Solved Example

Ex.1	Which of the	following is	not correctly	, matched .
⊏X.I	which of the	TOHOWING IS	not correctly	/ matched .

[1] Hydrolysis of phenyl magnesium iodide benzene

[2] γ-Isomer of BHC lindane

[3] $(2n + 4)\pi$ Rule aromaticity

[4] Trimerisation of propyne mesitylene Ans. [3]

- Sol. The Huckel rule to account for aromaticity is closed ring of $(4n + 2)\pi$ electrons.
- The resonance of the π -electron cloud in the benzene ring was confirmed after ozonolysis of : Ex.2

[1] Benzene [2] Toluene

[3] o-Xylene

[4] None of these

Ans. [3]

Benzene is an aromatic hydrocarbon having carbon atom in sp² hybridized and, one p-orbital of carbon Sol. remains unhybridized, which overlaps colaterally to form a continous π -electron cloud both above and below the plane of the benzene ring. There are two resonating structure of benzene.

Ozonolysis of benzene yields: Ex.3

[1] Glyoxal

[2] Glycerine

[3] Glycol

[4] Glycerol

Ans. [1]

Sol. Ozonolysis of benzene yields glyoxal. Benzene adds three molecules of ozone and forms benzene triozonide which on decomposition with water gives three molecules of glyoxal.

$$C_6H_6 + 3O_3$$
benzene ozone

 $C_6H_6O_9$
benzene trizonide

 $C_6H_6O_9$
benzene trizonide

 $C_6H_6O_9$
benzene trizonide

Ex.4 Which of the following will show aromatic character:

[1] I, II and III

[2] II and III

[3] II and IV

[4] All the four

Ans. [3]

Sol. Benzene has 6π electrons (2 from each double bond) present in cyclic continous form.

Furan also has 6π electrons present in continous cyclic cloud, note that the unused pair of electrons present in p-orbitals is involved in overlapping forming sextet.

- Ex.5 Benzene undergoes subsitution reaction more easily than addition because:
 - [1] It has cyclic structure

[2] It has three double bonds

[3] It has six hydrogen atoms

[4] Of resonance

Ans. [4]

- Sol. If there were no resonance in benzne, π electrons would have not been delocalised and hence easily available to undergo addition reactions as in ethylene. Further the subtituted benzene is stable due to resonance.
- Ex.6 Which of the following reagents and conditions convert benzene to chloro-benzene:

[1] Cl₂, sunlight, heat [2] HCl, heat

[3] HCl, sunlight, heat [4] Cl₂, AlCl₃, cold

Ans. [4]

- Sol. Chlorination of benzene is carried out by chlorine in presence of halogen carrier like AICI₃.
- **Ex.7** Which of the following structures correspond to the product expected, when excess of C₆H₆ reacts with CH₂Cl₂ in presence of anhydrous AlCl₃:

Ans. [4]

Sol. The reaction takes place as follows:

- Benzene reacts with n-propyl chloride in the presence of anhydrous AICl₃ to give predominantly : **Ex.8**
 - [1] n-Propylbenzene

[2] Isopropylbenzene

[3] 3-Propyl-1-chlorobenzene

[4] No reaction

Ans. [2]

Propyl carbonium ion, $CH_3CH_2\overset{t}{C}H_2$ is primary carbonium ion, it rearranges to the more stable secondary Sol. carbonium ion $\mathrm{CH_3} \overset{\scriptscriptstyle +}{\mathrm{C}}\!\mathrm{HCH_3},$ which then reacts to form isopropylbenzene.

propyl carbonium ion (1°)

isopropyl carbonium ion (2°)

- Which of the following reactions of benzene does not account for the three 'C = C' bonds in the molecule-Ex.9
 - [a] Benzene + $Br_2 \xrightarrow{FeBr_3} bromobenzene + HBr$
 - [b] Benzene + $HNO_3 \rightarrow nitrobenzene + H_2O$
 - [c] Benzene + $3O_3 \rightarrow Triozonide$
 - [d] Benzne + $3H_2 \xrightarrow{\text{Ni}}$ cyclohexane

[1] a, c

[2] b, d

[3] b, c, d

[4] a, b

Ans. [4]

Sol. a and b are the electrophilic substitution reactions and do not account for the C = C bond reaction. Ex.10 The function of anhydrous aluminium chloride in the Friedel–Craft's reaction is:

[1] Absorb water

[2] To absorb hydrochloric acid

[3] To produce an electrophile

[4] To produce nucleophile

Ans. [3]

Sol.
$$AICI_3 + CH_3CI \rightarrow AICI_4^- + \begin{picture}(150,0) \put(0,0){\line(1,0){100}} \put(0,0){\l$$

Q.11 In which of the following reaction t-butylbenzene is formed:

[1] Benzene + t-butyl chloride, AlCl₃

[2] Benzene +
$$(CH_3)_2C = CH_2$$
 BF_{3.HF}

[2] Benzene + t-butyl alcohol $\xrightarrow{\text{H}_2\text{SO}_4}$

[4] All of these

Ans. [4]

Sol.
$$CH_3$$
 CH_3 CH

$$CH_{3} - C - CH_{3}$$

$$\begin{array}{c} \text{CH}_3 \\ \text{CH}_3 \\ \text{CH}_3 \\ \text{CH}_3 \end{array} \rightarrow \begin{array}{c} \text{CH}_3 \\ \text{CH}_3 \\ \text{CH}_3 \end{array} \rightarrow \begin{array}{c} \text{CH}_3 \\ \text{CH}_3 \\ \text{CH}_3 \\ \text{CH}_3 \end{array}$$

Ex.12 The order of reactivity of :

Where $\phi = C_6H_5$

[4] III > II > I > IV

Ans. [1]

Sol. More are the number of α-hydrogen present in the alkyl group attached to the benzene ring more pronounced will be the hyperconjugation and the benzene ring will be more electron rich and easily be attacked by an electrophile. α -hydrogen in -CH₃, -CH₂-CH₃, -CH(CH₃)₂ and -C(CH₃)₃ respectively are three, two one and

Ethylbenzene + Cl₂ __Light___ (main) compound is : Ex.13

[1] o- & p- Chloroethylbenzene

[2] 1-Chloroethylbenzene

[3] 2-Chloroethylbenzene

[4] m-Chloroethylbenzene

Ans. [2]

Sol.
$$C_2H_5$$
 C_1 C_2H_5 C_3 C_4 C_3 C_4 C_5 C_5

Ex.14	Which of the follow position for substitu		ivates the be	∍nzene ring and d	irects the electrophille	to o– and p–
	[1] -NO ₂ , -CHO, -0	СООН	[2] -	·OH, -O⁻, -CH ₃		
	[3] -OH, -SO ₂ OH,	-NO ₂	[4] –	NH ₂ , –CHO, –SO ₂	₂ OH	Ans. [2]
Sol.	Groups given in [2] substitutuion.	activate the benzene	e ring and di	rects the electroph	hile towards o– and p–	positions for
Ex.15	$\phi - CH_3 \xrightarrow{CrO_2Cl_2} A$	$A \xrightarrow{H_2O} B$				
	The functional grou	up present in B and na	me of the re	action would be :		
	[1] –CHO, Gatterma	ann aldehyde synthes	sis [2] -	-CHO, Etard react	ion	
	[3] –COCH ₃ , Friede	el Crafts reaction	[4] -	-CHO, Oxo reactio	on	Ans. [2]
Sol.	The compound 'B' i	is benzaldehyde and	the reaction	is called Etard rea	action.	
Ex.16	Formation of which	of the following comp	ound confire	ns the unsaturatio	n character of benzene	:
	[1] Cyclohexane	[2] Gammexane	[3] T	riozonide	[4] All the above	Ans. [4]
Sol.	Formation of all the	e three compounds a	re the result	of addition reaction	on. Hence confirm the	unsaturation
	nature of benzene.					
Ex.17	The possible isome	ers of C ₇ H ₇ Cl will be :				
	[1] 5	[2] 4	[3] 3		[4] 2	Ans. [2]
Sol.	There are four isom	ners o,m & p-chloroto	luenes and l	enzyl chloride.		
Ex.18	Toluene may be pre	epared by :				
	[1] Toluic acid		[2] (Cresol		
	[3] Toluene sulphor	nic acid	[4] A	III the above		Ans. [4]
Sol.		epared by all the above	-			
Ex.19	Chlorination of tolu	ene in the presence o	f light and he	eat followed by tre	atment with aqueous N	aOH gives :
	[1] o-Cresol			-Cresol		
	[3] 2,4–Dihydroxy to			Benzoic acid		Ans. [4]
Sol.	$C_6H_5CH_3 \xrightarrow{Cl_2}$	$C_6H_5CH_2CI \xrightarrow{Cl_2} $ \downarrow $NaOH$ $C_6H_5CH_2OH$	C ₆ H ₅ CHCl ₂ VaOH C ₆ H ₅ CHO	$ \begin{array}{c} \stackrel{Cl_2}{\longrightarrow} C_6H_5CC \\ \downarrow N \\ C_6H_5CC \end{array} $	CI ₃ aOH DOH	

 $\textbf{Ex.20} \quad \text{Benzyl chloride (C}_6 \text{H}_5 \text{CH}_2 \text{CI) can be prepared from toluene by chlorination with:} \\$

 $[1] \operatorname{SO_2Cl_2} \qquad \qquad [2] \operatorname{SOCl_2} \qquad \qquad [3] \operatorname{S_2Cl_2} \qquad \qquad [4] \operatorname{NaOCl} \qquad \qquad \textbf{Ans. [1]}$

$$\textbf{Sol.} \quad \bigodot^{\text{CH}_3} \xrightarrow{\quad \text{Cl}_2 \text{ or} \quad } \bigodot^{\text{CH}_2\text{Cl}}$$

Exercise # 1

Q.1	Which one of the foll anhydrous aluminium	•	ikely to yield product whe	n react with benzene in presence o
	[1] CCI ₄	[2] CH ₃ CH ₂ CI	[3] C ₆ H ₅ Cl	[4] CH ₃ CHCICH ₃
Q.2	·	oiwng is benzo radical :	0 3	3 3
	[1] C ₆ H ₅ -	[2] C ₆ H ₄ <	[3] C ₆ H ₅ CH ₂ -	[4] C ₆ H ₅ −C←
Q.3	Benzene + anhydrou	ıs AlCl ₃ + Carbonyl chlor	ide > A.	
	Benzene + anhydrou	ıs AICI ₃ + Chloroformami	ide > B.	
	Product A and B are	:		
	[1] Benzoyl chloride,	benzamide	[2] Benzylchloride, Ber	nzylaminoformate
	[3] Benzylchloride, B	senzamide	[4] Benzoyl chloride, B	senzylaminoformate
Q.4	Benzene + Conc. H ₂ known as :	$_{2}SO_{4} \xrightarrow{I} ArSO_{3}H \xrightarrow{H_{3}}$	$\xrightarrow{O^+}$ ArH + H_2 SO ₄ . In the	above sequence, the II reaction is
	[1] Sulphonation	[2] Elimination	[3] Protonolysis	[4] Dehydrosulphonation
Q.5	Dibenzene chromiun	n is a :		
	[1] Sandwich compo	und	[2] Complex	
	[3] Both the above		[4] None of the above	
Q.6	Reaction of benzene	with n-propyl bromide i	n presence of FeBr ₃ , the o	chief product is :
	[1] n-propyl benzene	e [2] Isopropyl benzen	e [3] Both the above	[4] None of the above
Q.7	Ethyl benzene is obta	ained from benzene and	ethyl bromide in presence	e of :
	[1] Vacant orbital aci	d [2] Lewis base	[3] Selenium dioxide	[4] Bromine water
Q.8	The ultimate product	in the reaction:		
	Benzene + CCI ₄ — A	$\xrightarrow{\text{ICl}_3}$? is:		
	[1] Benzal trichloride		[2] Tetraphenyl methar	ne
	[3] Triphenyl chlorom	ethane	[4] Benzyl chloride	
Q.9	When acetyl chloride	and anhydrous aluminiu	ım chloride are used in Frie	edel Crafts reaction, the electrophile
	is:			
	[1] CI+	[2] CH ₃ CO ⁺	[3] CH ₃ +	[4] AICI ₃ +
Q.10	$C_6H_6 \xrightarrow{CH_3COCI} A$	[2] CH ₃ CO ⁺ Zn-Hg HCI B:		
	The end product in the	ne above sequence is :		
	[1] Toluene	[2] Ethyl benzene	[3] Both the above	[4] None
Q.11	Benzene diazonium	chloride does not give be	enzene when treated with	the following reagent :
	[1] H ₃ PO ₂	[2] C ₂ H ₅ OH	[3] SnCl ₂ + NaOH	[4] H ₂ O
Q.12	For the centric formu	ıla of benzene credit goe	es to :	
	[1] Dewar	[2] Kekule	[3] Ladenburg	[4] Armstrong and Baeyer's
Q.13	Which of the following	g compound is called cu	ımene :	
	[1] Vinyl benzene	[2] Ethyl benzene	[3] Isopropyl benzene	[4] t-Butyl benzene

Q.14
$$A \leftarrow \frac{\text{air, } V_2O_5}{450^{\circ}\text{C}} \longrightarrow \frac{\text{air, } V_2O_5}{300^{\circ}\text{C}} \rightarrow B$$

The compounds A and B are respectively:

- [1] Maleic anhydride and phenol [2] Maleic acid and p-benzoquinone
- [3] Carbon dioxide and carbon monoxide [4] Benzoic acid and perbenzoic acid

Q.15
$$C_6H_6 + A \xrightarrow{AICI_3} C_6H_5CONH_2$$

A in the above reaction is:

- $[1] \, \mathrm{NH_2CONH_2} \qquad \qquad [2] \, \mathrm{CICONH_2} \qquad \qquad [3] \, \mathrm{CH_3CONH_2} \qquad \qquad [4] \, \mathrm{CH_2(CI)CONH_2}$
- **Q.16** Aromatic hydrocarbons can be obtained from naptha by :
 - [1] Catalytic cracking [2] Catalytic reforming [3] Refining [4] Destructive distillation
- Q.17 The true statement for benzene is :
 - [1] It is heavier than water [2] It is lighter than water
 - [3] It is soluble in water [4] It's structure is non–planar
- **Q.18** [a] C_6H_6 + reagent I \rightarrow C_6H_5 CHO ; [b] C_6H_6 + reagent II \rightarrow C_6H_5 CHO

Reaction [a] is Gattermann synthesis while reaction [b] is Gattermann Koch synthesis. The reagents related to [a] and [b] are respectively:

- [1] [a] CO + HCl + AlCl₃
- [b] CO + HCN + AICI₃

[2] [a] $HCN + HCI + AICI_3$

[b] CO + HCl + AlCl₃

[3] [a] $CO_2 + AICI_3$

[b] CICONH₂ + AICI₃

[4] [a] $HCHO + HCI + ZnCl_2$

[b] CO + HCI + AICI₃

- Q.19 Which statement is wrong:
 - [1] In the chlorination of benzene by [FeCl₃ + Cl₂] chloronium ion is formed
 - [2] Solution of bromine in CCl₄ is not decolourised by benzene
 - [3] Chiefly phenol and napthalene are the constituents of light oil
 - [4] In sulphonation benzene reacts with hot and conc. H_2SO_4
- Q.20 Direct iodination of benzene is not possible because :
 - [1] Iodine is an oxidising agent [2] The product C_6H_5I is reduced to C_6H_6 by HI
 - [3] HI is an unstable compound [4] Ring is deactivated
- **Q.21** Benzene + propene $\xrightarrow{\mathsf{HF}}$ Cumene.

Here the function of HF is:

- [1] Proton donor [2] Solvent [3] Both the above [4] None
- Q.22 It has been imagined that:
 - [I] A 22-membered, ring (12-double bond) and (II) A 30-membered ring (15-double bond) can be easily prepared. Point which system is aromatic and which one is non-aromatic:
 - [1] (I) Aromatic (II) non–aromatic
 - [2] (I) Non-aromatic (II) aromatic

[3] (I) and (II) aromatic

- [4] (I) and (II) non-aromatic
- Q.23 Presence of unstauration in benzene is confirmed by the formation of this compound :
 - [a] Toluene
- [b] Cyclohexene
- [c] Tri-ozonide
- [d] Dibenzene chromium

- [e] Gammexane
- Correct answer is:
- [1] a, c, b
- [2] b, c, e
- [3] c, d, e
- [4] a, c, d

Q.24 Compounds with aromatic characteristics are: [a] Gammexane [b] Hexachlorobenzene [c] Benzene triozonide [d] Cyclohexylamine [e] N-Phenylacetamide The correct code is: [1] b, e [2] a, c, d [3] c, d [4] a, d Q.25 Benzene was discovered by: [1] Ramsay [2] Dalton [3] Faraday [4] Priestley Q.26 The correct set of reagents used in step-1 and step-2 are: Step-1 Step-2 [1] AICI₃ and CH₃COCI Pd/BaSO₄ [2] AlCl₃ and (CH₃CO)₂O Zn-Cu/H₂O [3] ZnCl₂ and CH₃COCl Zn-Hg/HCI [4] AICI₃ and CH₃CH₂COCI Zn-Hg/HCI Q.27 Benzene in presence of u.v. light reacts with chlorine to form: [1] Benzenehexachloride [2] Benzyl chloride [4] Chlrobenzene [3] 1,3,5-Trichlorobenzene Q.28 Aromatic compounds undergo most readily: [1] Nucleophilic substitution [2] Electrophilic substitution [3] Nucleophilic addition [4] Electrophilic addition Q.29 Which of the following is formed on reacting benzene with fuming sulphuric acid at 80°C? [1] Phenolsulphonic acid [2] Benzenesulphonic acid [3] m-Disulphonic acid [4] Benzenedisulphonic acid Q.30 Which of the following compounds would have slower rate of electrophilic bromination than benzene: NO_2 Q.31 Catalytic hydrogenation of benzene gives: [1] Toluene [2] Xylene [3] Cyclohexane [4] Benzoic acid Q.32 Among the following statement on the nitration of aromatic compounds, the false one is : [1] The rate of nitration of benzene is almost the same as that of hexadeutero benzene [2] The rate of nitration of toluene is greater than that of hexadeuterobenzene [3] The rate of nitration of benzene is greater than that of hexadeutrero benzene [4] Nitration is an electrophilic substitution reaction Q.33 Sulphonation of benzene differs from most of the other electrophilic substitution reactions in that the reaction [1] Is reversible [2] Requires the presence of a Lewis acid catalyst [3] Takes place with expolsive violence [4] Requires elevated temperature Q.34 Benzene reacts with a mixture of HNO₃ and H₂SO₄ followed by addition of Cl₂/FeCl₃ to form :

[2] 2-Chloro-1-nitrobenzne

[4] 2-and 4-chloro-1-nitrobenzene

[1] 3-Chloro-1-nitrobenzene

[3] 4-Chloro-1-nitrobenzene

Q.35	The reason for the equal C–C bond lengths in b	enzene is .
	[1] sp ² hybridisation state of C-atoms and delo	calisation of π–electrons
	[2] sp ² hybridisation state of C-atom and localis	sation of π –electrons
	[3] sp ³ hybridisation sate of C-atoms and resor	nance
	[4] None of these	
Q.36	Which of the following is a correct statement at	oout benzene?
	[1] All the C–C bond lengths are not equal	
	[2] All the bond angles are not equal	
	[3] All the C-atoms are not in sp ² hybridisation	state
	[4] Three C–C bond lengths are not different that	an other three C–C bond lengths
Q.37	C–C bond length in benzene is :	
	[1] 1.54 Å [2] 1.40 Å	[3] 1.36 Å [4] 1.20 Å
Q.38	Which of the following reactions is not an exam	uple of electrophilic substitution ?
	[1] $C_6H_6 + {}^+NO_2 \rightarrow C_6H_5NO_2 + H^+$	[2] $C_6H_6 + CH_3CI \xrightarrow{AICI_3} C_6H_5 - CH_3 + HCI$ OH
	$[3] C_6H_6 + CI_2 \xrightarrow{\text{UV light}} C_6H_6CI_6$	$[4] C_6H_5OH + CO + HCI \xrightarrow{Anhy.} AICI_3$
		сно
Q.39	Which of the following does not react with benz	zene in the presence of anhy. AICI ₃ ?
	$ [1] \mathrm{C_6H_5CI} \qquad \qquad [2] \mathrm{CH_3CH_2CI} $	[3] CH ₃ -CH(Cl)-CH ₃ [4] CCl ₄
Q.40	The product of the reaction of benzene with ozo	one on hydrolysis gives :
	[1] Ethane dial [2] Methanoic acid	[3] Methyl glyoxal [4] None of these
Q.41	The intermediate formed in the reaction of benz	zene with an electrophile is :
	[1] Whiland intermediate	[2] σ–complex
	[3] Cyclic secondary cation	[4] All of the above
Q.42	The compounds obtained by the reduction of be	enzene with ${ m Na/C_2H_5OH}$ and liquid ammonia is :
	[1] Cyclohexane	[2] Cyclohexa–1, 4–diene
	[3] Cyclohexane + methyl cyclopentane	[4] All of the above
Q.43	$X \xrightarrow{Cl_2} Benzotrichloride \xrightarrow{Hydrolysis} Y. X and$	d Y respectively are :
	[1] Benzene, Benzaldehyde	[2] toluene, Benzaldehyde
	[3] Toluene, Benzoic acid	[4] Benzene, Benzoic acid
Q.44	C_6H_6 Fuming sulphuric acid (A) NaOH (B) Zr	$\xrightarrow{\text{n dust}}$ (C)
	In the above reaction compound (C) is:	
	[1] Phenol	[2] Benzene
	[3] Benzene sulphonic acid	[4] None of these
Q.45	Benzene is reduced with HI at 250°C to from :	
	[1] Methyl cyclopentane	[2] Cyclohexane
	[3] A mixture of both of the above	[4] None of the above
Q.46	Benzene reacts with chlorine in the presence of	f iron. The product is :
	[1] Benzene hexachloride	[2] Chlorobenzene
	[3] Benzyl chloride	[4] Benzoyl chloride

Q.47 Which of the following groups deactivates benzene nucleus?

- $[1] CH_3$
- [2] -CCI₃
- [3] OF
- $[4] NH_2$

Q.48 When benzene is heated with mercuric acetate at 110°C, the product obtained is :

[1] Phenyl mercuric acetate

[2] Phenyl mercury

[3] Phenyl acetate

[4] A mixture of all of the above

Q.49 Benzene can not be prepared by the following reaction:

- [1] Benzenediazonium chloride + Phosphrous acid
- [2] Phenyl magnesium bromide + water
- [3] Benzene sulphonic acid + dil. H_2SO_4
- [4] Benzendiazonium chloride + water

Q.50 $C_6H_6 \xrightarrow{\text{HCl} + \text{HCN} \atop \text{Anhy. AlCl}_3} (A) \xrightarrow{\text{CH}_3\text{CHO} \atop \text{Base}} (B)$ Compound (B) in above reaction sequence is

- [1] Cinnamaldehyde
- [2] Salicylaldehyde
- [3] Phenylacetaldehyde [4] Phenyl acetic acid

Answer Key

Qus.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Ans.	3	4	1	3	3	2	1	3	2	2	4	4	3	1	2	2	2	2	3	2
Qus.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
Ans.	3	2	2	1	3	4	1	2	2	1	3	3	1	1	1	4	2	3	1	1
Qus.	41	42	43	44	45	46	47	48	49	50					_					
Ans.	4	2	3	2	3	2	2	1	4	1										

xercise # 2

Q.1	The correct structure of benzene was suggested by:
Q. I	The correct structure of benzerie was suggested by .

- [1] Faraday
- [2] Devy
- [3] Kekule
- [4] Wohler

A mixture of benzene and benzoic acid is separated by the following reagent : **Q.2**

- [1] Toluene
- [2] NaHCO₃
- [3] HCI
- [4] Diethyl ether

Q.3 Which of the following is not a correct statement?

- [1] SO₃ is the active electrophile in the sulphonation of benzene
- [2] Nitronium ion is the active electrophile in the nitration of benzene
- [3] Bromide ion is the active electrophile in the bromination of benzene
- [4] Alkyl carbocation is the active electrophile in the alkylation of benzene

Q.4 Benzene
$$\xrightarrow{?}$$
 1,3,5–Trinitrobenzene

The reagent in this case is:

[1] Conc. HNO₃

- [3] Nitrogen dioxide dissolved in conc. HNO₃

Q.5 The product of the reaction : Benzene
$$\xrightarrow{H^+, Ag^+, HOCl}$$
 ? is

- [4] None of the above

Identify the correct products A and B in the sequence : **Q.6**

$$C_6H_6 \xrightarrow{\overset{\oplus}{N}O_2} A \xrightarrow{SnCl_2/HCl} B \xrightarrow{NaNO_2/HCl}$$

- [1] Nitrobenzene, Nitrosobenzene
- [2] Nitrobenzene, phenylhydroxylamine
- [3] Nitrobenzene, benzene diazonium chloride [4] Nitrobenzene, phenol

Q.7 Benzene vapour mixed with air passed over vanadium pentaoxide, the product is:

[1] Dicarboxylic acid

- [2] Anhydride of monocarboxylic acid
- [3] Anhydride of unsaturated dicarboxylic acid [4] Anhydride of unsaturated monocarboxylic acid
- **Q.8** Ozonolysis, of benzene and subsequent hydrolysis gives:
 - [1] Glycol
- [2] Glycolic acid
- [3] Glycine
- [4] Glyoxal

Q.9 Wrong statement for benzene is:

[1] Stable to permanganate

- [2] Gives substitution reaction
- [3] Does not form sandwich compound
- [4] Unreactive to $\rm H_2SO_4$ at $0^{\circ}\rm C$

Q.10 Choose the pair, where members differ in molecular formula:

[1] Lindane and triple six

[2] Glycine and aminoacetic acid

[3] Aniline and oil of mirbane

[4] Urotropine and aminoform

Q.11	Benzene and cyclohex	kene can be distinguish	ed by :								
	[1] Br ₂ water solution		[2] H ₂ gas + Ni								
	[3] Cl ₂ in dark , cold, F	e e	[4] None of these								
Q.12	Which of the following	reactions is not shown	by benzene :								
	[1] Addition		[2] Oxidation								
	[3] Side chain substitu	tion	[4] Complex formation								
Q.13	Choose the wrong stat	ement									
	[1] The dipole moment	of benzene is zero .									
	[2] The properties of be	enzene resembles with a	alkene.								
	[3] C-C(six) bonds in b	enzene are of equal ler	ngth								
	[4] Benzene is a planar molecule with bond angle of 120°										
Q.14	The source of benzene	e is :		~O,							
	[1] Coaltar	[2] Gasoline	[3] Raschig process [4] None								
Q.15	Which of the following	saturated group deactiv	vate the benzene ring:								
	[1] -CH=CH ₂	[2] -NO ₂	[3] -CCl ₃	[4] –OH							
Q.16	Reduction of benzene	in alcohol by [Sodium +	m + liquid ammonia] is called								
	[1] Clemeon reduction		[2] Wolf-Kishner reduc	etion							
	[3] Birch reduction		[4] Mendius reaction								
Q.17	Cumene or isopropyl b	enzene is formed in the	e reaction :								
	$[1] C_6 H_6 + CH_2 = CH -$	$CH_3 \xrightarrow{AlCl_3}$	[2] $C_6H_6+CH_3-CH_2-CH_2CI$ AlCl ₃ [4] None of the above the above sequence the hybridised carbon changes as:								
	[3] Both the above										
Q.18	$Acetylene \to benzene$										
		$sp \rightarrow sp^2 \rightarrow sp^3$									
		gle of hybridised orbitals									
	[1] Remains unaltered [3] Decreases continue	ouely	[2] Increases continuo[4] First increases the	•							
Q.19		inantly its following ison		ii decieases							
4.10	[1] β	[2] α	[3] γ	[4] δ							
Q.20	Which of the following										
	[1] Benzoyl	[2] Benzyl	[3] Benzal	[4] p-Tolyl							
Q.21	C–C Bond length in be in alkane.	enzene is then [C	C≡C] and [C=C] bond len	gth but than [C–C] bond length							
	[1] Greater, smaller	[2] Smaller, smaller	[3] Smaller, greater	[4] Greater, greater							
Q.22	Benzene with ethanol										
	[1] Is insoluble		[2] Forms azeortropic mixture								
0.22	[3] Forms ternary mixt		[4] None of the above								
Q.23	[1] Benzyl chloride	lorine in presence of fer [2] Benzal chloride	ric chloride to give : [3] Benzotrichloride	[4] o and p chlorotoluene							
	[1] Denzyi Chionae	[2] Denzai Gillonde	[3] Denzoulichionde	[+] o and p chlorololdene							

Q.24 A hydrocarbon contains 10.5 gm carbon per gm of hydrogen. Its empirical formula would be:

[1] C_6H_6 [2] C_7H_8

Chlorination of toluene would lead to the formation of:

[1] o-Chlorotoluene [2] p-Chlorotoluene

[3] o- and p- Chlorotoluene [4] m-Chlorotoluene

Q.26 The main product formed by the reaction of toluene with chlorine in the presence of ferric chloride is:

 $[4] C_6 H_7$

[1] Benzoyl chloride [2] Benzyl chloride [3] Benzotrichloride

[3] Benzotrichloride [4] o- and p-chlorotoluene

 $[[4] C_6 H_8]$

Q.27 Toluene is used in the preparation of :

[1] Saccharin [2] T.N.T [3] Chloramine–T [4] All of the above

Q.28 The product obtained by the chlorination of toluene in the presence of light and heat is hydrolysed with aqu.

NaOH to form:

Q.25

[1] o-Cresol [2] p-Cresol

[3] 2,4–Dihydroxy toluene [4] Benzoic acid

Answer Key

Qus.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Ans.	3	2	3	3	1	3	3	4	3	3	1	3	2	1	3	3	3	3	3	3
Qus.	21	22	23	24	25	26	27	28												
Ans.	1	2	4	2	3	4	4	4												

Exercise # 3

Q.1	·	s burn with sooty flame b ructure of carbon atoms	ecause:	[BIT 1991]			
	,	ely hight percentage of h	ydrogen				
		ely high percentage of ca					
	[4] They resist reaction	n with oxygen of air					
Q.2	Select the true statme	nt about bezene from an	nongst the following :	[CBSE 1992]			
	[1] Because of unsatur	ration benzene easily un	dergoes addition reaction	ns			
	[2] There are two types	s of C–C bonds in bezen	e molecule				
	[3] There is a cyclic de	elocalisation of π electron	ns in benzene				
	[4] Monosubstitution o	f benzene group gives th	nree isomeric substances				
Q.3	The function of anhyd	rous AICI ₃ in the Friedel-	-Craft's reaction is to :	[MLNR 1986]			
	[1] Absorb water		[2] Absorb HCI				
	[3] To produce electrop	ohile	[4] To produce nucleop	hile			
Q.4	Benzene reacts with C	CH ₃ COCI in the presence	e of AICI ₃ to give :	[CBSE 1991]			
	[1] C ₆ H ₅ Cl	[2] C ₆ H ₅ COCI	[3] C ₆ H ₅ CH ₃	$[4] C_6 H_5 COCH_3$			
Q.5	Which of the following	catalysts is used for pre	paring toluene by reactir	ng benzene with methyl chloride:			
				[CPMT 1985]			
	[1] Ni	[2] Anhydrous AICI ₃	[3] Pd	[4] Pt			
Q.6	The attacking (electro	philic) species in sulpho	nation of benzene is:	[RPMT 1997 ; CPMT 1999, 2002]			
	[1] SO ₂	[2] SO ₃	[3] SO ₄ ²⁻	[4] HSO ₃ ⁻			
Q.7	Benzene vapour mixe	d with air when passed c	ver V ₂ O ₅ catalyst at 775	K gives :			
			-	1991; CPMT 2001; MP PMT 2003]			
	[1]Glyoxal	[2] Oxalic acid	[3] Maleic anhydride	[4] Fumaric acid			
Q.8	•	or electrophilic species i FHNO ₃ , the attack on rir		or In the nitration of benzene with			
	•		[CBSE 1994; MP	PET 1996; PMT 1998; BHU 2001]			
	[1] NO ₂ ⁻	[2] NO ₂ +	[3] NO ₃ ⁻	[4] NO ₂			
Q.9	Which of the following benzene at 350 K:	reactions takes place w	hen a mixture of concen	strated HNO ₃ and H ₂ SO ₄ reacts on [CPMT 1985]			
	[1] Sulphonation	[2] Nitration	[3] Hydrogenation	[4] Dehydration			
Q.10	Chemical name of the	e inseciticide gammexe i	ne is :				
		[CPMT 1981; N	IP PET 1995; MP PMT 1	996; CBSE 1999; MP PET 1999]			
	[1] DDT		[2] Benzene hexachlor	ide			
	[2] Chloral		[4] Hexachloroethane				
Q.11	The number of σ and π	bonds in a molecule of	benzene is : [MP PMT/PI	ET 1988; BHU 1995; CPMT 1997]			
	[1] 6σ and 3π	[2] 9σ and 3π	[3] 12σ and 3π	[4] 6σ and 6π			
Q.12	The bond order of indiv	vidual carbon–carbon bo	nds in benzene is :	[IIT 1981; MP PET 2000]			
	[1] One	[2] Two		[4] One and two, alternately			
Q.13	The centric structure of	of henzene was proposed	d by ·	[CPMT 1982, 83, 89]			
	[1] Dewar	[2] Ladenberg	[3] Kekule	[4] Armstrong and Baeyer			

Q.14	The product formed when acetylene is passed	•	-	than PMT 2003]
Q.15	[1] Benzene [2] Cyclohexane Which of the following structures correspond CH ₂ Cl ₂ in presence of anhydrous AlCl ₃ :	[3] Neoprene to the product expected	[4] Ethane d, when excess of (C ₆ H ₆ reacts with [CBSE 1989]
	[1] CH—CH	[2] CHCl ₂		
	CI CI			
	[3] CI	[4] CH ₂ —C		
Q.16	Methyl group attached to benzene can be oxid	lised to carboxyl group	-	taka CET 40021
	[4] [5] (4) [6]		_	taka CET 1993]
Q.17	[1] Fe ₂ O ₃ [2] AgNO ₃	[3] KMnO ₄	[4] Cr ₂ O ₃	CPMT 1996]
Q.17	Benzene is prepared in laboratory from which o	[3] C ₆ H ₅ COONa		CPWII 1990]
Q.18	[1] C ₆ H ₅ N ₂ Cl [2] C ₆ H ₅ OH Catalytic hydrogenation of benzene gives :	[3] C ₆ H ₅ COONA	[4] C ₆ H ₅ SO ₃ H	[AIIMS 1996]
Q.10	[1] Xylene [2] Cyclohexane	[3] Benzoic acid	[4] Toluene	[Allivio 1990]
Q.19	Benzene is obtained from :	[3] Berizoic acid	[4] Tolderie	[CPMT 1996]
Q.13	[1] Coaltar [2] Plant	[3] Animal	[4] Charcoal	[CFWI 1990]
Q.20	Nitrobenzene can be prepared from benzene			c H SO In the
Q.20	nitrating mixture, HNO ₃ acts as a :	by using a mixture of or	one. Theog and con-	[IIT 1997]
	[1] Base [2] Acid	[3] Reducing agent	[4] Catalyst	
Q.21	Among the following statements on the nitration		ds, the false one is	: [IIT 1997]
	[1] The rate of nitration of benzene is almost th	e same as that of hexac	deuterobenzene	
	[2] The rate of nitration of toluene is greater that	an that of benzene		
	[3] The rate of nitration of benzene is greater th	an that of hexadeuterob	enzene	
	[4] Nitration is an electrophilic substitution rea	ction		
Q.22	After ozonolysis of benzene (not hydrolysis), t	he product is : [I	Rajasthan PMT 199	97; CPMT 1997]
	[1] Benzene triozonide [2] Glyoxal	[3] Ethanediol	[4] All of these	
Q.23	Which one of these is not compatible with are			[CBSE 1998]
	[1] Greater stability	[2] Delocalisation of π	-electrons	
	[3] Electrophilic additions	[4] Resonance		
Q.24	Benzene is the polymer of:	F01 F41 1	[RPET 1999; Bih	ar MEE 1999]
	[1] Methane [2] Ethane	[3] Ethylene	[4] Ethyne	
Q.25	$C_6H_6 \xrightarrow{HNO_3} X \xrightarrow{Cl_2} Y \text{ In the above seq}$	uence Y is :		[AIIMS 1999]
	[1] 1-nitrochloro benzene	[2] 3-nitrochlorobenze		
	[3] 4-nitrochlorobenzene	[4] 1,2-nitrochloroben		
Q.26	If benzene reacts with Cl_2 in presence of ultra	violet light then which of	the following is forr	
				[AIIMS 1999]
	$[1] C_6 Cl_6$ $[2] CCl_4$	[3] C ₆ H ₅ CI	[4] C ₆ H ₆ Cl ₆	
Q.27	Nitration of benzene is a:	101 EL		[RPMT 1999]
	[1] Electrophilic displacement	[2] Electrophilic additi		
0.20	[3] Nucleophilic addition Benzene can be obtained in the reaction:	[4] Nucleophilic displa	icement	[DDET 2000]
Q.28	[1] Ethene + 1, 3-butadiene	[2] Trimoriantian of at	avn o	[RPET 2000]
	[3] Reduction of PhCHO	[2] Trimerisation of etl[4] All of these	Tyrie	
		171 All OI HIDSD		
O 20				[RPFT 2000]
Q.29	Thiophene and benzene are separated by :		nzene	[RPET 2000]
Q.29		[2] Sulphonation of be		[RPET 2000]

Q.30	In chlorination of benze	ene, the reactive species	s is :	[MP PET 200	00]
	[1] CI ⁺	[2] CI ⁻	[3] Cl ₂	[4] Cl ₂ ⁻	
Q.31	$C_6H_6 + 3CI_2 \rightarrow C_6H_6C$	I ₆ . This reaction takes pl	ace when :	[MP PET 20	02]
	[1] Chlorine is bubbled	through benzene	[2] When the mixture is	s kept in dark	
	[3] Chlorine (aq.) is sha	aken with benzene	[4] When the mixture is	exposed to sunlight	
Q.32	The compound 'A' wher with Sn and HCl to ani	n treated with HNO ₃ (in pr line. The compound 'A' is	esence of H_2SO_4) gives os:	compound 'B' which is then reduc [MP PET 20	
	[1] Toluene	[2] Benzene	[3] Ethane	[4] Acetamide	
Q.33	Three fused benzene r	•		[Kerala (Engg.) 20	02]
	[1] Naphthalene	[2] Anthracene	[3] Phenanthroline	[4] Triphenyl methane	
Q.34	Benzene is obtained b			[Delhi PMT 20	02]
	[1] Substitution of three		[2] Addition of three C ₂		
	[3] Polymensation thre	_ 0	[4] Condensation of three		
Q.35	Benzene can react wit			[UPSEAT 20	03]
0.00	[1] Br ₂ water	[2] HNO ₃	[3] H ₂ O	[4] CH ₃ OH	001
Q.36	Benzene hexachloride			PMT 1994; Karnataka CET 19	99]
0.07	[1] Dye	[2] Antimalerial drug	[3] Antibiotic	[4] Insecticide	001
Q.37		I ₂ to form Benzene hexa		[MP PET 19	99]
0.20	[1] Nickel	[2] AICI ₃	[3] Bright sunlight	[4] Zn	101
Q.38		nt with alcoholic KOH, yie		[AFMC 200	ַנטי
0.30	[1] C ₆ H ₆	0 0 0	[3] (C ₆ H ₆)OH	[4] C ₆ H ₆ Cl ₄	
Q.39	when chionne is passe	ed infough warm benzen	le in presence of the sun	light the product obtained is : [Karnataka CET 20	വാ
	[1] Benzotrichloride	[2] Chlorobenzene	[3] Gammexane	[4] DDT	บวา
	[1] Delizotticilionae	[2] Chiloroberizerie	[3] Gaillillexaile	[4] 001	
Q.40	$Ph-C \equiv C-CH_3 - \frac{Hg^{+2}/H}{2}$	$\stackrel{H^+}{\longrightarrow}$ [A]. [A] is:	~0	[IIT-200	2]
	<i>"</i> O		OH		
	[1] Ph——	[2] Ph———	[3] Ph——	[4] Ph———	
	H ₂ C	H.C	H _o C	H C OH	
Q.41	What is the end produc	ct which is obtained on th	ne nitration of toluene :	[MP PMT/PET 19	881
•	[1] o-nitrotoluene	[2] p-nitrotoluene	[3] 2,4-dinitrotoluene	[4] 2,4,6–trinitrotoluene	•
Q.42				oredominantly [IIT1986; DCE 20	00]
	[1] Benzoyl chloride		[3] Benzyl chloride	[4] o- and p-chlorotoluenes	
Q.43	Nitration of toluene tak			[NCERT 199	0]
0.44	[1] o-position	[2] m-position	[3] p-position	[4] Both o– and p–positions	
Q.44	The compound formed	as a result of potassium	permanganate oxidation	[MP PMT/PMT 19	981
	[1] Benzoic acid	[2] Benzyl alcohol	[3] Benzophenone	[4] Acetophenone	1
Q.45	Toluene can be oxidise	ed to benzoic acid by:		[AIIMS 199	9]
	[1] KMnO ₄	[2] K ₂ Cr ₂ O ₇	[3] H ₂ SO ₄	[4] Both [1] and [2]	
Q.46		uene on reaction with chl	_	[RPET 199	9]
0.47	[1] Benzoyl chloride		[3] Para chloro toluene	,	
Q.47		vith acidic KMnO ₄ gives:		[JIPMER 200	0]
0.40	[1] Terphthalic acid	[2] Phthalic acid	[3] Isophthalic acid	[4] All of these	
Q.48	compound is:	ng formulae C ₈ H ₁₀ (arom	atic) which gives 1 monor	nitro substitute and 3 nitrosubstit [DeIhi PMT 20]	
	[1] m-Xylene	[2] p-Xylene	[3] o-Xylene	[4] Ethyl benzene	,
Q.49		ving is a free-radical sub		[CBSE 20	03]
			CH₃	∠CH₂CI	_
	[1] $CH_3CHO + HCN \rightarrow$	CH ₃ CH(OH)CN	[2] + Cl ₂ _	boiling	
	3				
		AICI- CH ₃	CH ₂ CI	CH ₂ NO ₃	
	[3] + CH ₃ CIanh.	AICl ₃	[4] + AgN	$O_2 \rightarrow $	

Q.50 Chlorination of toluene in the presence of light and heat followed by treatement with aqueous NaOH gives

[1] o-cresol

[2] p-cresol

[3] 2,4-dihydroxy toluene[4] Benzyl alcohol

Q.51 Toluene reacts with chlorine in the presence of light to give : [1] Benzyl chloride

[2] Benzoyl chloride

[3] p-chloro toluene

[4] o-chloro toluene [VITEEE-2005]

Q.52 Oxidation of toluene by a strong oxidizing agent gives [1] Phenol

[2] Benzaldehyde

[3] Benzoic acid

[4] Benzophenone

Q.53

Which of following having delocalised electron

[BCECE 2005]

[MH CET 1999; 2002]

[1] Benzene

[2] Cyclohexane

[3] CH,

 $[4] C_2 H_6$ [AIIMS 2005]

Q.54 Pyridine is less basic than triethylamine because -[1] Pyridine has aromatic character

[2] Nitrogen in pyridine is sp² hybridized

[3] Pyridine is a cyclic system

[4] In pyridine, lone pair of nitrogen is delocalized

Q.55 When toluene is treated with KMnO₄, what is produced [AFMC 2005]

[1] Benzene

[2] Chlorobenzene

[3] Benzaldehyde

[4] Benzoic acid

ĊНО

Q.56
$$\downarrow$$
 + CH₃-CH₂CH₂-CI $\xrightarrow{AlCl_3}$ [P] $\xrightarrow{(i)O_2-heat}$ [Q] +

[IIT 2006]

OHC

MAN

The reaction of toluene with Cl₂ in presence of FeCl₃ gives predominantly: **Q.57**

[AIEEE 2007]

[AIEEE 2007]

[1] bonzoyl chloride

[2] benzyl chloride

The compound formed as a result of oxidation of ethyl benzene by KMnO, is -

[3] o-and p-chlorotoluene[4] m-chlorotoluene

[1] benzophenone

Q.58

[2] acetophenone

[3] benzoic acid

[4] benzyl alcohol

answer **K**ey

Qus.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Ans.	3	3	3	4	2	2	2	2	2	2	3	3	4	1	4	3	3	2	1	1
Qus.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
Ans.	3	1	3	4	2	4	1	2	2	1	4	2	2	2	2	4	3	2	3	2
Qus.	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58		
Ans.	2	4	4	1	4	4	4	2	2	4	1	2	1	4	4	3	3	3		