightarrow Benzene, In the above sequence B \rightarrow Benzene is suitably obtained by using :

- [1] Ethanol
- [2] H_3PO_2
- [3] Both the above
- [4] Methanol

The presence of nitro group in nitrobenzene is ascertained by: Q.20

[1] Schiff's test


[2] Mulliken and Barker's test

[3] Both the above

- [4] None of the above
- Q.21 Nitrobenzene and CH₃CI in presence of anhydrous AICI₃ gives :
 - [1] o-Nitrotoluene
- [2] p-Nitrotoluene
- [3] Both the above
- [4] Reaction will not occur
- Q.22 Nitration of which of the following compound is difficult:
 - [1] Benzene
- [2] Nitrobenzene
- [3] Toluene
- [4] Phenol
- Reaction of nitrobenzene with methyl chloride in presence of anhydrous aluminium chloride Q.23 the compound formed is :-
 - [1] m-Nitrotoluene
- [2] o-Nitrotoluene
- [3] p-Nitrotoluene
- [4] None
- When nitrobenzene is heated with -fuming HNO_3 and conc. H_2SO_4 the product would be :-Q.24
 - [1] T.N.T.
- [2] T.N.B. •
- [3] D.D.T.

$$\textbf{Q.25} \qquad \text{In the nitration of benzene conc. HNO}_3 \text{ and conc. H}_2 \text{SO}_4 \text{ are taken. Here the function of conc. H}_2 \text{SO}_4 \text{ is :- .}$$

- [1] As a dehydrating agent
- [2] As an oxidant
- [3] As a producer of nucleophile NO₂–
- [4] As a producer of electrophile NO₂+
- Q.26 Which of the following has the maximum value of dipolemoment :-

- Q.27 Before proceeding for the nitration of aminobenzene, the NH₂ group is first protected by:
 - [1] Alkylation
- [2] Acetylation
- [3] Formylation
- [4] Chloromethylation

- Q.28 Benzylamine and aminobenzene differs by:
 - [1] CH
- [2] C_2H_2
- [3] CH₂
- [4] CH₃

Q.29 Aniline is purified by:

[1] Azeotropic distillation

- [2] Steam distillation
- [3] distillation in presence of magnesium
- [4] Fractional crystallisation
- Q.30 Aniline can be obtained by :-
 - [1] Benzoyl chloride and ammonia
- [2] Reduction of benzamide
- [3] Phenol and ammonia in presence of ZnCl₂[4] Benzoic anhydride and ammonia

Q.31	Select the reaction in w	hich diphenyl thioure	ea is formed as the produc	ct:
	[1] C ₆ H ₅ NH ₂ + S		$[2] C_6 H_5 NH_2 + K_2 S$	
	[3] C ₆ H ₅ NH ₂ + CS ₂		[4] C ₆ H ₅ NH ₂ + NH ₄ HS	
Q.32	Aniline is manufactured	d by :		
	[1] C ₆ H ₅ NO ₂ , Fe, H ₂ O,	HCI	$[2]$ C $_6$ H $_5$ CI, NH $_3$, Cu $_2$ O	
	[3] C ₅ H ₅ NO ₂ , Zn, NaOl	4	[4] C ₆ H ₅ NO ₂ , SnCl ₂ , HO	CI
Q.33	With NaOCI aniline give	es the colour :		
	[1] Green	[2] Blue	[3] Purple	[4] Orange
Q.34	With carbonyl chloride,	aniline forms the pro	duct :	
	[1] (C ₆ H ₅ NH) ₂ CO	[2] C ₆ H ₅ NC	[3] C ₆ H ₅ CN	[4] C ₆ H ₅ CNO
Q.35	0 0 2	0 0	NH ₂ (Para) from aniline wo	
			[3] Na ₂ SO ₄ -180°C	
Q.36				use its basic character to :
	[1] Increase	[2] Decrease	[3] Remain unchanged	
Q.37	Reaction of methylamin	ne and acetyl chloride	e is similar to the reaction	of aniline with :
	[1] Carbonyl chloride	-	[3] Bromine water	[4] Acetic anhydride
Q.38	C ₆ H ₅ NH ₂ , CHCl ₃ and k	OH give the main pro	oduct:	
	[1] Phenyl cyanide		[3] Benzyl carbylamine	[4] Phenyl isonitrile
Q.39	Aniline on direct nitration	on produces :		
	[1] o-Nitroaniline	[2] m-Nitroaniline	[3] p-Nitroaniline	[4] 1 & 3 are correct
Q.40	Which one of the follow	ing is not an azo com	npound :-	
	[1] Methyl orange		[2] Benzenediazonium o	chloride
	[3] Phenolphthalein		[4] p-hydroxyazobenzer	ne
Q.41	Schotten-Baumann rea	action is not possible	with:	
	[1] CH ₃ NH ₂	[2] C ₆ H ₅ NH ₂	[3] C ₂ H ₅ NH ₂	[4] C ₆ H ₅ CONH ₂
Q.42	Which one of the follow	ving group is not meta	a directing:	
	[1]-CHO	[2]-NO ₂	[3]-SO ₃ H	[4] –NH ₂
Q.43	A low temperature read	ction of aniline with HI	NO ₂ and subsequent trea	atment with alkaline β –naphthol solution
	produces a precipitate	whose colour would b	oe :-	
	[1] Black	[2] Purple	[3] White	[4] Orange
Q.44	Nitration of acetanilide	followed by hydrolysi	s gives :	
	[1] o-Nitroaniline	[2] p-Nitroaniline	[3] o & p-Nitroaniline	[4] o-Nitroanilinium ion
Q.45	I COCI2 Aniline _	$C_2H_5MgI \rightarrow II$. Products	I and II are :	
	[1] Diphenylurea, ethan	e	[2] Diphenylurea, C ₆ H ₅ N	MgI
	[3] Diphenlamine, ethar	ne	[4] Diphenylamine, benz	zene
0.40	NaNO ₂ /HCl	→ A \A(I) '- I '- (I - '	orrect structure of the pro	1 -1 (A)
Q.46	$C_6H_5NH_2 = 0-5^{\circ}$	A which is the inc	forrect structure of the pro	oduct A :-
			[3] [C ₆ H ₅ −N≡N] CI	[4] None of the chave
o		0 0 =	0 0	
Q.47	A crystalline compound gives :-	d is formed by the rea	ction of aniline and chlore	oplatinic acid. The compound on ignition
	[1] [C ₆ H ₅ NH ₃]Cl		[2] [C ₆ H ₅ NH ₂] ₂ , H ₂ PtCI	
	[3] Pt		[4] PtCl ₆	
	F-1 -		. 1 0	

Q.48	Reaction $C_6H_5NH_2 + H_2$	$IAuCI_4 \rightarrow [C_6H_5N^+H_3$]Au Čl ₄ shows behavid	our of aniline :							
	[1] Acidic	[2] Neutral	[3] Basic	[4] Amphoteric							
Q.49	Aniline on treatment wi	th bromine water yiel	ds white precipitate of :								
	[1] o-Bromoaniline		[2] p-Bromonaniline								
	[3] 2, 4, 6- Tribromoani	line	[4] m-Bromoaniline								
Q.50	Benzoylation of hydrox	y and amino compou	inds as :								
	$C_6H_5NH_2 = \frac{C_6H_5COCI}{NaOH}$	→C ₆ H ₅ NHCOC ₆ H ₅ +I	NaCI + H ₂ O								
	$C_6H_5OH \xrightarrow{C_6H_5COCI}$	$C_6H_5OCOC_6H_5 + HC$	CI shows :								
	[1] Schmidt reaction		[2] Schotten-:Baumann	reaction							
	[3] Claisen reaction		[4] Lossen reaction	60							
Q.51	$C_6H_5NH_2 = \frac{NaNO_2/HCI}{0^0}$			A will occur with the reagent:							
	[1] Water + Δ	[2] Ethanol + Δ	[3] Cu ₂ Br ₂ + Br ₂	[4] Aniline							
Q.52	Nitration of aniline is ca										
	[1] Oxidation can be av	oided									
	[2] Reaction becomes r	manageable									
	[3] o and p-nitroanilines are obtained in good amount										
	[4] All the above		~O								
Q.53	Nitration of aniline com	es under :	G								
	[1] Nu-addition	[2] Nu-substitution	[3] E -addition	[4] E-substitution							
Q.54	CH ₃ I + C ₆ H ₅ NH ₂ leads	s to :-									
	[1] 1° amine only	640	[2] 2° amine only								
	[3] 3° amine only		[4] 2° amine + 3° amine	+ quaternary ammonium compound							
Q.55	Tertiary butylamine is a	a: •									
	[1] 1 ° Amine	[2] 2° Amine	[3] 3° Amine	[4] Quaternary salt							
Q.56	$-CONH_2 \xrightarrow{reduction}$	–CH ₂ NH ₂ Hybridisati	on state of carbon change $ [3] \ sp^2 \rightarrow sp^3 $	es from :							
	[1] sp \rightarrow sp ²	[2] $sp \rightarrow sp^3$	[3] $sp^2 \rightarrow sp^3$	[4] $sp^2 \rightarrow sp$							
Q.57	Which of the following	amine does not react	with Hinsberg reagent:								
	[1] Neopentyl amine		[2] Isopropyl amine								
	[3] Triethyl amine		[4] Ethyl methyl amine								
Q.58	Which gas will be evolved	red out when [CH ₃ CH	$I_2NH_2 + (CH_3)_2CHNH_2]$ is	treated with sodium nitrite and HCI:							
	[1] Chlorine	[2] Ammonia	[3] Nitrogen	[4] NO ₂							
Q.59	Which one of following	reaction is Schotten-I	Baumann reaction :								
	[1] Acetylation of RNH ₂	2	[2] Acylation of RNH ₂								
	[3] Alkylation of RNH ₂		[4] Benzoylation of RNH	[4] Benzoylation of RNH ₂							

Bromo ethane \xrightarrow{AgCN} A $\xrightarrow{H_3O^+}$ HCOOH + B; Q.60

$$\mathsf{B} \xrightarrow{\mathsf{CHCl}_3} \mathsf{A} \xrightarrow{\mathsf{Re}\,\mathsf{duction}} \mathsf{C}$$

A. B, C respectively in the above sequence are:

- [1] Ethane amine, methane nitrile and diethyl amine
- [2] Carbyl amino ethane, ethane amine and secondary amine
- [3] Ethyl isocyanide, ethyl amine and methyl isocyanate
- [4] Carbylamino ethane, ethane amine and ethyl methyl amine

RNH₂ caustic soda Q.61

True statement for the compound A is:

- [1] It does not undergo alkaline hydrolysis [2] It can also produced by RBr and KCN
- [4] It gives secondary amine on acidic hydrolysis [3] It gives primary amine on reduction
- Q.62 When I-propane amine is treated with $NaNO_2$ and HCI the products will be :
 - [1] I-propanol, 2-propanol

[2] Propene

[3] 2-Chloropropane, 1-chloropropane

[4] All of these

Q.63 Basic character of organic compound is due to the presence of :

[1] CHO

[2]-OH

[3] > C = O

 $[4] -NH_2$

Q.64 Nitrilo group is present in:

[1] Primary amine

[2] Secondary amine [3] Tertiary amine

[4] None of these

Q.65
$$CH_2(COOH)_2 \xrightarrow{\Delta} A \xrightarrow{CaCO_3} B \xrightarrow{CH_3NH_2} C$$

Compound C in the above sequence is:

 $[1] (CH_3)_2 C = NCH_3$

[2] $CH_3CH = NCH_3$ [3] $(CH_3)_3C = NCH_3$ [4] All of these

Q.66 Benzyl amine is basic than aniline while ethane amine is basic than diethyl amine

[1] More, less

[2] Less, more

[3] Both

[4] None

Q.67 Urethanes are esters of

[1] Carbamic acid

[2] Citric acid

[3] Malonic acid

[4] Succinic acid

Which of the following on Hofmann, hypobromite reaction does not give RNH₂-Q.68

[1] Isobutyramide

[2] Carbamide

[3] Ethan amide

[4] Benzamide

Q.69 Which of the following on acidic hydrolysis gives primary amine:

[1] CH₃CN

[2] CH₃NO₂

[3] CH₃CNO

[4] CH₃NC

Q.70 All classes of amines react with:

[1] Water

[2] Acids

[3] Alkylhalides

[4] All the above

Ammonolysis of alcohols, i.e. : $CH_3OH + yNH_3 \xrightarrow{300-400^{\circ}} products$ Q.71

[1] CH₃NH₂

[2] (CH₃)₂ NH

 $[3] (CH_3)_3 N$

[4] A mixture of amines

 $CH_3COCI \xrightarrow{A} CH_3CONH_2 \xrightarrow{NaOH} CH_3COONa + A$ Q.72

 $B \leftarrow COCl_2 A \longrightarrow B$

A and B respectively are:

[1] NH₃ . Na₂CO₃ [2] NH₃ , NaCl

[3] NH₃, carbamide

[4] None

Q.73 In which of the following reactions ${\rm N}_2$ is not liberated :

[1] NH₂CONH₂ + NaOBr

 $[2] C_2H_5NH_2 + NOCI$

 $[3] (C_2H_5)_2NH + HNO_2$

[4] CH₃CONH₂ + HNO₂

Q.74 On reduction of Schiff's base we get:

[1] Primary amine

[2] Secondary amine

[3] Anils

[4] Anilide

Q.75 Amine not showing Hofmann's mustard oil reaction is :

[1] 1-Butaneamine

[2] 2-Butaneamine

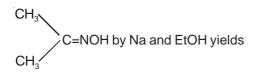
[3] 2-Methyl-1-propaneamine

[4] N-Methyl-1-propaneamine

Q.76 CH₂N₂ shows different type of reaction with which one of the following substracts:

[2] CH₃CH₂NH₂

$$[3] CH_2 = CH - CH_3$$


Q.77 Minimum boiling point would be of:

[1] Ethylmethyl amine [2] Ethyl.amine

[3] n-Propyl amine

[4] Trimethylamine

Q.78 Reduction of:-

The compound:-

[1] s-Amine

[2] p-Amine

[3] t-Amine

[4] None of these

Q.79 [a] NH₃, [b] RNH₂,

[c] R₂NH and

[d] R₃N

Show the order of basic character [if R=CH₃]:

[3]
$$b > a > c > d$$

Q.80 Choose the wrong statement:

[1] 1º Amine gives mustard oil-reaction

[2] 1º Amine forms salt with H₂PtCi₆

[3] 1° Amine gives hydrogen with sodium

[4] 1º Amine gives alcohol by hydrolysis

Q.81 Urea is insoluble in ether, because:

[1] Ure a shows polar character

[2] Urea shows non-polar character

[3] Ure a is a neutral compound

[4] None of the above

Q.82 Reaction not connected with the name of a scientist is:

$$[1]$$
-CN Na/EtOH CH₂NH₂

$$[2] - CONH_2 \xrightarrow{NaNO_2/Br_2} - NH_2$$

$$\text{[3]-CH}_2\text{CH}_2\text{NH}_2 \xrightarrow{\quad \text{NaNO}_2 \, / \text{HCI} \quad} \text{-CH}_2\text{-CH}_2\text{OH}$$

$$[4] - COOH \xrightarrow{N_3H} - NH_2$$

Q.83 Which of the following reagent gives nitrogen gas when treated with primary amine:

- [1] Nitrous acid
- [2] Nitric acid
- [3] Hypobromite
- [4] 1 and 3

Q.84 Which of the following is used as a solvent inthe Friedel-Crafts reaction:

- [1] Toluene
- [2] Nitrobenzene
- [3] Benzene
- [4] Aniline

Q.85 Match list I with II and choose the correct answer from the codes given below:

List I

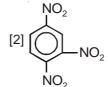
List II

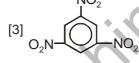
[A] Aniline Used in making azo dyes

[BI Nitrobenzene, b. Sulpha drug

Sulphanilamide [C]

Solvent in the Friedel Crafts reaction C.


[D] Trinitrotoluene d. Used as explosive


Code is

	Α	В	С	D
[1]	а	С	b	d
[2]	а	b	С	d
[3]	С	d	а	b
[4]	d	С	b	а

- **Q.86** Reduction of nitrobenzene with zinc and methanolic alkali gives mainly
 - [1] Aniline
- [2] p-Aminophenol [3] Azoxybenzene
- [4] Azobenzene

Q.87 Nitration of m-dinitro benzene gives:

Q.88
$$\phi - X \xleftarrow{Cu}_{HNO_2} C_6H_5N_2CI \xrightarrow{Water} \phi - Y$$
. In the above sequence X and Y respectively are :

[1] 0, p and m directing

[2] o,p and o, p directing

[3] m and m directing

- [4] m and o, p directing
- Q.89 Which of the following compounds gives an explosive on decarboxylation:
 - [1] 2,4, 6-Trinitrobenzoic acid
- [2] 2, 4-Dinitrobenzoic acid

[3] o-Aminobenzoic acid

- [4] o-Hydroxy benzoic acid
- Q.90 Choose the flase statement:
 - [1] All the activating groups are o- & p-directing
 - [2] Halogens although deactivating' to some extent are o, p directing
 - [3] Groups more deactivating than halogens are m-directing
 - [4] Nitration of t-butyl benzene is easier as compared to toluene
- Q.91 Intramolecular H-bonding is possible in:
 - [1] p-Nitrophenol
- [2] o-Nitrophenol
- [3] p-Nitrobenzaldehyde
- [4] p-chlorophenol

$$N_2BF_4$$

- [1] Nitrobenzene
- [2] Fluorobenzene
- [3] o-Di flourobenzene [4] m-Dinitrobenzene
- Q.93 The order of stability of aniline and anilinium ion is:

[1]
$$C_6H_5NH_2$$
 C_6H_5 $\overset{\oplus}{N}H_3$

$$[2] C_6 H_5 N H_2 < C_6 H_5 \overset{\oplus}{N} H_3$$

[3]
$$C_6H_5NH_2 > C_6H_5NH_3$$

[4] None of the above

Q.94	Tertiary amine is obtaine	d in the reaction :							
	[1] Aniline $\xrightarrow{\text{CH}_{3l}}$	H ₃ l →	[2] Aniline CH ₃ I						
	[3] NitrobenzeneSn/HC		[4] None of the above						
Q.95	$C_6H_5NH_2 \xrightarrow{H_2SO_4} H_2I_3$	NC ₆ H ₄ (SO ₃ H) (Para	a). The true statement abo	out the product is –					
	[1] It does not exist as zv [3] It does not act as inne		[2] –NH ₂ displays a pow [4] –SO ₃ H diminishes th	verful basic character ne basic character of -NH ₂					
Q.96	Aniline $\xrightarrow{\text{H}_2\text{SO}_4}$ Prod	uct, The product is -	-						
Q.97	[1] Sulphonal Benzamide on heating w couples with benzaldehy	ith bromine and alka							
	[1] N-Phenylbenzamide[3] Benzoylaniline		[2] Benzylidene aniline[4] N-Phenylacetamide	CO					
Q.98	$C_6H_5CONH_2 \xrightarrow{PCI_5} C$	₆ H ₅ CN. The reaction	n is named as :	*					
	[1] Dinitrosation	[2] Deoxygenation	[3] Dehydration	[4] None of the above					
Q.99	The reaction of aniline wi								
	[1] Skraup synthesis		[2] Schotten-Baumann r	reaction					
	(31 Swoden-Fisher synth	esis	[4] Stephen's reaction						
Q.100	$C_6H_5NH_2 \xrightarrow{Br_2/CCI_4} 7$	The product is :							
	[1] Only o-bromoaniline	-	[2] 2, 4, 6-triboromoanili	ne					
	[3] o-and p-bromoaniline	h. ([4] Only p-bromoaniline						
Q.101	Which one of the following	ng compound is exp	ected to be least soluble	:					
	[1] CH ₃ NH ₂	[2] (CH ₃) ₂ NH	[3] C ₆ H ₅ NH ₂	[4] (CH ₃) ₃ N					
Q.102	Mononitroaniline is prepa								
				H ₂ SO ₄ [4] None of them					
Q.103	does not form azo								
		[2] Aniline	[3] Chlorobenzene	[4] β-Naphthol					
Q.104	Aniline can be prepared b	oy.	F1 7 1 4 4						
	[a] Schmidt reaction		[b] Wurtz process	ati a a					
	[c] Hofmann bromamide Code is:	reaction	[d] Reimer-Tiemann rea	Ction					
		[2] a, b and d	[3] b, c and d	[4] a, band c					
Q.105	[Chloroform and ethanoli			• •					
Q.105	[a] Hofmann carbylamine		[b] Hofmann degradatio						
	[c] Reimer-Tiemann reac		[d] Hofmann mustard oil						
	Code is ;		[4]						
		[2] Only for a and b	[3] Only for b and d	[4] Only for a and c					
Q.106	In the Sandmeyer's read								
		[2] Nitro group	[3] –OH group	[4] –NHNH ₂ group					
Q.107	Formation of p-aminoazo	benzene from anilin	e and benzene diazoniur	n chloride is an example of					
	[1] Coupling reaction		[2] Nucleophilic addition	ı					
	[3] Free radical addition		[4] Electrophilic addition						

Q.108 Mustard oil reaction will be given by:

[1] Aniline [2] N-Methylaniline [3] N,N-Dimethylaniline [4] All the above

Q.109 Number of moles of oxygen present in one mole of sulphanilic acid are:

[1] 3 Mole

[2] 1 Mole

[3] 0.5 Mole

[4] 1.5 Mole

Q.110 In which case aromatic hydrocarbon is obtained:

[1] o-Toluic acid + sodalime + Δ

[2] Salicylic acid + Sodalime + Δ

[3] o-Amino benzoic acid + sodalime + Δ

[4] Benzoic acid + hydrazoic acid + Δ

Q.111 In sulphanilic acid, the elements of low and high atomic number are respectively:

[1] H and N

[2] N and S

[3] C and N

[4] H and S

Q.112 is not a/an :

[1] Benzylidene aniline [2] Anil

[3] Schiff's base

[4] N-Phenyl acetaldimine

Q.113 Which compound does not show diazo reaction:

[1] Aniline

[2] p-Toluidine

[3] p-Nitroaniline

[4] Benzylamine

Q.114 When diazonium compound shows Gattermann reaction then N_2 is replaced by:

[1] H-atom

[2] OH-group

[3] Nitro group

[4] Halogen atom

Q.115 Reaction of benzenediazonium chloride with alkaline β -napthol gives an azo dye. This is an example of :-

[1] Electrophilic substitution

[2] Nucleophilic substitution

[3] Oxidative coupling

[4] A free radical reaction

Q.116 Which cation is stable:

[1] Aryl diazonium cation[2] Propyl diazonium cation

[3] Both the above

[4] None of the above

Q.117 Which of the following is most basic:

[1] Aniline

[2] o-Nitroaniline

[3] m-Nitroaniline

[4] p-Nitroaniline

Q.118 Benzoylation of which of the following compounds cannot be termed as Schotten-Baumann reaction:

[1] Benzene

[2] Phenol

[3] Aniline

[4] Benzylalcohol

Q.119 The minimum value of -logK_b, will be for the compound :

[1] o-Nitroaniline

[2] p-Nitroaniline

[3] p-Chloroaniline

[4] p-Methoxyaniline

Q.120 The order of basic strength of aromatic amines is :

 $[1] 3^{\circ} > 2^{\circ} > 1^{\circ} > NH_{3}$

 $[2] 3^{\circ} < 2^{\circ} < 1^{\circ} < NH_3$

 $[3] 2^{\circ} < 3^{\circ} < 1^{\circ} < NH_{e}$

[4] None

Answer-key

Qus.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
Ans.	1	1	1	2	4	1	1	1	2	3	2	1	4	4	4	3	2	1	3	2	4	2	4	2	4
Qus.	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50
Ans.	2	2	3	2	3	3	1	3	1	1	1	4	4	2	3	4	4	4	3	1	4	3	3	3	2
Qus.	51	52	53	54	55	56	57	58	59	60	61	62	ස	64	65	66	67	68	69	70	71	72	73	74	75
Ans.	4	1	4	2	1	3	3	3	4	4	1	4	4	3	1	1	1	2	4	4	4	3	3	2	4
Qus.	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100
Ans.	3	4	2	1	4	4	1	3	4	2	1	4	3	4	1	4	2	2	3	1	4	3	2	3	2
Qus.	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120					
Ans.	3	3	4	3	4	1	1	1	4	1	4	4	4	4	1	1	1	1	4	2					

Exercise # 3

Q.1	The compound produce	ed in the reaction betw	veen NH ₂ , carbo	n disulphide and HCl wou	uld be :-
	[1]		[2] N=C=S		[PMT-1994]
	[3] N = N		[4] None of these		
Q.2	For converting aniline in	nto chlorobenzne which	ch of the following reager	nts is not used :	
	[1] Cl ₂	[2] HCI	[3] HNO ₃	[4] CuCl	[PET MP-1994]
Q.3	When aniline reacts wi	th NaNO ₂ and dil. HO	Cl at 0° – 5° C the produc	t formed is:	
	[1] Nitro aniline		[2] Benzene diazonium	chloride	PMT(MP)-1996]
	[3] Benzene		[4] Trinitroaniline		
Q.4	Maximum basic compo	und is :			[PET 1996]
	[1] Benzylamine	[2] Aniline	[3] Acetanilide	[4] p - nitroaniline	
Q.5	Purification of aniline is	done by :		(O)	[PET 1996]
	[1] Fractional crystallisa	ation	[2] Fractional distillation		
	[3] Steam distillation		[4] Vaccum distillation		
Q.6	Aniline on treatment wit	h fuming sulphuric ac	cid gives :		[PMT 1996]
	[1] Sulphanic acid		[2] Sulphanilic acid		
	[3] o- aminobenzene su	lphonic acid	[4] None of the above		
Q.7	After nitration of benzer	ne, reaction with (Sn -	+ HCl) the end product wi	II be:-	[RPMT -2000]
				O	
				↑	
	[1] C ₆ H ₅ NH ₂	[2] C ₆ H ₅ NO ₂	[3] C ₆ H ₅ OH	[4] C_6H_5 $N = N - C_6H_5$	5
Q.8	Directing of nitro group i	n nitrobenzene :-			[RPMT -2000]
	[1] P -directing	[2] m - directing	[3] o, p - directing	[4] None of these	
Q.9	When aniline heated wi	th benzaldehyde, the	n product is :-		[RPMT-2000]
	(I) Benzoyne	[2] Azoxy benzene	[3] Schiff base	[4] Unsaturated acid	
Q.10	What obtain, when, anil	ine react with chlorof	orm in presence of alcoho	olic KOH	[RPMT -2000]
	[1] Nitrobenzene.	[2] Chlorobenzene	[3] Acetylene	[4] Phenyl isocyanide	
Q.11	Which of the following is	s weakest base :			[RPMT-2000]
	[1] Ammonia	[2] Methyl amine	[3] Dimethyl amine	[4] Trimethyl amine	
Q.12	Urea is not used as a :				[RPMT-2000]
	[1] As ferrilizer		[2] In manufacturing of p	olastic	
	[3] In preparation of med	dicine	[4] In purification of water	er	
Q.13	Which mixture of NH ₄ C	l and KCNS heated.	Product will be :		[RPMT-2000]
	[1] N ₂ O	[2] NH ₂ CONH ₂	[3] NH ₃	[4] CH ₃ NH ₂	
Q.14	Which the following con	npounds is isomeric v	with urea :-		[RPMT-2001]
	[1] Ammonium cyanid		[2] Glycine		
	[3] Ammonium thiocyan	ate	[4] Ammonium cyanate		
Q.15	A compound which give	es two carbon acid by	oxidation :-		[RPMT-2001]
	[1] Ethanol	[2] Ethyl nitrile	[3] Acetamide	[4] Ethyl amine	

Q.16	Product formed by Rea	ction between prima	ry amine CHCl ₃ and alcol	nolic KOH:-	[RPMT-2002]
	[1] Cynide	[2] Iso cyanide	[3] Nitro amine	[4] Alkane	
Q.17	Which of following exis	t as zwitter ion :-			[RPMT-2002]
	[1] Ammonium acetate	[2] Ethyl acetate	[3] Glycine	[4] Aniline hydro ch	loride
Q.18	In this reaction :C ₆ H ₅ N	IH ₂ + HCI + NaNO ₂ -	\rightarrow X product X is :-		[RPMT-2002]
	[1] Aniline hydrochloride	е	[2] Nitro aniline		
	[3] Benzenediazoniumo	hloride	[4] None		
Q.19	In the sequence of the f	ollowing reaction			[MPMT-2002]
	$CH_3OH \xrightarrow{HI} CH_3I$	$\xrightarrow{\text{KCN}} \text{CH}_3\text{CN} \xrightarrow{\text{R}}$	$\begin{array}{c} \xrightarrow{\text{Re duction}} & X & \xrightarrow{\text{HNO}_2} & Y \end{array}$	X andY is :	
	[1] $\mathrm{CH_3CH_2NH_2}$ and $\mathrm{CH_2}$	H ₃ CH ₂ OH	$[2]$ CH $_3$ CH $_2$ NH $_2$ and CH	1₃COOH	
	[3] CH ₃ CH ₂ OH and CH ₂	₃CHO	[4] CH ₃ OCH ₃ and CH ₃ 0	CHO	
Q.20	Reduction of methyl isc	cyanide gives :-			[MP PMT-2002]
	[1] Ethyl amine	[2] Methyl amine	[3] Dimethylamine	[4] Trimethyl amine	•
Q.21	In the reaction,				
	CH ₃ NH ₂ + 3CHCl ₃ + 3l		_	O,	[MPMT-2002]
	[1] CH ₃ NC	[2] CH ₃ CH ₂ NC	0	[4] CH ₃ CH ₂ COOH	
Q.22			ent with NaNO ₂ and HCI o		gas :-[RPMT-2003]
	[1] Benzene	[2] C ₂ H ₅ Cl	[3] CH ₃ CH ₂ NH ₂	[4] C ₂ H ₅ NO ₂	
Q.23	What is the product form	ned during reduction	of nitro benzene in prese	ence of neutral mediu	
					[RPMT-2003]
	[1] Aniline		[2] Phenyl hydroxyl am	ine	
	[3] Nitrosobenzene		[4] Hydroxy benzene		
Q.24	Ethyl amine react With	CHCl ₃ in presence o	f NaOH to gives offensive	smell. The compour	rd obtained is :- [RPMT-2003]
	[1] C ₂ H ₅ Cl	[2] C ₂ H ₅ CN	[3] C ₂ H ₅ NC	[4] CH ₃ -CH=NH	-
Q.25	Gabriel phthalimide syr	_ 0	preparation of :	Ŭ	[CPMT-1982]
	[1] Triethylamine	[2] Diethylamine	[3] Ethylamine	[4] Ammonia	
Q.26	Methyl amine can be pr	repared by :			CPMT-1984]
	[1] Wurtz Reaction	•	[2] Friedal craft's Reac	tion	
	[3] Hofmann's bromami	de reaction	[4] Clemmesen's react	ion	
Q.27	Nitro paraffins on Redu	ction gives:			[CPMT-1984]
	[1] Amides	[2] alkyl amines	[3] ammonium salts	[4] acetanilides	
Q.28	Primary amines are ide	ntified by :			[CPMT-1985]
	[1] Hofman's Reaction		[2] Carbylamine Reacti	on	
	[3] Friedal's craft's Rea		[4] Biuret Reaction		
Q.29	The compound which o	n reaction with aque	ous nitrous acid at low ten	nprature produces an	oily nitrosoamine is [IIT 1981]
	[1] Methylamine	[2] Ethylamine	[3] Triethylamine	[4] Diethylamine	
Q.30	Which statement is inc	orrect:			[CPMT,1991]
	[1] –NH ₂ group is prese	ent in both ethyl amir	ne & aniline		
	[2] Both ethylamine and				
			smell with CHCl ₃ and KOl	4	
	[4] Both ethylamine and	d aniline give hydroxy	compound with HNO ₂		

Q.31	C ₃ H ₉ N does not repre	sent:				[BHU, 1992]
	[1] 1° Amine	[2] 2° Amine	[3] 3	3° Amine	[4] Qut. Salt	
Q.32	Aliphatic primary amir	es with nitrous aci	d gives:			[CBSE, 1994]
	[1] Alkyl nitrite	[2] Secondary a	amine [3]	Alcohol	[4] Nitroalkane	
Q.33	Increasing order of ba	sic character is :			[IIT S	reening, 1994]
	[1] NH ₃ < C ₆ H ₅ NH ₂ <	$(C_2H_5)_2NH < C_2H_1$	NH ₂ < (C	₂ H ₅) ₃ N		
	[2] C ₆ H ₅ NH ₂ < NH ₃ <	$(C_2H_5)_3N < (C_2H_5)_5$	2 NH < C ₂	H ₅ NH ₂		
	[3] $C_6H_5NH_2 < (C_2H_5)$	_ 00 _ 0				
	[4] None of these	0 2 0		0 -		
Q.34	Which one of the follow	wing compounds o	n treatme	nt with methyl mag	nesium iodide gives p	orimary amine:
						[RAS Pre, 1996]
	[1] Ammonia	[2] Chloro- amir	ne [3] H	Hydrazine	[4] Hydroxylamine	
Q.35	Who prepared the first	organic compoun	d in the lal	boratory?	_(),	[RAS Pre, 1996]
	[1] Berzelius	[2] Kekule	[3] L	avoiser	[4] Wholer	
Q.36	Match list I with list II a	and select the corr	ect answe	er using the code gi	ven .below :	
	List-I		List	-II		
	[Reagent]	[L	lsed as te	st reagent for]		
	[A] Ammonical Ag	NO ₃ [a] Primary	amine		
	[B] HIO ₄	[b] Aldehyd	е		
	[C] Alkaline KMnC	₄ [c] Vicinal C	OH groups		
	[D] CHCl ₃ and NaC	DH [d] Double b	oond		
	Codes:					
		A	В	С	D	
	[1]	b	С	а	d	
	[2]	d	b	а	С	
	[3]	b	С	d	а	
	[4]	d C	С	b	а	
Q.37	Triamino benzene is a					[BHU, 1996]
	[1] 2º Amine	[2] 3º Amine	[3] 1	^o Amine	[4] Quaternary salt	
Q.38	Molecular weight of ur	ea is 60. A solutio	n of urea	containing 6 gm ure	ea in one litre is a	
	[1] 1 Molar	[2] 1.5 Molar	[3] 0).1 Molar	[4] 0.01 Molar	[BHU, 1996]
Q.39	Carbylamine reaction	is given by :				[BHU, 1996]
	[1] 1º Amine	[2] 2° Amine	[3] 3	3º Amine	[4] Quaternary Ami	ne
Q.40	Artificial oil of bitter alr	nonds or oil of Mirl	oane is th	e name given to :		[CPMT-91]
	[1] Chlorobenzene	[2] Benzaldehy	de [3] A	Aniline	[4] Nitrobenzene	
Q.41	The compound is mos	t reactive towards	electroph	nillic substitution is :		[IIT-84]
	[1] Toluene	[2] Benzene	[3] N	litrobenzene	[4] Benzoic acid	
Q.42	Which of the following	compounds would	have slow	wer rate of electroph	nillic bromination than	benzene -
						[CBSE-94]
	NO ₂	CH₃ I		OH I	NH ₂	
		, a,	(\Diamond		
		[2]	[3]	\bigcirc	[4]	

Q.43 Heating sodium benzoate with sodalime gives

[1] Benzoic Acid

[2] Calcium benzoate

[3] Phenol

[4] Benzene

Q.44 The 'IUPAC' name of the compound CH₃CH₂CH₂-NO₂ is. : -

[1] Nitromethane

[2] 2-Nitropropane [3] 1-nitropropane

[4] Propyl amine

Q.45 In reduction of nitrobenzene, acidic -medium can't be provided by - [CBSE, PMT-90]

[1] Zn+HCl

[2] SnCl₂ + HCl

[3] $NH_4CI + Zn$

[4] Fe + H_2O + HCI

The products of the reaction between C₆H₅NH₂, CHCl₃ and KOH are :-Q.46

[CPMT-81, 91]

[1] $C_6H_5CI + NH_4CI + KCI$

 $[2] C_6 H_5 CN + KCI$

 $[3] C_6 H_5 NC + KCI$

 $[4] C_6 H_5 OH + NH_4 CI + H_2 O$

Q.47 Picric acid is a yellow coloured compound. Its chemical name is: [CPMT-81, 92]

[1] m - Nitrobenzoic acid

[2] 2, 4, 6 - trinitro phenol

[3] Trinitro toluene

[4] Trinitro aniline

Q.48 Aniline on heating with fuming sulphuric acid gives :- [CPMT-88]

[1] Aniline sulphate

[2] Sulphanlic acid

[3] Aniline 2, 4 - disulphonic acid

[4] Nitrobenzene

Q.49 Benzene diazonium chloride on hydrolysis gives: [CPMT-89]

[1] Benzene

[2] Benzyl alcohol [3] Phenol

[4] Chlorobenzene

Q.50 Examine the following two structure for the anilinum ion and choose the correct statement from the one gives below:-[IIT-93]

[1] [II] is not an acceptable canonical structure because carbonium ions are less stable than amonium ion

[2] [II] is not an accepted canonical structure because it is non aromatic

[3] [II] is not an acceptable canonical structure because the nitrogen has 10 valence electron

[4] [II] is an acceptable canonical structure

Q.51 In the reaction:- $C_6H_5NH_2$ + $CHCl_3$ + $3NaOH \rightarrow A + 3B + C$ The product 'A' is [BHU, CETPb-94]

[1] Phenyl isocyanide [2] Phenyl cyanide [3] Ethyledinechloride

Which of the following compounds gives p-cresol with p-methyl diazonium chloride [CPMT-99]

[1] H₂O

Q.52

[2] H₃PO₂

[3] HCOOH

 $[4] C_6 H_5 OH$

[4] HCI or H₂O

Q.53 Which of the following reaction gives isocyanide: [CPMT-2000]

[1] Rimer Tieman reaction

[2] Carbyl amine reaction

[3] Hoffmann bromamide reaction

[4] None of the above.

Q.54 Reduction B CHCl3/KOH C reduction N-methyl aniline than A is - [CPMT-2001]

[CPMT-2001]

which statement is incorrect about peptide bond -

- [1] C-N bond length in protiens is longer than usual bond length of N-bond
- [2] Spectroscopic analysis show planar structure of C–NH group
- [3] C-N bond length in protiens is smaller than usual bond length of C-N bond
- [4] None of above

Q.56
$$C=N$$
 $+ CH_3MgBr \xrightarrow{H_3O^{\oplus}} P$

[CPMT-2002]

Product 'P' in the above reaction is

$$[1] \begin{picture}(2000)(0,0) \put(0,0){\line(0,0){15}} \put(0,0){\line(0,0){15$$

Q.57 The final product C, obtained in this reaction :

[CPMT-2003]

$$\begin{array}{c}
 & \text{NH}_2 \\
 & \text{Ac}_2\text{O} \\
 & \text{CH}_3\text{COOH}
\end{array}$$

$$\begin{array}{c}
 & \text{Ac}_2\text{O} \\
 & \text{CH}_3\text{COOH}
\end{array}$$

$$\begin{array}{c}
 & \text{H}_2\text{O} \\
 & \text{H}^+
\end{array}$$

would be -

Q.58 [CPMT 1983, 93, 97] Reaction CH₃CONH₂ NaOBr gives [1] CH₃Br [2] CH₄ [3] CH₃COBr [4] CH₃NH₂ Q.59 Aniline when treated with HNO₂ and HCl at 0°C gives [CPMT 1982,89, RPMT 2000] [1] Phenol [2] Nitrobenzene [3] A diazo compound [4] None of the above Q.60 Nitrosobenzene can be isolated from nitrobenzene under – [Delhi PMT 1982] [1] Metal and acid [2] Zn dust and NH₄Cl [3] Alkaline sodium arsenite [4] Cannot be isolated Q.61 Methyl amine reacts with HNO₂ giving [RPMT 1997] $[1] CH_3O-N=O$ $[2] CH_3 - O - CH_3$ [3] CH₃OH [4] None of these Q.62 Aniline on treatment with conc. HNO₃ + Conc. H₂SO₄ mixture yields [AIIMS 1992] [1] o- and p- nitroanilines [2] m-nitroanilines [3] A block tarry matter [4] No reaction In reaction CH₃CN + 2H $\xrightarrow{\text{HCI}}$ X $\xrightarrow{\text{Boiling H}_2O}$ Y; the term Y is Q.63 [CBSE 1999] [1] Acetone [2] Ethylamine [3] Acetaldehyde [4] Dimethylamine Q.64 Phenyl isocanides are prepared from which of the following reactions [CBSE 1999] [1] Rosenmund's reaction [2] Carbylamine reaction [4] Wurtz reaction [3] Reimer-Tiemann reaction Q.65 In the reduction of nitrobenzene, which of the following is the intermediate [CPMT 1999] $[2] C_6 H_5 NH - NH - C_6 H_5$ [1] $C_6H_5N = O$ $[3] C_6 H_5 - N = N - C_6 H_5$ Q.66 Which of the following has the minimum heat of dissociation [Roorkee 1998] [1] $(CH_3)_3N \to BF_3$ [2] $(CH_3)_3N \rightarrow B(CH_3)F_2$ $[4](CH_3)_3N \rightarrow B(CH_3)_3$ [3] $(CH_3)_3N \to B(CH_3)_2F$ Q.67 Assertion [1]: Amines are basic in nature Reason (R): There is the presenece of the lone pair of electron on nitrogen. [AIIMS 1999] [1] Both A and R are true and R is a correct explanation of A [2] Both A and R are true but R is not a correct explanation of A [3] A is true but R is false [4] Both A and R are false Q.68 Assertion [1]: Lower aldehydes and ketnoes are soluble in water but the solubility decreases as the molecular mass increses [AIIMS 1999] Reason (R): Distinction between aldehydes and ketones can be made by Tollen's test. [1] Both A and R are true and R is a correct explanation of A [2] Both A and R are true but R is not a correct explanation of A [3] A is true but R is false [4] Both A and R are false Q.69 [RPET 2000] CH₂=CH-CH₂-NH-CH₃ is a [1] Secondary amine [2] Primary amine [3] Tertiary amine [4] None of these

Q.70 [RPET 2002] RCOCI + $2Me_2NH \rightarrow A + Me_2N^+H_2CI^-$ Here A is [1] RCON [2] RCONH₂ [3] RCONHMe [4] (RCO)₂NH Q.71 Decreasing order of basicity is [RPET 2000] [a] CH_3CONH_2 [c] Ph -CH2CONH2 [b] CH₃CH₂NH₂ [4] None of these [1] a > b > c[2] b > a > c[3] c > b > aQ.72 Which of the following reaction give RCONH₂ [Roorkee 2000] [1] $R-C \equiv N + H_2O \xrightarrow{HCI}$ [2] RCOONH₄ heat [3] R-COCI + NH₃ \longrightarrow $[4] (RCO)_2O + NH_3$ [UPSEAT 2000, IIT 2000] Q.73 Among the following the strongest base is $\text{[2] p-NO}_2\text{C}_6\text{H}_4\text{NH}_2 \text{ [3] m-NO}_2-\text{C}_6\text{H}_4\text{NH}_2 \text{ [4] C}_6\text{H}_5\text{CH}_2\text{NH}_2$ $[1] C_6 H_5 NH_2$ Q.74 In this reaction $C_6H_5NH_2 + HCI + NaNO_2 \rightarrow X$. Product X is [Rajasthan 20002, AFMC 2002] [1] Aniline hydrochloride [2] Nitro aniline [3] Benzenediazonium chloride [4] None of these Q.75 In the reaction $C_6H_5CHO + C_6H_5NH_2 \rightarrow C_6H_5N = HCC_6H_5 + H_2O$, the compound $C_6H_5N = CHC_6H_5$ is known [RPMT 2002; AIIMS 2002] [2] Schiff's reagent [3] Schiff's base [1] Aldol [4] Benedict reagent Q.76 $CH_3NO_2 \xrightarrow{Sn+HCI} CH_3X$, then 'X' contain [CPMT 2003] [2] -COOH [4] (CH₃CO)₂O [1] –NH₂ **Q.77** Product 'A' in above reaction is [RPMT 2003] [4] None of these SO₃H Q.78 The correct order of reactivity towards the electrophilic substitution of the compounds aniline (I) benzene (II) and nitrobenzene (III) is [CBSE 2003] [1] | >|| > ||| [2] | | | > | > | [3] || > ||| > | [4] | < || > ||| Q.79 The correct order of increasing basic nature for the bases NH₃, CH₃NH₂ and (CH₃)₂NH is [AIEEE 2003] $[1] CH_3NH_2 < NH_3 < (CH_3)_2NH$ $[2] (CH_3)_2 NH < NH_3 < CH_3 NH_2$

 $[4] CH_3NH_2 < (CH_3)_2NH < NH_3$

[4] Zn/NH₄CI

[3] Zn/NaOH

[AIIMS 2003]

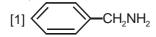
 $[3] NH_3 < CH_3NH_2 < (CH_3)_2NH$

[1] Sn/HCI

Nitrobenzene gives N-phenylhydroxylamine by

 $[2] H_2/Pd-C$

Q.80


Q.81 Among the following the weakest base is [AIIMS 2003]

[1] C₆H₅CH₂NH₂

[2] C₆H₅CH₂NHCH₃ [3] O₂NCH₂NH₂

[4] CH₃NHCHO

Q.82 Which of the following is strongest base: [AIEEE 2004]

- Q.83 Which one of the following methods is neither meant for the synthesis nor for separation of amines?

[AIEEE 2005]

[1] Hofmann method

[2] Hinsberg method [3] Curtius reaction

[4] Wurtz reaction

Q.84 Reaction of cyclohexanone with dimethylamine in the presence of catalytic amount of an acid forms a compund if water during the reaction is continuously removed. The compound formed is generally known as

[AIEEE 2005]

[1] an enamine

[2] a Schiff's base [3] an amine

[4] an imine

In the chemical reaction, $\text{CH}_3\text{CH}_2\text{NH2} + \text{CHCI}_3 + 3\text{KOH} \longrightarrow (\text{A}) + (\text{B}) + 3\text{H}_2\text{O}$, the compounds (A) and (B) are Q.85 [AIEEE 2007] respectively -

[1] C_2H_5CN and 3KCI

 $[2] CH_3CH_2CONH_2$ and 3KCI

[3] C_2H_5NC and K_2CO_3

[4] C₂H₅NC and 3KCl

Q.86 Presence of a nitro group in a benzene ring - [AIEEE 2007]

- [1] Activates the ring towards electrophilic substitution
- [2] Renders the ring basic
- [3] Deactivates the ring towards nucleophilic substitution
- [4] Deactivates the ring towards electrophilic substitution ari

Answer-key

Qus.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
Ans.	2	1	2	1	3	2	1	2	3	4	1	4	3	4	1	2	3	3	1	3	1	3	2
Qus.	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48
Ans.	3	2	2	4	4	4	3	3	2	4	3	3	3	1	4	1	1	4	3	3	3	2	2
Qus.	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	72	73
Ans.	1	1	2	2	1	2	3	4	3	4	2	3	3	2	1	2	1	2	1	1	2	2	4
Qus.	76	77	78	79	80	81	82	83	84	85	86												
Ans.	1	2	1	3	4	2	1	4	1	4	4												