Exercise – 1

Q.1	Which of the following b	onds determines the sec	ondary structure of protei	ns?							
	[1] Electrovalent bond	[2] Covalent bond	[3] Hydrogen bond	[4] Coordinate bond							
Q.2	Which of the following is	s called the power house	of the living cell ?								
	[1] Golgi bodies	[2] Nucleus	[3] Mitochondria	[4] Lysosome							
Q.3	Which of the following p	part of the cell is the centr	e of protein synthesis?								
	[1] Plasma membrane	[2] Golgi bodies	[3] Ribosome	[4] Lysosome							
Q.4	Which of the following b	onds is responsible for th	e coiled structure of prote	eins?							
	[1] Dipeptide bond	[2] Peptide bond	[3] Hydrogen bond	[4] Ionic bond							
Q.5	Which of the following d	liseases is due to the defi	ciency of vitamin A?								
	[1] Scurvy	[2] Nightblindness	[3] Beri-beri	[4] Anemia							
Q.6	Which of the following c	ompounds is not the com	ponent of a balanced die	t?							
	[1] Vitamin	[2] Hormone	[3] Carbohydrate	[4] Fat							
Q.7	Insulin belongs to which of the following families ?										
	[1] Antiseptic	[2] Vitamin	[3] Hormone	[4] Enzyme							
Q.8	Which of the following a	acts as a biocatalyst?									
	[1] Enzyme	[2] Amino acid	[3] Nitrogen molecule	[4] Carbohydrate							
Q.9	Which of the following e	enzymes convert starch to	maltose?								
	[1] Invertase	[2] Zymase	[3] Maltase	[4] Diastase							
Q.10	Which of the following is	s an example of an aldohe	exose?								
	[1] Fructose	[2] Glucose	[3] Sucrose	[4] Ribose							
Q.11	Glucose and fructose a	are	. of each other								
	[1] homologues		[2] functional group ison	ners							
	[3] mirror image isomers	s	[4] nonisomers								
Q.12	Which of the following d	lisaccharides is found in t	he milk?								
	[1] Sucrose	[2] Galactose	[3] Lactose	[4] Maltose							
Q.13	Which of the following is	s invert sugar ?									
	[1] Mixture of glucose a	nd galactose	[2] Mixture of glucose and fructose in equimolar ratio								
	[3] A type of cane sugar		[4] Optically inactive form of sugar								
Q.14	Which of the following fa	actors is not a denaturant	of enzymes ?								
	[1] Heat	[2] Mechanical energy	[3] High salt concentrati	on[4] pH 7							
Q.15	Which of the following is	s an example of a pentose	e sugar?								
	[1] Fructose	[2] Arabinose	[3] Glucose	[4] Galactose							
Q.16	Which of the following b	ases is found in RNA and	not in DNA ?								
	[1] Adenine	[2] Guanine	[3] Thymine	[4] Uracil							
Q.17	In DNA, hydrogen bonds	s are formed between :									
	[1] Adenine and thymine	9	[2] Thymine and uracil								
	[3] Guanine and thymine	e	[4] Cytosine and thymin	e							
Q.18	Adenosine is the compo	ound belonging to which c	f the following families?								
	[1] Purine	[2] Pyrimidine base	[3] Nucleotide	[4] Nucleoside							
Q.19	Protein is not present in	1:									
	[1] Nail	[2] Hair	[3] Wool	[4] DNA							
Q.20	Nitrogen is invariably pro	esent in which of the follow	wing compounds ?								
	[1] Carbohydrates	[2] Fats	[3] Proteins	[4] Starches							

Q.21	Cellulose is completely	digested in which of the f	ed in which of the following organs of human body ?	
	[1] Large intestine	[2] Appendix	[3] Stomach	[4] Nowhere
Q.22	Which of the following i	ons is associated with ins	sulin?	
	[1] Mg ⁺²	[2] Fe ⁺³	[3] Fe ⁺²	[4]Zn ⁺²
Q.23	Glucose cannot be obta	ained by the hydrolysis of	:	
	[1] starch	[2] molasses	[3] ribose	[4] sucrose
Q.24	Plant cell wall is made u	up of which of the followin	g compounds ?	
	[1] sucrose	[2] cellulose	[3] starch	[4] glycogen
Q.25	Which of the following s	sugars is generally found	in the fruits ?	
	[1] Galactose	[2] Glucose	[3] Fructose	[4] Sucrose
Q.26	Which of the following c	compounds is formed as i	ntermediate in the conver	rsion of starch to glucose ?
	[1] Sucrose	[2] Fructose	[3] Lactose	[4] Maltose
Q.27	The name aminoacetic	acid is given to which of t	he following compound?	\mathbf{O}
	[1] Aniline	[2] Pyridine	[3] Toluene	[4] Glycine
Q.28	Which of the following p	proteins acts as a hormor	ne?	
	[1] Trypsin	[2] Keratin	[3] Oxytocin	[4] Casein
Q.29	What is the approximate	e percentage of the amou	unt of water in a living cell	?
	[1] 50%	[2] 30%	[3] 70%	[4] 15%
Q.30	In photosynthesis, a co	mpound belonging to whi	ch of the following familie	s is formed ?
	[1] Protein	[2] Fat	[3] Carbohydrate	[4] Vitamin
Q.31	Which of the following is	s the formula of threose ?		
	[1] C ₃ H ₆ O ₃	[2] C ₅ H ₁₀ O ₅	[3] C ₄ H ₈ O ₄	[4] C ₆ H ₁₂ O ₆
Q.32	Which of the following is	s not an appropriate sour	ce of starch ?	
	[1] Rice	[2] Corn	[3] Potato	[4] Molasses
Q.33	Which of the following p	proteins stores oxygen in	the muscles ?	
	[1] Pepsin	[2] Collagen	[3] Myoglobin	[4] Actin
Q.34	What is the name of ala	anine ?		
	[1] Aminoacetic acid	cid	[2] Glycocol	
0 35	ES a-Aminopropionic a	ds will be present in a trip	[4] Aminoethanoic aciu	
Q.33				[4] 4
0.36	Which of the following c	/ [2] 2 tiseases is not virus infec	ted?	[+] +
Q.00	[1] Measles	[2] Small pox	[3] Influenza	[4] Malaria
Q.37	Which of the following a	are the examples of unsat	urated fatty acids?	
	[A] Stearic acid	[B] Linolenic acid	[C] Oleic acid	[D] Palmitic acid
	[1] A and B	[2] A and C	[3] B and D	[4] B and C
Q.38	Which of the following b	pelongs to the family of fa	ts?	
	[A] Tristearin	[B] Tripalmitin	[C] Triolein	
	[1] A and B	[2] A , B and C	[3] B and C	[4] A and C
Q.39	In the following formula	of adenosine triphosphat	e molecule, which are the	high energy phosphate bonds?
			Y C Z C	
		A P		

[1] X and Y [2] Y and Z [3] X and Z [4] X, Y and Z

Q.40	Which of the following c	compounds contain a hen	ne ring having an iron ator	n ?									
	[A] Insulin	[b] Chlorophyll	[C] Hemoglobin	[D] Myoglobin									
	[1] A and C	[2] A and D	[3] C and D	[4] Band C									
Q.41	Which of the following is	s not an example of a pyr	rimidine base ?										
	[1] Guaninc	[2] Uracil	[3] Cytosine	[4] Thymine									
Q.42	Which of the following b	oonds is found in proteins	and peptides ?										
	0		O O	Q									
	[1] _C_O_	[2] <i>—</i> NH—	[3] –C–O–C–	[4] –C–NH–									
Q.43	Which of the following b	bases is not present in RI	NA ?										
	[1] Uracil	[2] Ribose	[3] Phosphate	[4] Thymine									
Q.44	In glucose												
	In glucose [1] Five –OH groups are present [2] Four secondary and one primay alcoholic groups are present [3] One –CHO group is present [4] All the above statements are correct Which of the following could be the molecular formula of a disaccharide ?												
	$ \begin{bmatrix} 1 \end{bmatrix} - \begin{bmatrix} 2 \\ -NH - \\ \end{bmatrix} = \begin{bmatrix} 3 \\ -O - \\ \end{bmatrix} = \begin{bmatrix} 4 \\ -O - \\ \end{bmatrix} = \begin{bmatrix} 4 \\ -O - \\ \end{bmatrix} = \begin{bmatrix} 4 \\ -O - \\ \end{bmatrix} = \begin{bmatrix} 1 \end{bmatrix} \\ \begin{bmatrix} 1 \end{bmatrix} \\ \begin{bmatrix} 1 \end{bmatrix} \\ \begin{bmatrix} 2 \end{bmatrix} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$												
	 [2] Four secondary and one primay alcoholic groups are present [3] One –CHO group is present [4] All the above statements are correct 												
	 [1] Five –OH groups are present [2] Four secondary and one primay alcoholic groups are present [3] One –CHO group is present [4] All the above statements are correct Which of the following could be the molecular formula of a disaccharide ? [1] C₁₈H₂₂O₁₁ [2] C₁₂H₂₂O₁₁ [3] C₁₀H₁₈O₉ [4] C₁₀H₂₀O₁₀ Which of the following disaccharides is formed from two identical monosaccharide units ? [1] Maltose [2] Lactose [3] Sucrose [4] Fructose 												
Q.45	[A] Insulin[b] Chlorophyll[C] Hemoglobin[D] Myoglobin[1] A and C[2] A and D[3] C and D[4] Band CWhich of the following is not an example of a pyrimidine base ?[1] Guaninc[2] Uracil[3] Cytosine[4] ThymineWhich of the following bonds is found in proteins and peptides ?[4] Thymine[4] Thymine(1) $$ [2] $-NH-$ [3] $C-$ [4] $NH-$ Which of the following bases is not present in RNA ?[1] Uracil[2] Ribose[3] Phosphate[4] Thymine[1] Uracil[2] Ribose[3] Phosphate[4] Thymine[1] Five $-OH$ groups are present[3] Phosphate[4] Thymine[3] One $-CHO$ group is present[3] Phosphate[4] Thymine[4] All the above statements are correct[4] All the above statements are correct[4] Nuhch of the following disaccharides is formed from two identical monosaccharide units ?[1] Maltose[2] Lactose[3] Sucrese[4] FructoseWhich of the following is not present in thyroxine ?[1] Maltose[2] Cx2Memoglobin[1] Cyanine[2] Oxyhemoglobin[3] Hemoglobin[4] Four chlorine atomsVitarnine B, is :[1] Riboflavin[2] Cobalamin[3] Thiamin[1] Biboflavin[2] Cobalamin[3] Thiamin[4] PyridoxineThe bonds joining monoaccharide units in polysaccharides are called :[4] Peptide bonds												
	[1] C ₁₈ H ₂₂ O ₁₁	[2] C ₁₂ H ₂₂ O ₁₁	[3] C ₁₀ H ₁₈ O ₉	[4] C ₁₀ H ₂₀ O ₁₀									
Q.46	Which of the following c	lisaccharides is formed fr	ccharide units ?										
	[1] Maltose	[2] Lactose	[3] Sucrose	[4] Fructose									
Q.47	Which of the following co	omplex compounds is four	nd in red blood corpuscles	whose main function is transportation									
	of oxygen?												
	[1] Cyanine	[2] Oxyhemoglobin	[3] Hemoglobin	[4] Carboxyhemoglobin									
Q.48	Which of the following is	s not present in thyroxine	2? 										
	[1] One COOH group	[2] An amino group	[3] Four iodine atoms	[4] Four chlorine atoms									
Q.49	Vitamine B ₁ is :												
0.50		[2] Cobalamin		[4] Pyridoxine									
Q.50	The bonds joining mono	baccharide units in polysa	accharides are called :										
	[1] Glycosidic bonds	[2] Nucleosidic bonds	[3] Glycogen bonds	[4] Peptide bonds									
	N., N												
	1												

Qus.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Ans.	3	3	3	3	2	2	3	1	4	2	2	3	2	4	2	4	1	4	4	3
Qus.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
Ans.	4	4	3	2	3	4	4	3	3	3	3	4	3	3	2	4	4	1	2	3
Qus.	41	42	43	44	45	46	47	48	49	50										
Ans.	1	4	4	4	2	1	3	4	3	1										

Answer Key

Exercise – 2

Q.1	The disaccharide prese	ent in milk is :		[CPMT 1982, 87, 91; MP PET 2001]				
	[1] Maltose	[2] Lactose	[3] Sucrose	[4] Cellobiose				
Q.2	Insulin is :			[CBSE 1991]				
	[1] An amino acid	[2] Protein	[3] A carbohydrate	[4] A lipid				
Q.3	Glucose when heated contains :	with CH ₃ OH in presenc	e of dry HCI gas gives α	and β -methyl glucosides because it [CPMT 1981, 85]				
	[1] An aldehyde group	[2] A–CH ₂ OH group	[3] A ring structure	[4] Five hydroxyl groups				
Q.4	The commonest disacc	haride has the molecula	ar formula :	[CPMT 1982; Manipal MEE 1995]				
	[1] C ₁₀ H ₁₈ O ₉	[2] C ₁₀ H ₂₀ O ₁₀	[3] C ₁₈ H ₂₂ O ₁₁	[4] C ₂₂ H ₂₂ O ₁₁				
Q.5	It is best to carry out r because in alkaline me	reactions with sugars in dium sugars undergo or	neutral or acid medium ne of the following changes	and not in alkaline medium. This is s: [AIIMS 1982]				
	[1] Racemisation	[2] Decomposition	[3] Inversion	[4] None of these				
Q.6	Proteins when heated	with conc. HNO ₃ give a y	/ellow colour. This is :	[CPMT 1989]				
	[1] Oxidising test	[2] Xanthoprotic test	[3] Hoppe's test	[4] Acid-base test				
Q.7	Which of the following	statements about ribose	is incorrect :	[CPMT 1985]				
	[1] It is a polyhydroxy c	ompound	[2] It is an aldehyde sugar					
	[3] It has six carbon ato	oms	[4] It exhibits optical act	tivity				
Q.8	Starch is a polymer of :		[DPMT 198	2; CPMT 1975, 80; MP PMT 1994]				
	[1] Glucose	[2] Fructose	[3] Both [1] and [2]	[4] None of the above				
Q.9	Which one of the follow	ing proteins transports o	oxygen in the blood stream	m : [MP PMT 1993]				
	[1] Myoglobin	[2] Insulin	[3] Albumin	[4] Haemoglobin				
Q.10	The most important foo	d reserves of animals ar	nd plants are :	[MP PET 1993]				
	[1] Carbohydrates	[2] Proteins	[3] Vitamins	[4] Fats				
Q.11	Which of the following	statement about protein	s is not true :	[MP PAT 1993; MP PET 2001]				
	[1] Amino acid residues	join with formula protei	n molecule					
	[2] Proteins are polyme	rs with fromula $(C_6H_{10}O_6)$	5) _n					
	[3] Eggs are rich in prot	tein						
	[4] Pulses are good sou	urce of proteins						
Q.12	The reagent which form	ns crystalline osazone de	erivative when reacted wit	h glucose, is : [CPMT 1990]				
	[1] Fehling solution	[2] Phenylhydrazine	[3] Benedict solution	[4] Hydroxylamine				
Q.13	Which of the following	gives maximum energy i	n metabolic processes :	[CPMT 1991; MP PET 1999]				
	[1] Proteins	[2] Carbohydrates	[3] Lipids	[4] Vitamins				
Q.14	Which carbohydrate is	used in silvering of mirro	ors :	[BHU 1973; CPMT 1991]				
	[1] sucrose	[2] Starch	[3] Glucose	[4] Fructose				
Q.15	To become a carbohyd	rate a compound must o	contain at least :	[AFMC 1991]				
	[1] 2 carbons	[2] 3 carbons	[3] 4 carbons	[4] 6 carbons				
Q.16	The substance that forr	ns the plant cell walls is o	or Which carbhydrates is a [KCET	an essential constituents of plant cells 1984; MP PET 1999; CPMT 2002]				
	[1] Cellulose	[2] Sucrose	[3] Vitamins	[4] Starch				
Q.17	The base adenine occu	ırs in :		[MP PMT 1995]				
	[1] DNA only	[2] RNA only	[3] DNA and RNA both	[4] Protein				
Q.18	The protein which main	tains blood sugar level i	n the human body :	[KCET 1993; MP PMT 1995]				
	[1] Haemoglobin	[2] Oxytocin	[3] Insulin	[4] Ptyalin				
Q.19	Beri–beri is a disea	se caused by t	he deficiency of vitamin :	[CPMT 1994]				
	[1] A	[2] B	[3] C	[4] D				

Q.20 For α -amino acids having the structure -ÇH–CO₂H $\dot{N}H_2$ Which of the following statements are true : [A] Water solubility is maximum at a pH when concentrations of anions and cations are equal [B] They give ninhydrin test [MP PET 1994] [C] On reacting with nitrous acid give off N_2 [1] All [2] B and C [3] A and B [4] A Q.21 [MP PET 1994; Blhar MEE 1997] The linkage present in proteins and pepties is : [3]-NH-[4] Q.22 α -D-glucose and β -D-glucose differ from each other due to difference in one of the carbons with respect to its [CBSE 1995; AFMC 1999] [1] Size of hemiacetal ring [2] Number of OH groups [3] Configuration [4] Conformation Q.23 [CBSE 1995] Secondary structure of a protein refers to : [1] Mainly denatured proteins and structures of prosthetic groups [2] Three dimensional structure, specially the bond between amino acid residue that are distant from each other in the polypeptide chain [3] Linear sequence of amino acid residues in the polypeptide chain [4] Regular folding patterns of continusous portions of the polypeptide chain Q.24 [CBSE 1995] Of the following statment about enzymes which ones are true : [i] Enzymes lack in nucleophilic groups [ii] Enzymes are highly specific both in binding chiral substrates and in catalyzing their reactions [iii] Enzymes catalyse chemical reactions by lowering the activation energy [iv] Pepsin is a proteolytic enzyme [1] [i] and [iv] [2] [i] and [iii] [3] [ii], [iii] and [iv] [4] [i] Q.25 Oxidation of glucose is one of the most important reactions in a living cell. What is the number of ATP molecules generated in cells from one molecule of glucose : [CBSE 1995] [1] 38 [2] 12 [3] 18 [4] 28 Q.26 Which of the following is sweetest sugar : [Manipal MEE 1995; CPMT 1996; BHU 1997; MP PMT 1997; CBSE 1999; AIIMS 2000] [1] Glucose [2] Fructose [3] Lactose [4] Sucrose Q.27 Vitamin A is present in : [MP PET 1995] [1] Cod liver oil [2] Carrot [3] Milk [4] In all the above Q.28 Maltose is made of : [MP PET 1996] [1] Two molecules of glucose [2] Two molecules of fructose [3] Glucose and fructose molecules [4] Two molecules of sucrose Q.29 Which of the following is not a constituent of RNA : [MP PET 1996] [1] Ribose [2] Phosphate [3] Adenine [4] Pyridine Q.30 The number of atoms in the cyclic structure of D-fructose is : [MP PMT 1997] [1] 5 [2] 6 [3] 4 [4] 7 Q.31 Which substance is not present in nucleic acid : [MP PET/PMT 1998]

[3] Thymine

[1] Cytosine

[2] Adenine

[4] Guanidine

Q.32	Which of the following is	s not an amino acid :		[MP PET / PMT 1998]
	[1] Glycine	[2] Alanine	[3] Histidine	[4] Benzidine
Q.33	Enzymes in the living sy	ystems :	[CBSE 1997; MP PE	ET 1999; CPMT 1999; AIIMS 2000]
	[1] Provide energy	[2] Provide immunity	[3] Transport oxygen	[4] Catalyse biological processes
Q.34	The deficiency of vitami	n B ₁ causes :		[MP PMT 1999; BHU 2000]
	[1] Beri–beri	[2] Scurvy	[3] Rickets	[4] Anaemia
Q.35	Amino acids are the bui	Iding blocks of :		[CPMT 1999; CBSE 2001]
	[1] Carbohydrates	[2] Vitamins	[3] Fats	[4] Proteins
Q.36	Enzymes :			[AIIMS 1996]
	[1] Accelerate biochemi	cal reactions	[2] Have optimum activit	ty at body temperature
	[3] Consist of amino aci	ds	[4] Have all these prope	rties
Q.37	In nucleic acids, the sec	quence is :		[AIIMS 1998]
	[1] Base-phosphate-su	gar	[2] Phosphate-base-su	gar
	[3] Sugar-base-phosph	ate	[4] Base–sugar–phosph	ate
Q.38	Amino acids are produc	ed on hydrolysis of :		[AIIMS 1996]
	[1] Nucleic acid	[2] Carbohydrates	[3] Fats	[4] Proteins
Q.39	Which of the following d	oes not show any reduc	ing test of aldehyde :	[CPMT 1996]
	[1] Sucrose	[2] Fructose	[3] Maltose	[4] Lactose
Q.40	Metal present in blood is	S :		[CPMT 1997]
	[1] AI	[2] Mg	[3] Cu	[4] Fe
Q.41	Vitamin B ₁₂ contains me	etal :		[RPET 1999; CPMT 2003]
• • •	[1] Ca(II)	[2] Zn (II)	[3] Fe (II)	[4] Co (III)
Q.42	Haemoglobin is :			[CBSE 1997]
0.40	[1] An enzyme	[2] A globular protein	[3] A vitamin	[4] A carbohydrate
Q.43	IN DINA, the complement	itary bases are :		
	[1] Uracil and adenine; c	cytosin and guanine	[2] Adenine and thymine	e; guanine and cytosin
0.44	[3] Adenine and thymine	e; guanine and uracii	[4] Adenine and guanine	e; thymine and cytosin
Q.44	The number of molecule	es of ATP produced in th	le lipid metablism of a mo	
	[1] 130	[2] 36	[3] 56	
0 /5	Albumin proteins are mo	[2] 50	[5] 50	
Q.75	[1] Meat	[2] Milk	[3] Eag	[4] Sovahean
0.46	Dialysis can separate :		[0] - 99	[H] 1998]
Q. TV	[1] Glucose and fructose	2	[2] Glucose and sucrose	
	[3] Glucose and NaCl	,	[4] Glucose and protein:	S
Q.47	Galactose is converted	into alucose in :	[1] • • • • • • • • • • • • • • • • • • •	[AFMC 1998]
_	[1] Mouth	[2] Stomach	[3] Liver	[4] Intestine
Q.48	Which among the follow	ving is the simplest :		[CPMT 1999]
	[1] Glucose	[2] Cellulose	[3] Starch	[4] None of these
Q.49	Schweitzer's reagent us	sed for dissolving cellulo	se in the manufacture of	artificial silk is : [Roorkee 1999]
	[1] CuSO ₄ .5H ₂ O	[2] Cul	[3] [Cu(NH₂)₄]SO₄	[4] Cu(CH ₃ COO) ₂ .Cu(OH) ₂
Q.50	A gene is segment of a	molecules of :		[AIIMS 1999]
	[1] DNA	[2] m–RNA	[3] t–RNA	[4] Protein

Q.51	Energy is stored in o	ur body in the form of :		[CBSE 2001; Karna	taka CET 2003]	
	[1] ATP	[2] ADP	[3] Fats	[4] Carbohydrates		
Q.52	The 10% energy tran	sfer law of food chain was	s given by :		[BHU 2000]	
	[1] Stanley	[2] Weismann	[3] Lindemann	[4] Tansley		
Q.53	Which of the following	g is a conjugated proteine	9:		[BHU 2000]	
	[1] Glycoprotein	[2] Phosphoprotein	[3] Chromoprotein	[4] All of these		
Q.54	Acquired immune de	ficiency syndroms (AIDS)	is characterised :		[AIIMS 2000]	
	[1] Killer T–cells		[2] Reduction in number	er of helper T–cells		
	[3] An autoimmune di	sease	[4] Inability of body to p	produce interferons		
Q.55	Assertion (A) : Insuli	n is a globular protein				
	Reason (R) : Gum is	polymer of more than on	e type of nonosaccharide	es :	[AIIMS 2000]	
	[1] Both A and R are t	ture and R is a correct ex	planation of A	\sim		
	[2] Both A and R are	true but R is not a correct	explanation of A			
	[3] A is ture but R is f	lase		\tilde{c}		
	[4] Both A and R are f	flase				
Q.56	Scurvy is caused due	e to the deficiency of vitan	nin :	$\mathbf{O}_{\mathbf{I}}$	[CPMT 2000]	
	[1] B ₁	[2] C	[3] K	[4] D		
Q.57	An invert sugar is :			•	[AFMC 2000]	
	[1] Isorotatory	[2] Dextrorotatory	[3] Laevorotatory	[4] Optically inactive	e	
Q.58	Yeast cell derive their	r energy from glucose by	:		[AIIMS 2001]	
	[1] Glycolysis		[2] Respiration formation	on		
	[3] Formation		[4] None of these			
Q.59	Which α amono acid	can cross link peptide ch	nains :		[AIIMS 2001]	
	[1] Serine	[2] Cysteine	[3] Glutamine	[4] Tyrosine		
Q.60	Which of the following	g protein destroys the an	tigen when it enters in bo	dy cell :	[AIIMS 2001]	
	[1] Antibodies	[2] Insulin	[3] Chromoprotein	[4] Phosphoprotein		
Q.61	Which of the following	g is not true about vitamir	าร :		[AFMC 2001]	
	[1] They are vital for li	fe	[2] They help in digest	ion		
	[3] They were named	by "Funic"	[4] Their deficiency ca	uses diseases		
Q.62	Blood calcium level c	an be increased by the a	dministration of :		[AFMC 2001]	
	[1] Glucogon	[2] Calcitonin	[3] Thyroxine	[4] Paratharmone		
Q.63	An antibiotic with a b	road spectrum :			[AFMC 2001]	
	[1] Kills the antibodie	S	[2] Acts on a specific a	antigen		
	[3] Acts on different a	ntigents	[4] Acts on both the an	tigens and antibodies		
Q.64	Which of the following	g is correct statement :			[CBSE 2001]	
	[1] Troleins are amino	o acid	[2] α –hydrogen is pres	ent in fructose		
	[3] Starch is polymer	of α –glucose	[4] Amylose is compou	und of cellulose		
Q.65	Antibodies are :				[CBSE 2001]	
	[1] Carbohydrate	[2] Globular protein	[3] Immunoglobulins	[4] Celluslose comp	ounds	
Q.66	Excess of Na ⁺ ions ir	n our system causes :			[BHU 2001]	
	[1] High B.P.	[2] Low B.P.	[3] Diabetes	[4] Anaemia		
Q.67	The first harmone che	emically synthesised in th	ne laboratory is :		[BHU 2002]	
	[1] Cortisone	[2] Insuline	[3] Adrenaline	[4] Estrone		

Q.68	Enzymes are made up	of :			[CBSE 2002]			
	[1] Carbohydrates		[2] Edible proteins					
	[3] Nitrogen containing c	arbohydrates	[4] Protein with specifie	c structure				
Q.69	RNA is different from DN	IA because RNA contai	ns :	[AIEEE 2002]				
	[1] Ribose sugar and thy	/mine	[2] Ribose sugar and u	[2] Ribose sugar and uracil				
	[3] Deoxyribose sugar a	nd thymine	[4] Deoxyribose sugar	and uracil				
Q.70	The functional group, w	hich is found in amino a	cid is :		[AIEEE 2002]			
	[1]–COOH group	[2] –NH ₂ group	[3] –CH ₃ , group	[4] Both [1] and [2]				
Q.71	Chlorophyll contains :				[RPMT 2002]			
	[1] Fe	[2] Na	[3] Mg	[4] Zn				
Q.72	Proteins contains mainl	y :			MP PMT 2002]			
	[1] C, H and O	[2] C, H, O and N	[3] C, H and N	[4] N, H and O				
Q.73	Deficiency of which vita	min causes rickets :			MP PET 2002]			
	[1] Vitamin–D	[2] Vitamin–B	[3] Vitamin–A	[4] Vitamin–K				
Q.74	Subunits present in hae	moglobin are :			[AIIMS 2003]			
	[1] 2	[2] 3	[3] 4	[4] 5				
Q.75	Among the following, th		[AIIMS 2003]					
	[1] 2–Ethylalanine		[2] 2–Methylglycine					
	[3] 2–Hydroxymethyl se	rine	[4] Tryptophan					
Q.76	Phospholipids are ester	s of glycerol with :			[CBSE 2003]			
	[1] Three phosphate gro	ups						
	[2] Three carboxylic acid	d residues						
	[3] I wo carboxylic acid r	esidues and one phosp	hate group					
0.77	[4] One carboxylic acid I	residue two phosphate	groups					
Q.//	GIYCOIYSIS IS :		[2] Ovidation of alugaa	o to alutomoto	[CBSE 2003]			
	[1] Conversion of glucos		[2] Oxidation of glucos	e to giutamate				
0.79	[3] Conversion of pyruva		[4] Oxidation of glucos	e to pyruvate				
Q.70	[1] Amonunts of all base	at in an organism .						
	[2] Amount of adenine	(A) is equal to that of the	white (T) and the amo	unt of quaning (G) is	equal to that of			
	cytosine (C)							
	[3] Amount of adenine	(A) is equal to that of g	uanine (G) and the amo	ount of thymine (T) is	equal to that of			
	cytosine (C)			,	·			
	[4] Amount of adenine (A	A) is equal to that of cyto	sine (C) and the amount	of thymine (T) is equa	al to guanine (G)			
Q.79	Which of the following c	ould act as a propellant	of rockets :		[CBSE 2003]			
	[1] Liquid hydrogen + Lio	quid nitrogen	[2] Liquid oxygen + Liq	uid argon				
	[3] Liquid hydrogen + Lie	quid oxygen	[4] Liquid nitrogen + Lie	quid oxygen				
Q.80	The reason for double h	elical structure of DNA i	s operation of :		[CBSE 2003]			
	[1] Vander Waal's forces	S	[2] Diple–dipole interac	tion				
	[3] Hydrogen bonding		[4] Electrostatic attract	tions				
Q.81	Rate of physiorption inc	reases with :		[IIT Sc	reening 2003]			
	[1] Decreases in temper	ature	[2] Increases in temper					
-	[3] Decrease in pressure	9	[4] Decrease in surface					
Q.82	Which amino acid has a	aromatic ring :		[CPMT 2003]				
	[1] Alamine	[2] Glycine	[3] Tyrosine	[4] Lysine				
Q.83	Oils and fats are jointly	called :		[MP PET 2003]			
	[1] Lipids	[2] Soaps	[3] Proteins	[4] Polymer				

Q.84	The safest and the mos	st common alternative of	sugar is :		[MP PMT 2003]					
	[1] Glucose	[2] Aspartame	[3] Saccharin	[4] Cyclodextrin						
Q.85	The specific rotation of	equilibrium mixture of α -	–D–glucose and β –D–glu	cose is :	[MP PMT 2003]					
	[1] + 19º	[2] + 112º	[3] + 52°	[4] + 100°						
Q.86	Insulin production and it to which of the following	s action in human body a g categories ?	are responsible for the leve	el of diabetes. This co	mpound belongs [AIEEE 2004]					
	[1] An antibotic	[2] A hormone	[3] An enzyme	[4] A co–enzyme						
Q.87	Which base is present	in RNA but not in DNA ?)		[AIEEE 2004]					
	[1] Thymine	[2] Cytosine	[3] Guanine	[4] Uracil						
Q.88	Coordination compoun statements is incorrect	ds have great importan ?	ce in biological systems.	In this context whic	h of the following [AIEEE 2004]					
	[1] Hymine[2] Cytosine[3] Guanne[4] Oracli38Coordination compounds have great importance in biological systems. In this context which of the following statements is incorrect ?[AIEEE 2004][1] Carboxypeptidase – A is an enzyme and contains zinc[2] Haemoglobin is the red pigment of blood and contains iron[3] Cyanocobalamin is B_{12} and contains cobalt[4] Chlorophylls are given pigments in plants and contain calcium[4] Chlorophylls are given pigments in plants and contain calcium[9] Identify the correct statement regarding enzymes :[AIEEE 2004][1] Enzymes are specific biological catalysts that possess well-defined active sites[2] Enzymes are normally heterogeneous catalysts that are very specific in their action[3] Enzymes are specific biological catalysts that cannot be poisoned[4] Enzymes are specific biological catalysts that can normally function at very high temperature (T ~ 1000K)[90In both DNA and RNA, heterocylic base and phosphate ester linkages are at[1] C'_2 and C'_5 respectively of the suger molecule[2] C'_5 and C'_2 respectively of the suger molecule[3] C'_5 and C'_1 respectively of the suger molecule[4] C'_1 and C'_5 respectively of the suger molecule[3] C'_5 and C'_1 respectively of the suger molecule[4] C'_1 and C'_5 respectively of the suger molecule[3] C'_5 and C'_1 respectively of the suger molecule[4] C'_1 and C'_5 respectively of the suger molecule[3] The pyrimidine bases present in DNA are -									
	[1] An antibolic[2] Anomone[3] An enzyme[4] Accentryme[7] Which base is present in RNA but not in DNA ?[AlEEE 2004][1] Thymine[2] Cytosine[3] Guanine[4] Uracil[8] Coordination compounds have great importance in biological systems. In this context which of the following statements is incorrect ?[AlEEE 2004][1] Carboxypeptidase – A is an enzyme and contains zinc[2] Haemoglobin is the red pigment of blood and contains iron[3] Cyanocobalamin is B ₁₂ and contains cobalt[4] Chlorophylls are given pigments in plants and contain calcium[4] Chlorophylls are given pigments in plants and contain calcium[AlEEE 2004][1] Enzymes are specific biological catalysts that possess well-defined active sites[2] Enzymes are specific biological catalysts that are very specific in their action[3] Enzymes are specific biological catalysts that cannot be poisoned[AlEEE 2005][4] Enzymes are specific biological catalysts that can normally function at very high temperature (T ~ 1000K)In both DNA and RNA, heterocylic base and phosphate ester linkages are at[AlEEE 2005][1] C'_2 and C'_5 respectively of the suger molecule[2] C'_5 and C'_2 respectively of the suger molecule[3] C'_5 and C'_1 respectively of the suger molecule[4] C'_1 and C'_5 respectively of the suger molecule[4] C'_1 and C'_5 respectively of the suger molecule[4] cytosine and guanine[2] cytosine and danine									
	 [2] Haemoglobin is the red pigment of blood and contains iron [3] Cyanocobalamin is B₁₂ and contains cobalt [4] Chlorophylls are given pigments in plants and contain calcium Identify the correct statement regarding enzymes : [1] Enzymes are specific biological catalysts that possess well–defined active sites [2] Enzymes are normally heterogeneous catalysts that are very specific in their action 									
	[4] Chlorophylls are giv	en pigments in plants ar	nd contain calcium	c >						
Q.89	Identify the correct stat	ement regarding enzym	es:		[AIEEE 2004]					
	[4] Chlorophylls are given pigments in plants and contain calcium Identify the correct statement regarding enzymes : [AIEEE 2004] [1] Enzymes are specific biological catalysts that possess well-defined active sites [2] Enzymes are normally heterogeneous catalysts that are very specific in their action [3] Enzymes are specific biological catalysts that cannot be poisoned [4] Enzymes are specific biological catalysts that can normally function at very high temperature (T ~ 1000K) In both DNA and RNA, heterocylic base and phosphate ester linkages are at [AIEEE 2005] [1] C'_2 and C'_5 respectively of the suger molecule[2] C'_5 and C'_2 respectively of the suger molecule [3] C'_5 and C'_1 respectively of the suger molecule[4] C'_1 and C'_5 respectively of the suger molecule									
	[2] Enzymes are norma	ally heterogeneous catal	ysts that are very specific	in their action						
	[3] Enzymes are specif	ic biological catalysts th	at cannot be poisoned							
	[4] Enzymes are specif	ic biological catalysts th	at can normally function a	at very high tempera	ture (T ~ 1000K)					
Q.90	In both DNA and RNA,	heterocylic base and ph	osphate ester linkages ar	e at	[AIEEE 2005]					
	Identify the correct statement regarding enzymes :[AIEEE 2004][1] Enzymes are specific biological catalysts that possess well-defined active sites[2] Enzymes are normally heterogeneous catalysts that are very specific in their action[3] Enzymes are specific biological catalysts that cannot be poisoned[4] Enzymes are specific biological catalysts that can normally function at very high temperature (T ~ 1000K)[0] In both DNA and RNA, heterocylic base and phosphate ester linkages are at[AIEEE 2005][1] C'_2 and C'_5 respectively of the suger molecule[2] C'_5 and C'_2 respectively of the suger molecule[3] C'_5 and C'_1 respectively of the suger molecule[4] C'_1 and C'_5 respectively of the suger molecule[1] cvtosine and quanine[2] cvtosine and thymine									
	[4] Enzymes are specific biological catalysts that can normally function at very high temperature (T ~ 1000K In both DNA and RNA, heterocylic base and phosphate ester linkages are at [AIEEE 2005] [1] C'_2 and C'_5 respectively of the suger molecule[2] C'_5 and C'_2 respectively of the suger molecule [3] C'_5 and C'_1 respectively of the suger molecule[4] C'_1 and C'_5 respectively of the suger molecule									
Q.91	The pyrimidine bases p		[AIEEE 2006]							
	[1] cytosine and guanin	e	[2] cytosine and thymin	е						
	[3] cytosine and uracil		[4] cytosine and adenin	e						
Q.92	The term anomers of g	ucose refers to -			[AIEEE 2006]					
	[1] a mixture of (D)–g g	ucose and (L)–glucose								
	[2] enantiomers of gluc	ose								
	[3] isomers of glucose t	hat differ in configuration	n at carbon one (C–1)							
0.00	[4] isomers of glucose t	hat differ in configuration	hs at carbons one and fou	r (C–1 and C–4)						
Q.93	The secondary structur	e of a protein refers to -			[AIEEE 2007]					
	$[1] \alpha$ -helical backbone		[2] hydrophobic interact	ions						
	[3] sequency of α -amin	o acids	[4] fixed configuration of	r the polypeptide ba	CKDONE					
	N									
		Ans	wer Kev							

Answer Key

Qus.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Ans.	2	2	3	4	3	2	3	1	4	4	2	2	3	3	2	1	3	3	2	2
Qus.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
Ans.	4	3	4	3	1	2	4	1	4	1	4	4	4	1	4	4	4	4	1	4
Qus.	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
Ans.	4	2	2	1	3	4	3	1	3	1	1	3	4	2	2	2	3	1	2	1
Qus.	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
Ans.	2	4	3	3	3	1	1	3	4	2	4	3	4	З	3	4	3	4	2	3
Qus.	81	82	83	84	85	86	87	88	89	90	91	92	93							
Ans.	3	1	4	3	3	2	4	4	2	4	2	3	1							