Solved Example

- **Ex.1** The mass charge ratio for A⁺ ion is 1.97×10^{-7} kg C⁻¹. Calculate the mass of A atom.
- **Sol.** Given $\frac{m}{e} = 1.97 \times 10^{-7}$

(since $e = 1.602 \times 10^{-19} \text{ C}$)

$$\therefore$$
 m = 1.97 × 10⁻⁷ × 1.602 × 10⁻¹⁹ kg

- **Ex.2** Write down the numerical value of h and its unit
- **Sol.** $h = 6.625 \times 10^{-27} \text{ erg sec} = 6.625 \times 10^{-34} \text{ joule sec}$

The unit of h = joule sec. or erg sec.

$$\begin{pmatrix} \because hv = E \\ \therefore h = \frac{E}{v} = \frac{erg}{sec^{-1}} \end{pmatrix}$$

- Ex.3 AIR service on Vividh Bharati is transmitted on 219 m band. What is its transmission frequency in Hertz?
- **Sol.** Given $\lambda = 219 \text{ m}$ Thus, $v = \frac{c}{\lambda}$

or

$$v = \frac{3.0 \times 10^8}{219} = 1.37 \times 10^6 \text{ Hz}$$

Ex.4 The ionization energy of He⁺ is 19.6×10^{-18} J atom⁻¹. The energy of the first stationary state of Li⁺² will be : [1] 84.2×10^{-18} J/atom [2] 44.10×10^{-18} J/atom [3] 63.2×10^{-18} J/atom [4] 21.2×10^{-18} J/atom

Ans. [2]

Sol. E_1 for $Li^{+2} = E_1$ for $H \times Z^2 = E_1$ for $H \times 9$ E_1 for $He^+ = E_1$ for $H \times Z^2_{He} = E_1$ for $H \times 4$

or
$$E_1$$
 for $Li^{+2} = \frac{9}{4} E_1$ for $He^+ = 19.6 \times 10^{-18} \times \frac{9}{4} = 44.10 \times 10^{-18} \text{ J/atom}$

- **Ex.5** Atomic radius is of the order of 10⁻⁸ cm and nuclear radius is of the order of 10⁻¹³ cm. Calculate what fraction of atom is occupied by nucleus ?
- **Sol.** Volume of nucleus $= \frac{4}{3}\pi r^3 = \frac{4}{3}\pi (10^{-13})^3 \text{ cm}^3$

Volume of atom

$$=\frac{4}{3}\pi\,(10^{-8})^3\,\mathrm{cm}^3$$

$$\frac{V_{\text{N}}}{V_{\text{Atom}}} = \frac{10^{-39}}{10^{-24}} = 10^{-15}$$

$$V_{\text{Nucleus}} = 10^{-15} \times V_{\text{Atom}}$$

Ex.6 Which of the following set of quantum numbers are not permitted

(a) n = 3, l = 2, m = -2, s = +1/2(b) n = 3, l = 2, m = -1, s = 0(c) n = 2, l = 2, m = +1, s = -1/2(d) n = 2, l = 2, m = +1, s = -1/2

- **Sol.** (a) This set of quantum number is permitted.
 - (b) This set of quantum number is not permitted as value of 's' cannot be zero.
 - (c) This set of quantum number is not permitted as the value of 'l' cannot be equal to 'n'.
 - (d) This set of quantum number is not permitted as the value of 'm' cannot be greater than 'l'.

Ex.7 Prove that $u_n = \sqrt{\left(\frac{Ze^2}{mr_n}\right)}$ where u is velocity of electron in a one electron atom of at. no. Z at a distance r_n from

the nucleus, m and e are mass and charge of electron.

Sol. Kinetic energy of electron =
$$\frac{1}{2}$$
 mu²
Also from Bohr's concept K.E. = $\frac{1}{2} \frac{Ze^2}{r_n}$ $\therefore \frac{1}{2}$ mu² = $\frac{1}{2} \frac{Ze^2}{r_n}$
 $v = \sqrt{\left(\frac{Ze^2}{mr_n}\right)}$

- **Ex.8** Calculate the number of proton emitted in 10 hours by a 60 W sodium lamp (λ or photon = 5893 Å)
- Sol. Energy emitted by sodium lamp in one sec.

$$=$$
 Watt \times sec $=$ 60 \times 1.

Energy of photon emitted = $\frac{nq}{\lambda}$

$$= \frac{6.626 \times 10^{-34} \times 3 \times 10^8}{5893 \times 10^{-10}} = 3.37 \times 10^{-19} \text{ J}$$

:. No of photons emitted per sec. = $\frac{60}{3.37 \times 10^{-19}}$

:. No. of photons emitted in 10 hours = $17.8 \times 10^{19} \times 10 \times 60 \times 60 = 6.41 \times 10^{24}$

- **Ex.9** Find out the energy of H atom in first excitation state. The value of permittivity factor $4\pi\epsilon_0 = 1.11264 \times 10^{-10} \text{ C}^2 \text{ N}^{-1} \text{ m}^{-2}$.
- Sol. In M.K.S. system

$$\mathsf{E}_{n} = -\frac{2\pi^{2}\mathsf{Z}^{2}\mathsf{m}\mathsf{e}^{2}}{(4\pi\epsilon_{0})^{2}\,\mathsf{n}^{2}\,\mathsf{h}^{2}} \qquad = \frac{2\times(3.14)^{2}\times(1)^{2}\times9.108\times10^{-31}\times(1.602\times10^{-19})^{4}}{(1.11264\times10^{-10})^{2}\times(2)^{2}\times(6.625\times10^{-34})^{2}} = 5.443\times10^{-19}\,\mathsf{joule}$$

- **Ex.10** The shortest wave length in H spectrum of Lymen series when $R_{H} = 109678 \text{ cm}^{-1}$ is
 - [1] 1002.7 Å [2] 1215.67 Å [3] 1127.30 Å [4] 911.7 Å

Sol. For Lymen series $n_1 = 1$

For shortest 'l' or Lymen series the energy difference in two levels showing transition should be maximum

(i.e.
$$n_2 = \infty$$
)

$$\frac{1}{\lambda} = R_H \left[\frac{1}{1^2} - \frac{1}{\infty^2} \right]$$

$$= 109678$$

$$= 911.7 \times 10^{-8}$$

$$= 911.7 \text{ Å}$$
Electromagnetic radiations of wavelength 242 nm is just sufficient to ionise sodium atom. Calculated at the set of the se

Ex.11 Electromagnetic radiations of wavelength 242 nm is just sufficient to ionise sodium atom. Calculate the ionisation energy of sodium in kJ mol⁻¹.

 $=\frac{6.625\times10^{-34}\times3.0\times10^8}{242\times10^{-9}}=8.21\times10^{-19}$ joule Sol. Energy associated with a photon of 242 nm : 1 atom of Na for ionisation requires = 8.21 × 10⁻¹⁹ J :. 6.023 × 10²³ atoms of Na for ionisation requires $= 8.21 \times 10^{-19} \times 6.023 \times 10^{23}$ = 49.45 × 10⁴ J = **494.5 kJ mol**⁻¹ **Ex.12** How many electrons in a given atom can have the following quantum numbers (a) n = 4, l = 2, m = 0(b) n = 3(c) n = 2, l = 1, m = -1, s = +1/2(d) n = 4(a) l = 2 means d-subshell and m = 0 refer to dz^2 orbital Sol. :. Number of electrons are 2. (b) For n = 3, l = 0, 1, 2 $l = 0 \quad m = 0$ 2 electrons l = 1 m = -1 6 electrons l = 2 m = -2, -1, 0, +1, +2 10 electrons **Total electrons** 18 electrons Alternatively, number of electrons for any energy level is given by

i.e. $2 \times 3^2 = 18$ electrons

(c) l = 1 refers to p-subshell, m = -1 refers to p_x or p_y orbital whereas, s = + 1/2 indicate for only 1 electron.

(d) l = 1 refers to p-subshell which has three orbitals (p_x , p_y and p_z) each having two electrons. Therefore , total number of electrons are **6**.

- **Ex.13** Calculate the longest wavelength which can remove the electron from I Bohr's orbit. Given $E_1 = 13.6 \text{ eV}$.
- Sol. The photon capable of removing electron from I Bohr's orbit must possess energy

2n²

= 13.6 eV = 13.6 × 1.602 × 10^{-19} J = 21.787 × 10^{-19} J

 \therefore

...

 $\mathsf{E} = \frac{\mathsf{hc}}{\lambda} \; ; \; 21.787 \times 10^{-19} = \frac{6.625 \times 10^{-34} \times 3.0 \times 10^8}{\lambda}$

λ = 912.24 × 10⁻¹⁰ m **= 912.24 Å**

Ex.14 Naturally occurring boron consists of two isotopes whose atomic weights are 10.01 and 11.01. The atomic weight of natural boron is 10.81. Calculate the percentage of each isotope in natural boron

- **Sol.** Let the percentage of isotope with atomic wt. 10.01 = x
 - : Percentage of isotope with atomic wt. 11.01 = 100 x

Average atomic wt. =
$$\frac{m_1 x_1 + m_2 X_2}{x_1 + x_2}$$

or Average atomic wt. =
$$\frac{x \times 10.01 + (100 - x) \times 11.01}{100}$$

$$10.81 = \frac{x \times 10.01 + (100 - x) \times 11.01}{100} = 20$$

- \therefore % of isotope with atomic wt. 10.01 = 20
 - % of isotope with atomic wt. 11.01 = 100 x = 80
- **Ex.15** What transition in the hydrogen spectrum would have the same wavelength as the Balmer transition n = 4 to n = 2 of He⁺ spectrum ?

Sol. For He⁺,

...

...

$$\frac{1}{\lambda} = \mathsf{R}_{\mathsf{H}}\mathsf{Z}^2 \left[\frac{1}{2^2} - \frac{1}{4^2}\right]$$

For H,

$$\frac{1}{\lambda} = \mathsf{R}_{\mathsf{H}} \left[\frac{1}{\mathsf{n}_1^2} - \frac{1}{\mathsf{n}_2^2} \right]$$

Since λ is same

$$Z^{2}\left[\frac{1}{2^{2}}-\frac{1}{4^{2}}\right] = \left[\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right]$$
$$Z = 2$$

$$\therefore \qquad \left[\frac{1}{1^2} - \frac{1}{2^2}\right] = \left[\frac{1}{n_1^2} - \frac{1}{n_2^2}\right]$$

$$\therefore \qquad n_n = 1 \text{ and } n_n = 2$$

Ex.16 The ionization energy of H-atom is 13.6 eV. The ionization energy of Li+2 ion will be

[1] 54.4 eV
Sol.
$$E_1$$
 for Li⁺²
 $= E_1$ for H × Z² [for Li, Z = 3]
 $= 13.6 \times 9$
 $= 122.4 \text{ eV}$
[3] 13.6 eV
[4] 27.2 eV
Ans. [2]

Ex.17 Calculate momentum of radiations of wavelength 0.33 nm.

Sol. We have
$$\lambda = \frac{h}{mu}$$
 \therefore $mu = \frac{h}{\lambda}$
 $= \frac{6.625 \times 10^{-34}}{0.33 \times 10^{-9}} = 2.01 \times 10^{-24} \text{ kgmsec}^{-1}$

Ex.18 On the basis of Heisenberg's uncertainty principle, show that the electron cannot exist within the nucleus.

000 40-27

Sol. Radius of the nucleus is of the order of 10^{-13} cm and thus uncertainty in position of electron, i.e., (Δx), if it is within the nucleus will be 10^{-13} cm.

Now

$$\Delta x.\Delta u \ge \frac{h}{4\pi m}$$

...

$$\Delta u = \frac{6.626 \times 10^{-2}}{4 \times 3.14 \times 9.108 \times 10^{-28} \times 10^{-13}}$$

= 5.79 × 10¹² cm/sec

i.e., order of velocity of electron will be 100 times greater than the velocity of light which is impossible. Thus, possibility of electron to exist is nucleus is zero.

Ex.19 Oxygen consists of isotopes of O¹⁶, O¹⁷ and O¹⁸ and carbon consists of isotopes of C¹² and C¹³. How many types of CO₂ molecule can be formed ? Also report their mol, wt.

Sol. Total no. of molecules of $CO_2 = 12$

[1] C ¹² O ¹⁶ O ¹⁶	Mol. wt. = 44	
[2] C ¹² O ¹⁷ O ¹⁷	= 46	
[3] C ¹² O ¹⁸ O ¹⁸	= 48	
[4] C ¹² O ¹⁶ O ¹⁷	= 45	
[5] C ¹² O ¹⁶ O ¹⁸	= 46	
[6] C ¹² O ¹⁷ O ¹⁸	= 47	
Similarly six molecules with C	¹³ isotopes.	

Ex.20 The atomic masses of two isotopes of O are 15.9936 and 17.0036. Calculate in each atom

	[1] No. of neutrons [2] No. of protons	[3] No. of electrons	[4] Mass no.	
				Ans. [1]
Sol.	2	l isotope of O	II isotope of O	
	Atomic masses are	15.9936	17.0036	
	∴ Mass no. are	16	17 (Integer values)	
	No of neutrons	= 16 - 8 = 8	17 − 8 = 9	
	and no. of electrons	= 8	= 8	

Mass no. - At no. = No. of neutrons

Q.1	An atom of an eleme	nt contains the number of	electrons equal to :				
	[1] Atomic mass	[2] Atomic number	[3] Equivalent weight [4] Electron affinity				
Q.2	If a neutral atom cha	nges to cation its :					
	[1] atomic size decre	ases	[2] atomic number dec	reases			
	[3] atomic size increa	ase	[4] atomic number incr	eases			
Q.3	The K.E. of an electr	on in first Bohr's orbit of H	l-atom is 13.6 eV. Total en	ergy of first orbit is :			
	1			1			
	$[1] - \frac{1}{2} \times 13.6 \text{ eV}$	[2] – 13.6 eV	[3] 2 × 13.6 eV	$[4] \frac{1}{2} \times 13.6 \text{ eV}$			
Q.4	Which of the following	g radioactive isotope of ca	arbon is used for the calcul	ate of life period of a planet ?			
	[1] ¹² ₆ C	[2] ¹³ ₆ C	[3] ¹⁴ ₆ C	$[4] \frac{16}{6}$ C			
ຊ.5	The shape of p-orbita	al is :		, O			
	[1] Elliptical	[2] spherical	[3] dumb-bell	[4] None of these			
Q.6	${}_{6}C^{11}$ and ${}_{5}B^{11}$ are calle	ed :	•				
	[1] Nuclear isomers	[2] Isobars	[3] Isotopes	[4] Fission products			
Q. 7	No two electrons of a	n atom can have same :	C				
	[1] principle quantum	number	[2] azimuthal quantum	number			
	[3] set of four quantu	m numbers	[4] magnetic quantum	number			
2.8	Correct set of four qu	antum numbers for the va	llence (outermost) electror	n of rubidium (Z = 37) is :			
	[1] 5, 0, 0 + 1/2	[2] 5, 1, 0, + 1/2	[3] 5, 1, 1, + 1/2	[4] 6, 0, 0, + 1/2			
2.9	Which of the followin	g formula represents the l	K.E. of an electron in n th Bo	phr's orbit of H-atom ?			
	Rhc	Rhc	2Rhc	2Rhc			
	[1] $\frac{1}{n^2}$	$[2] - \frac{1}{n^2}$	$[3] - \frac{2Rhc}{n^2}$ [4] $\frac{2Rhc}{n^2}$				
Q.10	The number of electr	ons arranged in an orbital	is :				
	[1] One	[2] Two	[3] Three	[4] Four			
Q.11	The frequency of a ra		es. What is the wavelengt	h of the signal ?			
	[1] 100 m	[2] 250 m	[3] 500 m	[4] 600 m			
Q.12	The energy of electro	on in excited H-atom is – 3	3.4 eV. What is the angula	r momentum of electron ?			
		h	2h	3h			
	[1] $\frac{h}{\pi}$	$[2] \frac{h}{2\pi}$	$[3] \frac{2h}{\pi}$	$[4] \frac{3h}{\pi}$			
Q.13	What is the frequenc	y of the electron in an orb	it of radius r, if its velocity	is v ?			
	[1] $\frac{2\pi r}{m}$	[2] 2πrv	$[3] \frac{\text{vr}}{2\pi}$	[4] $\frac{V}{2\pi r}$			
	r., N	[—] <i>21</i> 01 V	¹⁰ 2π	¹ 2πr			
Q.14	How many spectral li n = 5 to its original st		e various transitions when	an electron comes from excited sta			
	[1] 20	[2] 5	[3] 4	[4] 10			

[1] 20 [2] 5 [3] 4 [4] 10

Q.15	Principal, azimuthal	and magnetic quantum nu	umbers are respectively i	related to:
	[1] size, shape and c	prientation	[2] shape, size and c	prientation
	[3] size, orientation a	and shape	[4] None of these	
Q.16	Bohr's model of the	atom can explain :		
	[1] The spectrum of I	H-atom only		
	[2] The spectrum of h	nydrogen molecule		
	[3] The spectrum of a	atom or ion containing one	e electron only	
	[4] The solar spectru	m		
Q.17	The electromagnetic	radiation with highest wa	velength is :	
	[1] Ultraviolet	[2] Radio waves	[3] X-rays	[4] Infra red
Q.18	The angular momen	tum of electron in Bohr's	orbit is J. What will be the	e K.E. of that Bohr's orbit ?
	· · · ·		2	
	[1] $\frac{1}{2} \frac{Jv}{r}$	[2] $\frac{Jv}{r}$	[3] $\frac{J^2}{2m}$	[4] $\frac{J^2}{2\pi}$
			2	
Q.19	The electronic config			S
• • •	[1] 1s ^o	[2] 1s ¹	[3] 1s ²	[4] 1s ¹ 2s ¹
Q.20	I he wavelength of fi	rst line of Balmer series of	H-atom is – (R = Rydbei	rg's constant)
	[1] $\frac{36}{5R}$	[2] $\frac{36R}{5}$	[3] 5R	$[4] \frac{5}{36R}$
0.04	-			
Q.21	-	l-atom in lowest energy s		n atom with + Ze nuclear charge is 47.2 /ill be the value of Z ?
	[1] 4	[2] 5	[3] 6	[4] 7
Q.22	The statement 'It is	not possible to estimate	accurately the position a	and momentum of an electron simulta-
	neously is associate	d with :		
	needely ie deceelate			
	[1] Heisenberg's und	ertainty principle	[2] De-Broglie's princ	ciple
	-	X	[2] De-Broglie's princ [4] Aufbau principle	ciple
Q.23	[1] Heisenberg's und [3] Pauli's uncertaint	y principle	[4] Aufbau principle	ciple ely. Total number of s-electrons in this
Q.23	 [1] Heisenberg's unc [3] Pauli's uncertaint K, L and M shells or element are : 	y principle f an atom contain 2, 8 ar	[4] Aufbau principle	
	 [1] Heisenberg's unc [3] Pauli's uncertaint K, L and M shells or element are : [1] 6 	y principle f an atom contain 2, 8 ar [2] 5	[4] Aufbau principlead 6 electrons respective[3] 7	ely. Total number of s-electrons in this [4] 10
Q.23 Q.24	 [1] Heisenberg's unc [3] Pauli's uncertaint K, L and M shells or element are : [1] 6 	y principle f an atom contain 2, 8 ar [2] 5	[4] Aufbau principlead 6 electrons respective[3] 7	ely. Total number of s-electrons in this
	[1] Heisenberg's unc [3] Pauli's uncertaint K, L and M shells of element are : [1] 6 When α -particle a	y principle f an atom contain 2, 8 ar [2] 5 re passed through thin	[4] Aufbau principlead 6 electrons respective[3] 7	ely. Total number of s-electrons in this [4] 10 the particles pass-through straight
	 [1] Heisenberg's und [3] Pauli's uncertaint K, L and M shells of element are: [1] 6 When α-particle at because: 	y principle f an atom contain 2, 8 ar [2] 5 re passed through thin hter than electrons	[4] Aufbau principle nd 6 electrons respective [3] 7 n metal foil, most of t	ely. Total number of s-electrons in this [4] 10 the particles pass-through straight psitively charged
	[1] Heisenberg's unc [3] Pauli's uncertaint K, L and M shells of element are : [1] 6 When α -particle at because : [1] α -particles are lig [3] Most of the part of	y principle f an atom contain 2, 8 ar [2] 5 re passed through thin hter than electrons	 [4] Aufbau principle ad 6 electrons respective [3] 7 a metal foil, most of the first foil and four fields are point for the first for the fi	ely. Total number of s-electrons in this [4] 10 the particles pass-through straight psitively charged with high speed
Q.24	[1] Heisenberg's unc [3] Pauli's uncertaint K, L and M shells of element are : [1] 6 When α -particle at because : [1] α -particles are lig [3] Most of the part of	y principle f an atom contain 2, 8 ar [2] 5 re passed through thin hter than electrons of atom is empty	 [4] Aufbau principle ad 6 electrons respective [3] 7 a metal foil, most of the first foil and four fields are point for the first for the fi	ely. Total number of s-electrons in this [4] 10 the particles pass-through straight psitively charged with high speed
Q.24	[1] Heisenberg's unc [3] Pauli's uncertaint K, L and M shells of element are : [1] 6 When α -particle at because : [1] α -particles are lig [3] Most of the part of The increasing order [1] e, p, n, α The electron of H-a	ty principle f an atom contain 2, 8 ar [2] 5 re passed through thin hter than electrons of atom is empty r (lowest first) for the value [2] n, p, e, α atom transits from n = 1	[4] Aufbau principle ad 6 electrons respective [3] 7 fn metal foil, most of f [2] α -particles are po [4] α -particles move e of e/m (charge/mass) fo [3] n, p, α , e to n = 4 by absorbing	ely. Total number of s-electrons in this [4] 10 the particles pass-through straight ositively charged with high speed
Q.24 Q.25	[1] Heisenberg's unc [3] Pauli's uncertaint K, L and M shells of element are : [1] 6 When α -particle at because : [1] α -particles are lig [3] Most of the part of The increasing order [1] e, p, n, α The electron of H-a	y principle f an atom contain 2, 8 ar [2] 5 re passed through thin hter than electrons of atom is empty r (lowest first) for the value [2] n, p, e, α atom transits from n = 1 le then its energy in n = 4	[4] Aufbau principle ad 6 electrons respective [3] 7 fn metal foil, most of f [2] α -particles are po [4] α -particles move e of e/m (charge/mass) fo [3] n, p, α , e to n = 4 by absorbing	ely. Total number of s-electrons in this [4] 10 the particles pass-through straight psitively charged with high speed or: [4] n, α , p, e energy. If the energy of n = 1 state
Q.24 Q.25	[1] Heisenberg's und [3] Pauli's uncertaint K, L and M shells of element are : [1] 6 When α -particle at because : [1] α -particles are lig [3] Most of the part of The increasing order [1] e, p, n, α The electron of H-at is – 21.8 × 10 ⁻¹⁹ Jour	ty principle f an atom contain 2, 8 ar [2] 5 The passed through this hear than electrons of atom is empty f (lowest first) for the value [2] n, p, e, α atom transits from n = 1 le then its energy in n = 4 ale	[4] Aufbau principle ad 6 electrons respective [3] 7 in metal foil, most of f [2] α -particles are point [4] α -particles move e of e/m (charge/mass) for [3] n, p, α , e to n = 4 by absorbing state will be :	ely. Total number of s-electrons in this [4] 10 the particles pass-through straight ositively charged with high speed or: [4] n, α , p, e energy. If the energy of n = 1 state ale

Q.27	The wavelength of first	line of Lymen series is 12	216 Å. What is the wave l	ength of last line ?
	[1] 3648 Å	[2] 608 Å	[3] 912 Å	[4] 2432 Å
Q.28	Energy of orbit :			
	[1] Increases as we mo	ve away from nucleus		
	[2] Decreases as we may	ove away from nucleus		
	[3] Remains same as w	ve move away from nucle	us	
	[4] None of these			
Q.29	Which electronic level	would allow the hydrogen	atom to absorb a photon	but not to emit a photon ?
	[1] 3s	[2] 2p	[3] 2s	[4] 1s
Q.30	The electronic configur of neutrons in its nucle	•	al M²+ is, 2, 8, 14 and its a	tomic weight is 56 amu. The number
	[1] 30	[2] 32	[3] 34	[4] 42
Q.31	The electrostatic force	of attraction between the	electron of first Bohr's or	bit of H-atom and it nucleus is :
	[1] 10 × 10⁻³ dyne	[2] 8 × 10 ⁻³ dyne	[3] 8 × 10 ^{-₄} dyne	[4] 10 × 10 ^{-₄} dyne
Q.32	de' Broglie equation tel	lls about :		X
	[1] the relation betweer	electron and nucleus	[2] the relation between	electron and proton
	[3] the relation between	electron and neutron	[4] electrons' dual natur	e of wave and particle
Q.33	When an electron jump	os from L to K shell :	C	
	[1] energy is absorbed			
	[2] energy is released		0.0	
	[3] energy is sometime	s released and sometime	s absorbed	
	[4] energy is neither ab	sorbed nor released		
Q.34	Helium atom is two tim atom is :	es heavier than a hydrog	jen molecule. At 298 K, t	he average kinetic energy of helium
	[1] two times that of hyd	drogen molecule	[2] same as that of hyd	rogen molecule
	[3] four times that of hy	drogen molecule	[4] half that of hydroger	molecule
Q.35	Positronium is the nam	e given to an atom like co	mbination formed betwee	en:
	[1] A positron and a pro	oton	[2] A positron and a neu	utron
	[3] A positron and α -pa	rticle	[4] A positron and an el	ectron
Q.36	The potential energies sequence of these energies		d Bohr's orbits of He⁺ ca	ation are E_1 , E_2 and E_3 . The correct
	$[1] E_1 > E_2 > E_3$	$[2] E_1 = E_2 > E_3$	$[3] E_{1} = E_{2} = E_{3}$	[4] $E_3 > E_2 > E_1$
Q.37	The circumference of fin orbit of He ⁺ ?	rst Bohr's orbit of hydroge	n atom is how many times	s the circumference of second Bohr's
	[1] two times	[2] half	[3] equal	[4] none of these
Q.38	The sum of the number	r of neutrons and protons	in the isotopes of hydrog	en is :
	[1] 6	[2] 5	[3] 4	[4] 3
Q.39	According to Somme respectively:	erfeld, the numbers of	circular and elliptical	suborbits in n th Bohr's orbit are
	[1] 1 and (n – 1)	[2] (n – 1) and 1	[3] 2 and (n – 1)	[4] (n – 2) and 1

Q.40	According to Pauli's ex	clusion principle :		
	[1] No two electrons ca	n have the same energy i	n an orbital	
	[2] No two electrons car	n have the parallel spin in	an orbital	
	[3] As far as possible th	e electrons fill in different	orbitals	
	[4] Electron try to occup	by the orbital of lower ene	rgy	
Q.41	The mass of a cricket l velocity will be :	ball is 0.21 kg. If the orde	er of uncertainty in position	on is 100 pm then uncertainty in its
	[1] 3.5 × 10 ⁻²⁴ m/sec	[2] 6.02 × 10 ²³ m/sec	[3] 6.602 × 10 ⁻²⁷ m/sec	[4] 2.5 × 10 ⁻²⁴ m/sec
Q.42	The molecular weight of compound is :	of an oxide of nitrogen is	30. The number of electr	rons present in one molecule of this
	[1] 15	[2] 30	[3] 6.02 × 10 ²³ × 15	[4] 6.02 × 10 ²³ × 30
Q.43	Which of the following a	are isoelectronic with one	another:	
	[1] Na⁺ and Ne	[2] K⁺ and O	[3] Ne and O	[4] Na⁺ and K⁺
Q.44	Which of the following s	statements is false?		
	[1] (n + ℓ) rule arranges	the orbitals in increasing	order of energy	
	[2] Wavelength of a par	ticle is inversely proportio	nal to its momentum	
	[3] Aufbau's principle w	as given a scientist name	d Aufbau	0
	[4] Velocity of all types	of electromagnetic radiati	on is same	•
Q.45	The electron with highe	est energy is :		ろ
	[1] in nucleus		[2] in ground state	
	[3] in first excited state		[4] At infinite distance fr	rom the nucleus
Q.46	Electron density in the	region between 1s and 2s	s- orbital is :	
	[1] high	[2] low	[3] zero	[4] None of these
Q.47	If the radius of first orbi	t of H-atom is 5 pm, the ra	adius of third orbit Li ²⁺ will	be:
	[1] 106 pm	[2] 23 pm	[3] 32 pm	[4] 15 pm
Q.48	If the Rydberg constant	t is R then the energy of e	lectron in ground state of	H-atom will be :
	·			
	[1] – <u>ch</u>	[2] – Rch	[3] – Rc h	[4] – R/ch
Q.49	In which of the following	g planes of s-orbitals, the	probability of finding the e	electrons is not zero ?
	(a) xy plane	(b) yz plane	(c) along the x axis	(d) xyz plane
	Correct answer is :			
	[1] (a) and (d) only	[2] (b) and (c) only	[3] (d) only	[4] (a) and (c) only
Q.50	The number of neutron	s in the tritium nucleus is	:	
	[1] 1	[2] 2	[3] 3	[4] 4
	NN			

								-	Insv	ver	Ke	У								
Qus.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Ans.	2	1	2	3	3	2	3	1	1	2	3	1	4	4	1	3	2	1	3	1
Qus.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
Ans.	2	1	1	3	4	4	3	1	4	1	2	4	2	2	4	4	2	1	1	2
Qus.	41	42	43	44	45	46	47	48	49	50			•	•		•	-	•	•	
Ans.	4	1	1	3	4	3	4	2	3	2										

		_		ATOMIC STRUCTURE
		Exe	rcise # 2	
Q.1	An atom has an ato	mic weight of W and aton		
	[1] Number of elect		[2] Number of proto	ns = W - N
	[3] Number of neutr		[4] Number of neutro	
Q.2	When an electron of		ves with velocity v about t	he nuclear charge Ze in the circular orbit
	[1] Ze ² /r	[2]-Ze ² /r	[3] Ze ² /r ²	[4] mv²/r
Q.3	The number of elec	trons shared by each ator	n of nitrogen in nitrogen r	nolecule is :
	[1] 2	[2] 6	[3] 3	[4] 4
Q.4	If uncertainty in pos	ition of electron is zero, th	nen the uncertainty in its i	momentum would be :
	[1] Zero	[2] h/2π	[3] 3h/2π	[4] Infinity
Q.5				mass of neutron is assumed to be half of a original value. The atomic mass of ${}_{\rm 6}{\rm C}^{\rm 12}$
	[1] Twice	[2] 75% less	[3] 25% less	[4] One half of its original value
Q.6		lectron in hydrogen atom is on from ground state to se		$312/n^2$ kJ mol ⁻¹ , then the energy required
	[1] 328 kJ/mol	[2] 656 kJ/mol	[3] 984 kJ/mol	[4] 1312 kJ/mol
Q.7	Krypton (₃₆ Kr) has t following sub levels		on (₁₈ Ar) 4s² 3d¹º 4p ⁶ . Th	e 37 th electron will go into which of the
	[1] 4f	[2] 4d	[3] 3p	[4] 5s
Q.8	Which of the followi	ing statements is false :		
	[1] The energy of re	d photon is more than the	energy of violet photon	
		of photon is inversely prop		h
		photon is inversely propor	-	
		ire of electromagnetic rad	-	the photoelectric effect
Q.9				e of hydrogen atom, given that its kinetic
4.0		$(1 \text{eV} = 1.602 \times 10^{-19} \text{ J})$	oon on an and ground otal	
		[2] 2.338 × 10 ⁻¹⁰ m	[3] 3.328 × 10 ¹⁰ m	[4] 2.338 × 10 m
Q.10		ng pair having same numb		
	(a) N, O	(b) O, F	(c) Na, K	(d) S, Cl
	The correct answer		(0) 110, 11	
	[1] a, b, c	[2] b, c, d	[3] c, d, a	[4] a, b, d
Q.11	The speed of a pro		e speed of light in vacuu	Im. What is its de-Broglie wavelength?
	[1] 13.31 × 10 ⁻³ Å	[2] 1.33 × 10 ⁻³ Å		[4] 1.31 × 10 ⁻² Å
Q.12	The value of charge		mentally observed were –	1.6×10^{-19} and -4×10^{-19} coulomb. The
	[1] 1 6 × 10 ⁻¹⁹	[2] -2 4 × 10 ⁻¹⁹	[3] –4 × 10 ⁻¹⁹	$[4] - 0.8 \times 10^{-19}$

[1] 1.6×10^{-19} [2] -2.4×10^{-19} [3] -4×10^{-19} [4] -0.8×10^{-19}

Q.13	The ratio of ionization	energy of H and Be^{+3} is :		
	[1] 1 : 1	[2] 1 : 3	[3] 1 : 9	[4] 1 : 16
Q.14	Hydrogen spectrum co	onsists of :		
	[1] An intense line	[2] Six series of lines	[3] Three series of lines	[4] Four series of lines
Q.15	Which of the following	salt has isoelectronic cat	ion and anion :	
	[1] KF	[2] NaCl	[3] SrCl ₂	[4] MgF ₂
Q.16	Which set of quantum	numbers is possible for the	he last electron of Mg⁺ ior	1:
	[1] n = 3, <i>l</i> = 2, m = 0,	$s = + \frac{1}{2}$	[2] n = 2, <i>l</i> = 3, m = 0,	$s = + \frac{1}{2}$
	[3] n = 1, <i>l</i> = 0, m = 0,	$s = + \frac{1}{2}$	[4] n = 3, <i>l</i> = 0, m = 0,	$s = +\frac{1}{2}$
Q.17	The discovery of neutro	on became very late beca	use :	6
	[1] Neutrons are prese	nt in nucleus	[2] Neutrons are fundar	nental particles
	[3] Neutrons are charg	e less	[4] All	<i>y</i>
Q.18	having same de Brogli	e wavelength then :		an alpha particle and a proton each
	$[1] E_1 > E_3 > E_2$	$[2] E_2 > E_3 > E_1$	$[3] E_1 > E_2 > E_3$	$[4] E_1 = E_2 = E_3$
Q.19	The value of : [2p(ener	gy) – 1s(energy)] for H-ato	om would be :	
	[1] 10.2 eV	[2] 13.6 eV	[3] 3.4 eV	[4] None of these
Q.20	In hydrogen atom, If a			ssible spectral lines are obtained :
	[1] 15	[2] 10	[3] 6	[4] 12
Q.21				g 24 electrons will be in order :
	[1] Fe ²⁺ < Mn ⁺ < Cr	[2] Fe ²⁺ < Cr = Mn ⁺	[3] $Fe^{2+} = Mn^+ < Cr$	[4] $Mn^{2+} = Cr < Fe^{2+}$
Q.22	The speed of the elect	ron in the 1 st orbit of the h	ydrogen atom in the grou	nd state is-
	[1] c/1.37	[2] c/1370	[3] c/13.7	[4] c/137
Q.23	Five ionization energy	values in kJ mol ⁻¹ are 834	l, 869, 1008, 1170, 376 sł	nows :
	[1] Successive ionizati	on energies for the eleme	nt of atomic number 5	
	[2] The first ionization	energies for successive e	lements in Groups 5, 6, 7	, 0 and 1
	[3] The first ionization	energies for elements with	n atomic number 1–5	
	[4] Successive ionizati	on energies for transition	element with 4 electron ir	the d-subshell
Q.24	•	ely the principal and azimuns in any energy level is :		nen the expression for calculating the
	[1] $\sum_{l=1}^{l=1} 2(2l+1)$	$[2] \sum^{l=n-1} 2(2l+1)$	[3] $\sum_{l=n+1}^{l=n+1} 2(2l+1)$	[4] $\sum_{l=n-1}^{l=n-1} 2(2l+1)$

[1]
$$\sum_{l=0}^{l=n} 2(2l+1)$$
 [2] $\sum_{l=1}^{l=n-1} 2(2l+1)$ [3] $\sum_{l=0}^{l=n+1} 2(2l+1)$ [4] $\sum_{l=0}^{l=n-1} 2(2l+1)$

Q.25	•	ergy is needed by the inte d to see the object are :	erior of human eye to see	an object. The photons of green light
	[1] 27	[2] 28	[3] 29	[4] 30
Q.26	The potential energ	y of the electron present i	n the ground state of Li ²⁺ i	on is represent by :
	$[1] + \frac{3e^2}{4\pi\epsilon_0 r}$	$[2] - \frac{3e}{4\pi\epsilon_0 r}$	$[3] - \frac{3e^2}{4\pi\epsilon_0 r}$	[4] None of these
Q.27	For the energy leve	ls in an atom which one o	f the following statements	is correct :
	[1] The 4s sub-ener	gy level is at a higher ener	rgy than the 3d sub-energy	y level
	[2] The second prine	cipal energy level can hav	e four orbitals and contain	a maximum of 8 electrons
	[3] The M-energy lev	vel can have maximum of	32 electrons	\sim
	[4] None of these			
Q.28	13.5 g of Aluminium	n when changes to Al+3 ior	n in solution, will lose :	
	[1] 18.0 × 10 ²³ elect	rons	[2] 6.022 × 10 ²³ elect	rons
	[3] 3.01 × 10 ²³ elect	rons	[4] 9.1 × 10 ²³ electron	ns
Q.29	Assume that the nu F–nucleus :	icleus of the F-atom is a	sphere of radius 5 × 10⁻	¹³ cm. What is the density of matter in
	[1] 6.02 × 10 ¹¹ g/ml	[2] 6.02 × 10 ¹³ g/ml	[3] 6.02 × 10 ¹⁸ g/ml	[4] None
Q.30	The ionization ener- ionized lithium (Z =		13.6eV. The energy of the	e third-lowest electronic level in doubly
	[1]-28.7 eV	[2]-54.4 eV	[3] –122.4 eV	[4] –13.6 eV
Q.31	1.25 × 10 ⁻¹³ × A ^{1/3} c			nucleus of mass number a is given by umber is 64, the fraction of the atomic
	[1] 1.25 × 10 ⁻¹³	[2] 2.50 × 10 ^{−13}	[3] 5 × 10⁻⁵	[4] None
Q.32			tate absorbs 1.50 times as avelength of the emitted el	much energy as the minimum required lectron :
	[1] 4.70 Å	[2] 4.70 nm	[3] 9.4 Å	[4] 9.40 nm
Q.33				exp–(r/a_0), where a_0 is the Bohr's radius. o the probability of finding it at a_0 .
	[1] e	[2] e ²	[3] 1/e ²	[4] Zero
Q.34	Energy levels A, B, C	C of a certain atom corresp	oonds to increasing values	of energy, i.e., $E_A < E_B < E_C$. If λ_1, λ_2 and
			onding to the transitions	C to B, B to A and C to A respectively,
	which of the followir	ng statement is correct :		

$$[1] \lambda_3 = \lambda_1 + \lambda_2 \qquad [2] \lambda_3 = \frac{\lambda_1 \lambda_2}{\lambda_1 + \lambda_2} \qquad [3] \lambda_1 + \lambda_2 + \lambda_3 = 0 \qquad [4] \lambda_3^2 = \lambda_1^2 + \lambda_2^2$$

Q.35 The energy difference between two electronic states is 46.12 kcal/mole. What will be the frequency of the light emitted when an electron drops from the higher to the lower energy state (Planck constant = 9.52×10^{-14} kcal sec mole⁻¹)

[1] 4.84 × 10 ¹⁵ cycles sec ⁻¹	[2] 4.84 × 10 ⁻⁵ cycles sec ⁻¹
[3] 4.84 × 10 ⁻¹² cycles sec ⁻¹	[4] 4.84 × 10 ¹⁴ cycles sec ⁻¹

Q.36 Which of the following curves may represent the speed of the electron in a hydrogen atom as a function of the principal quantum number n :

[4] (x + 1) (x + 2) (x + 4)

ATOMIC STRUCTURE

Q.44	Which of the following	statementsis wrong :		
	[1] Kinetic energy of ar	n electron is halfof the mag	gnitude of its potential en	ergy
	[2] Kietic energy of an	electron is negative of tota	al energy of electron	
	[3] Energy of an electro	on decreases with increas	es in the value of principa	al quantum number
	[4] All of these			
Q.45	If each hydrogen atom	is excited by giving 8.4eV	/ energy, then the numbe	r of spectral lines emitted is equal to:
	[1] none	[2] 2	[3] 3	[4] 4
Q.46	The orbital cylindrically	y symmetrical about x-axi	s is :	
	[1] p _z	[2] p _y	[3] p _x	[4] d _{xz}
Q.47	Which of the d-orbital I	lies in the xy-plane :		
	[1] d _{xz} only	[2] d _{xy} only	[3] $d_{x^2-y^2}$ only	[4] $d_{xy} \& d_{x^2-y^2}$ only
Q.48	The probability of findi	ng an electron residing in	a p_x orbital is zero in the	U
	[1] xy plane	[2] yz plane	[3] y direction	[4] z direction
Q.49	If the series limit of wa	avelength of the Lyman se	eries for the hydrogen at	oms is 912Å, then the series limit of
	wavelength for the Bal	mer series of the hydroge	n atom is :	
	[1] 912 Å	[2] 912 × 2 Å	[3] 912 × 4 Å	[4] 912/2 Å
Q.50	An element of atomic w	reight Z consist of two isoto	opes of mass number Z –	1 and Z + 2. Percentage of abundanc
	of the heavier isotope i	s :	0	
	[1] 25	$121.33\frac{1}{2}$	[3] $66\frac{2}{3}$	[4] 75
	[1] 25	^[2] ³	[3] 3	[4] 75
	NNN.	x(0		
	1			

Answer Key

Qus.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Ans.	3	2	2	4	3	3	4	1	1	4	2	1	4	2	4	4	3	4	1	2
Qus.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
Ans.	2	4	2	4	2	3	3	4	2	4	1	1	4	2	4	3	3	2	3	2
Qus.	41	42	43	44	45	46	47	48	49	50										
Ans.	3	4	3	3	1	3	3	2	3	2										

Exercise # 3

				-						
Q.1	From the given sets of quantum numbers the one that is inconsistent with the theory is :									
	[1] n = 3, <i>l</i> = 2, m	= - 3, s = + 1/2	[2] n = 4, <i>l</i> = 3, n	n = 3, s = + 1/2						
	[3] n = 2, <i>l</i> = 1, m	= 0, s = - 1/2	[4] n = 4, <i>l</i> = 3, n	n = 2, s = + 1/2						
Q.2	The size of nucleu	s is measured in :			[CPMT 1994]					
	[1] amu	[2] Angstrom	[3] Fermi	[4] cm						
Q.3	The total number of	of electrons present in all the p	o-orbitals of bromine	e are :	[MP PET 1994]					
	[1] Five	[2] Eighteen	[3] Seventeen	[4] Thirty five						
Q.4	When an electron	revolves in a stationary orbit t	hen :	-	[MP PET 1994]					
	[1] It absorbs energ	ду	[2] It gains kinetio	c energy						
	[3] It emits radiatio	n	[4] Its energy rem							
Q.5	The total number of	of valence electrons in 4.2 gm	of N_3^- ion is (N_A is the	he Avogadro's number) :	[CBSE 1994]					
	[1] 1.6 N _A	[2] 3.2 N _A	[3] 2.1 N _A	[4] 4.2 N _A						
Q.6	If n = 3, then the va	alue of ' ℓ ' which is incorrect :	• •	\sim	[CPMT 1994]					
	[1] 0	[2] 1	[3] 2	[4] 3						
Q.7	Chlorine atom diffe	ers from chloride ion in the nu	mber of :		[MP PET 1995]					
	[1] Proton	[2] Neutron	[3] Electrons	[4] Protons and e	electrons					
Q.8	The uncertainty in	the position of an electron (n	nass = 9.1 × 10 ⁻²⁸ g) moving with a velocity of	of $3.0 \times 10^4 \text{ cm s}^{-1}$					
	accurate upto 0.00)1% will be (use $\frac{h}{4\pi}$ in the ur	certainty expressio	n, where h = 6.62×10^{-27}	erg-s)					
	[1] 1.92 cm	[2] 7.68 cm	[3] 5.76 cm	[4] 3.84 cm	[CBSE 1995]					
Q.9	A 3p orbital has :				[IIT 1995]					
	[1] Two spherical n	odes	[2] Two non-sphe	rical nodes						
	[3] One spherical a	and one non-spherical nodes	[4] One spherical	and two non-spherical n	odes					
Q.10	Zeeman effect refe	ers to the :			[AFMC 1995]					
	[1] Splitting up of the	he lines in an emission spect	rum in a magnetic f	ield						
	[2] Splitting up to the	he lines in an emission spect	rum in the presence	e of an external electrost	atic field					
	[3] Emission of ele	ctrons from metals when ligh	t falls upon them							
	[4] Random scatte	ring of light by colloidal partic	les							
Q.11	For n = 3 energy le	evel, the number of possible o	orbitals are :		[MP PMT 1995]					
	[1] 1	[2] 3	[3] 4	[4] 9						
Q.12	The orbital angula	r momentum of an electron in	2s orbital is :		[IIT 1996]					
	$[1] + \frac{1}{2} \cdot \frac{h}{2\pi}$	[2] Zero	$[3] \frac{h}{2\pi}$	[4] $\sqrt{2} \cdot \frac{h}{2\pi}$						
	1^{1} $\frac{1}{2}$ 2π		$^{[3]}2\pi$	^[4] √ ² · 2π						

Q.13	Which statement is n	ot correct for $n = 5$, $m = 3$	3 :	[CPI	MT 1996]
	[1] l = 4		[2] <i>l</i> = 0, 1, 2, 3 ; s =	+ 1/2	
	[3] $l = 3$		[4] All are correct		
Q.14	1s², 2s² 2p ⁵ 3s² shows	s configuration of :		[CPI	MT 1996]
	[1] Al+3 in ground state	e	[2] Ne in excited state		
	[3] Mg ⁺¹ in excited sta	ated	[4] All are correct		
Q.15	In a Bohr's model of absorbed :	atom when an electron j	umps from n = 1 to n = 3	how much energy will be e	mitted or SE 1996]
	[1] 2.15 × 10 ⁻¹¹ ergs	[2] 0.1911 × 10 ⁻¹⁰ ergs	s [3] 2.389 × 10 ⁻¹² ergs	[4] 0.239 × 10 ⁻¹⁰ ergs	
Q.16	The shape of an orbit	al is given by the quantun	n number :		MT 1996]
	[1] n	[2] <i>l</i>	[3] m	[4] s	
Q.17	Which of the following	g metal ions will have max	timum number of unpaired	delectrons: [CPI	MT 1996]
	[1] Fe ⁺²	[2] Co ⁺²	[3] Ni ⁺²	[4] Mn ⁺²	
Q.18	The maximum probab	oility of finding an electro	n in the d _{xy} orbital is :		ET 1996]
	[1] Along the x-axis		[2] Along the y-axis		
	[3] At an angle of 45°	from the x and y-axes	[4] At an angle of 90°	from the x and y-axes	
Q.19	CO has same electro	ns as or the ion that is is	oelectronic with CO is :	[CB	SE 1997]
	[1] N ₂ ⁺	[2] CN⁻	[3] O ₂ ⁺	[4] O ⁻ ₂	
Q.20	The total number of o	rbital in an energy level d	esignated by principal qu	antum number n, is equal to :	
	[1] 2n	[2] 2n ²	[3] n	[4] n ² [AIII	MS 1997]
Q.21	Which electronic leve	l would allow the hydroge	en atom to absorb a photo	n but not to emit a photon :	
	[1] 3s	[2] 2p	[3] 2s	[4] 1s [CPI	MT 1997]
Q.22	An electron has princ	ipal quantum number 3. 7	The number of its :		ET 1997]
	(i) subshells and	$\langle \rangle$	(ii) orbitals would be re	espectively	
	[1] 3 and 5	[2] 3 and 7	[3] 3 and 9	[4] 2 and 5	
Q.23	Aufbau principle is no	ot satisfied by :		[MP PI	NT 1997]
	[1] Cr and Cl	[2] Cu and Ag	[3] Cr and Mg	[4] Cu and Na	
Q.24	The first use of quant	um theory to explain the	structure of atom was ma	de by : [IIT 1997]
	[1] Heisenberg	[2] Bohr	[3] Planck	[4] Einstein	
Q.25	Five valence electrons	s of $_{15}$ P are labelled as AE		uantum number of B and Z is	+ 1/2, the
	group of electrons wit	h three of the quantum nu	umber same are :	[JIPM	ER 1997]
	[1] Ab, XYZ, BY	[2] AB	[3] XYZ, AZ	[4] AB, XYZ	
Q.26	In an element going a	way from nucleus, the er	ergy of particle :	[RPI	MT 1997]
	[1] Decreases	[2] Unchanged	[3] Increases	[4] None of these	

				ATC	MIC STRUCTURE
Q.27	In neutral atom, which	particles are equivalent :			[RPMT 1997]
	[1] p ⁺ , e ⁺	[2] e⁻, e⁺	[3] e⁻, p⁺	[4] p ⁺ , n ⁰	
Q.28	If $n + l = 6$, then total p	ossible number of subsh	ells would be :		[RPMT 1997]
	[1] 3	[2] 4	[3] 2	[4] 5	
Q.29	The configuration 1s ² 2	2s² 2p⁵ 3s¹ shows :			[AIIMS 1997]
	[1] Ground state of fluc	prine atom	[2] Excited state of fluc	prine atom	
	[3] Excited state of neo	on atom	[4] Excited state of ion	O_2^{-ion}	
Q.30	The electron configura	tion of gadolinium (atomic	c no. 64) is :		[CBSE 1997]
	[1] [Xe] 4f ⁸ 5d ⁹ 6s ²	[2] [Xe] 4f ⁷ 5d ¹ 6s ²	[3] [Xe] 4f ³ 5d ⁵ 6s ²	[4] [Xe] 4f ⁶ 5d ² 6s ²	
Q.31	If electron falls from n	= 3 to n $= 2$, then emitted	energy is :		[AFMC 1997]
	[1] 10.2 eV	[2] 12.09 eV	[3] 1.9 eV	[4] 0.65 eV	
Q.32	Number of protons, ne	utrons and electrons in th	e element $_{_{89}}X^{_{231}}$ is :	G	[AFMC 1997]
	[1] 89, 231, 89	[2] 89, 89, 242	[3] 89, 142, 89	[4] 89, 71, 89	
Q.33	In the ground state cor	figuration of Cr ₂₄ how man	ny orbitals are present ha	ving paired and unpa	ired electrons :
	[1] 10	[2] 12	[3] 15	[4] 16	[RPMT 1997]
Q.34	Discoverer of positron	:	\mathbf{C}		[RPMT 1997]
	[1] Paulling	[2] Anderson	[3] Yukawa	[4] Segre	
Q.35	Which of the following	species not contains neu			[RPMT 1997]
	[1] H	[2] Li ⁺²	[3] C	[4] O	
Q.36		tron in the first Bohr orbit ons in Bohr orbits to hydr		The possible energy	value of the first [IIT 1998]
	[1] – 3.4 eV	[2] – 4.2 eV	[3] – 6.8 eV	[4] + 6.8 eV	
Q.37	The energy of an elect of hydrogen would be :	ron in the first orbit of He⁺	is – 871.6 × 10 ⁻²⁰ J. The	•••	n in the first orbit [Roorkee 1998]
	[1] – 871.6 × 10 ⁻²⁰ J	[2] – 435.8 × 10 ⁻²⁰ J	[3] – 217.9 × 10 ⁻²⁰ J	[4] – 108.9 × 10 ⁻²⁰	J
Q.38		electron and a helium atc ⁶ kg ms ^{−1} . The minimum u			
	[1] 50 kg ms ⁻¹	[2] 60 kg ms ⁻¹	[3] 80 × 10 ⁻²⁶ kg ms ⁻¹	[4] 50 × 10 ⁻²⁶ kg m	S ⁻¹
Q.39	The Bohr orbit radius f state (n = 2) orbit is :	for the hydrogen atom (n	= 1) is approximately 0.5	530 A. The radius for	the first excited [CBSE 1998]
	[1] 0.13 Å	[2] 1.06 Å	[3] 4.77 Å	[4] 2.12 Å	
Q.40	Which of the following	explain the sequence of f	illing the electrons in diffe	erent orbitals :	[AIIMS 1998]
	[1] Hund's rule	[2] Octet rule	[3] Aufbau principle	[4] All of these	
Q.41	Number of orbitals hav	ing paired electrons for ga	aseous Fe are :		[RPMT 1998]
	[1] 4	[2] 11	[3] 15	[4] 19	

				AI	OMICSTRUCTURE
Q.42	[Ar] 3d ⁶ is the configura	ation of the following ion :			[RPMT 1998]
	[1] Fe ⁺²	[2] Ti+3	[3] Co ⁺²	[4] Cr ⁺³	
Q.43	Which triad of quantur	m number [n, <i>l</i> , m] is not a	pplicable for 3d-electron	:	[RPMT 1998]
	[1] 3, 2, 0	[2] 3, 1 –1	[3] 3, 2, – 2	[4] 3, 2, +1	
Q.44	Which of the following	configuration follows the	Hund's rule :		[RPMT 1998]
	[1] [He]		[2] [He]		
	[3] [He]		[4] [He]		
Q.45	The ratio of radii of 3rd	l and 2nd Bohr's orbit of h	ydrogen atom is :	<u>.</u>	[RPMT 1998]
	[1] 3 : 2	[2] 4 : 9	[3] 9 : 4	[4] 9 : 1	
Q.46	The four quantum num	nber for the valence shell	electron or last electron o	f sodium is :	[MP PMT 1999]
	[1] n = 2, ℓ = 1, m = -	1, s = - 1/2	[2] n = 3, ℓ = 0, m = 0		
	[3] n = 3, ℓ = 2, m = -	2, s = - 1/2	[4] n = 3, ℓ = 2, m = 2	, s = + 1/2	
Q.47	Heaviest particle is :				[MP PET 1999]
	[1] Meson	[2] Neutron	[3] Proton	[4] Electron	
Q.48	Which is correct state	ment about proton :			[MP PET 1999]
	[1] Proton is nucleus o	f deuterium	[2] Proton is ionized hy	drogen molecule	
	[3] Proton is ionized hy	/drogen atom	[4] Proton is α -particle		
Q.49	The energy of an elect	ron in n th orbit of hydroge	n atom is :		[MP PET 1999]
	$[1] - \frac{13.6}{n^4} eV$	$[2] - \frac{13.6}{n^3} eV$	$[3] - \frac{13.6}{n^2} eV$	$[4] - \frac{13.6}{n} eV$	
Q.50	If wavelength of photo	n is 2.2 × 10 ⁻¹¹ m, h = 6.8	× 10^{-34} Js, then moment	um of photon is :	[MP PET 1999]
	[1] 3 × 10 ⁻²³ Kg ms⁻¹		[2] 3.33 × 10 ²² Kg ms ⁻⁷	I	
	[3] 1.452 × 10 ⁻⁴⁴ kg m	5 ⁻¹	[4] 6.89 × 10⁴³ kg ms⁻¹		
Q.51	The electrons identifie	d by quantum number n a	nd l		[IIT 1999]
	(i) n = 4, <i>l</i> = 1	(ii) n = 4, <i>l</i> = 0	(iii) n = 3, <i>l</i> = 2	(iv) n = 3, <i>l</i> = 1	
	can be placed in order	of increasing energy fror	n the lowest to highest, a	s :	
	[1] (iv) < (ii) < (iii) < (i)		[2] (ii) < (iv) < (i) < (iii)		
	[3] (i) < (iii) < (ii) < (iv)		[4] (iii) < (i) < (iv) < (ii)		
Q.52	Ground state electron	configuration of nitrogen	atom can be represent by	' :	[IIT 1999]
	$[1] \uparrow \downarrow \uparrow \downarrow \uparrow \uparrow \uparrow$	$[2] \stackrel{\uparrow\downarrow}{\uparrow\downarrow} \uparrow\downarrow\uparrow\downarrow\uparrow$	$[3] \stackrel{\uparrow\downarrow}{\uparrow\downarrow} \uparrow\downarrow \uparrow\downarrow \downarrow\downarrow$	[4] None of these	
Q.53	Which of the following	has more unpaired d-elec	ctron :		[CBSE 1999]
	[1] Zn+	[2] Fe ²⁺	[3] Ni ³⁺	[4] Cu+	

Q.54	The uncertainty in mo	omentum of an electron is	s 1 × 10⁻⁵ kg-m/s. The und	certainty in its position	will be :
					[CBSE 1999]
	[1] 1.05 × 10 ⁻²⁸ m	[2] 1.05 × 10 ⁻²⁶ m	[3] 5.27 × 10 ^{−30} m	[4] 5.25 × 10 ⁻²⁸ m	
Q.55	The de-Broglie wavel	ength of a particle with m	ass 1g and velocity 100 m	n/s is :	[CBSE 1999]
	[1] 6.63 × 10 ^{−33} m	[2] 6.63 × 10 ^{−34} m	[3] 6.63 × 10⁻³⁵ m	[4] 6.65 × 10 ^{−35} m	
Q.56	Which of the following	g set of quantum numbers	s belong to highest energy	/:	[CPMT 1999]
	[1] n = 4, <i>l</i> = 0, m = 0	$0, s = +\frac{1}{2}$	[2] n = 3, <i>l</i> = 0, m = 0	$, s = + \frac{1}{2}$	
	[3] n = 3, <i>l</i> = 1, m = 1	$1, s = +\frac{1}{2}$	[4] n = 3, <i>l</i> = 2, m = 1	$s = +\frac{1}{2}$	
Q.57	Which of the following	g are isoelectronic specie	s :	CO.	[CPMT 1999]
	$I - CH_{3}^{+}, II - NH_{2}^{-}, II$	$I - NH_4^+$, $IV - NH_3$			
	[1] I, II, III	[2] II, III, IV	[3] I, II, IV	[4] I and II	
Q.58	Which quantum num	per will determine the sha	pe of the subshell :		[CPMT 1999]
	[1] Principal quantum	number	[2] Azimuthal quantun	number	
	[3] Magnetic quantum	number	[4] Spin quantum num	ber	
Q.59	-	ve state has the electron n its nucleus would be :	ic configuration 2, 8, 14 a	nd has the atomic wei	ght equal to 56. [RPMT 1999]
	[1] 30	[2] 32	[3] 34	[4] 28	
Q.60	Which set of quantum	n number for an electron	of an atom is not possible	:	[RPMT 1999]
	[1] n = 1, <i>l</i> = 0, m = 0	$1, s = +\frac{1}{2}$	[2] n = 1, <i>l</i> = 1, m = 1	2	
	[3] n = 1, <i>l</i> = 0, m = 0	$0, s = -\frac{1}{2}$	[4] n = 2, <i>l</i> = 1, m = -	1, s = + $\frac{1}{2}$	
Q.61	Outer electronic confi	guration of the element o	f atomic number 24 is :		[RPMT 1999]
	[1] 3s ² 3p ⁶ 3d ⁵ 4s ¹	[2] 3s ² 3p ⁶ 3d ⁴ 4s ²	[3] 3s ² 3p ⁶ 3d ⁶	[4] None	
Q.62	The basis of three un	paired electrons in the co	nfiguration of nitrogen is :		[RPMT 1999]
	[1] Aufbau principle	[2] Pauli's principle	[3] Hund's principle	[4] Uncertainty prin	ciple
Q.63	Correct order of size	is :			[RPMT 1999]
	$[1] \ I > I^{\scriptscriptstyle +} > I^{\scriptscriptstyle -}$	[2] $I > I^- > I^+$	[3] $I^- > I > I^+$	[4] $I^+ > I > I^-$	
Q.64	Which is not electrom	agnetic radiation :			[RPMT 2000]
		[0] V	[3] Cathode rays	[4] Gamma rays	
	[1] Infrared rays	[2] X-ray		[4] Gamina rays	
Q.65		[2] X-ray g pair of orbitals posses to		[4] Gamma rays	[RPMT 2000]
				[4] d_{z^2} , $d_{x^2-y^2}$	[RPMT 2000]

Q.66	The mass of a neutro	on is of the order of :			[RPMT 2000]
	[1] 10 ⁻²³ kg	[2] 10 ⁻²⁴ kg	[3] 10 ⁻²⁶ kg	[4] 10 ⁻²⁷ kg	
Q.67	Smallest cation is :				[RPMT 2000]
	[1] Na⁺	[2] Mg ²⁺	[3] Ca ²⁺	[4] Al ³⁺	
Q.68	Electron enters the su	ub-shell for which $(n + l)$ va	alue is minium. This is en	unciated as :	[RPMT 2000]
	[1] Hund's rule		[2] Aufbau principle		
	[3] Heisenberg uncert	ainty principle	[4] Pauli's exclusion pr	inciple	
Q.69	The minium real char	ge on any particle which c	an exist is :		[RPMT 2000]
	[1] 1.6 × 10 ⁻¹⁹ coulom	b	[2] 1.6 × 10 ⁻¹⁰ coulomb)	
	[3] 4.8 × 10 ⁻¹⁰ coulom	b	[4] Zero		
Q.70	Which sub-shell is no	ot permissible :			[RPMT 2000]
	[1] 2d	[2] 4f	[3] 6p	[4] 3s	
Q.71	Sub-shell designated	by azimuthal quantum nu	mber $l = 3$ can have maxi	mum number of elect	rons :
	[1] 14	[2] 6	[3] 10	[4] 0	[RPMT 2000]
Q.72	Quantum number n =	= 3, <i>l</i> = 2, m = + 2 shows h	ow many orbitals :		[CPMT 2001]
	[1] 1	[2] 2	[3] 3	[4] 4	
Q.73	Which is isoelectronic	c with sulphide ion :			[RPMT 2001]
	[1] CI	[2] Ne	[3] Ar	[4] Kr	
Q.74	Ground state electror	nic configuration of nitrogen	nis:		[RPMT 2001]
	[1] 1s ² , 2s ² , 2p ¹ _x , 2p ¹ _y	, 2p ¹ _z	[2] 1s ² , 2s ² , 2px ² , 2p ¹ _y		
	[3] 1s ² , 2s ² , 2p _x ² , 2p _z ¹	C,	[4] 1s ² , 2s ² , 2p _x ³		
Q.75	In the Bohr's orbit, wh	nat is the ratio of total kine	tic energy and total energ	gy of electron :	[RPMT 2002]
	[1] — 1	[2] – 2	[3] 1	[4] + 2	
Q.76	Rutherford α -particle	dispersion experiment con	cludes :		[RPMT 2002]
	[1] All positive ions ar	e deposited at small part	[2] All negative ions are	e deposited at small p	part
	[3] Protons moves are	ound the electrons	[4] Neutrons are charg	ed particles	
Q.77	Which of the following	g element outermost orbit's	s last electron has magne	etic quantum number	m = 0 ?
	[1] Na	[2] O	[3] CI	[4] N	[RPMT 2002]
Q.78		constant is 6.63 $ imes$ 10 ⁻³⁴ Jenanometers of a quantum of			value is closest [CPMT 2003]
	[1] 5 × 10 ⁻¹⁸	[2] 4 × 10 ¹	[3] 3 × 10 ⁷	[4] 2 × 10 ⁻²⁵	
Q.79	The orbital angular me	omentum for an electron re	volving in an orbit is giver	h by $\sqrt{l(l+1)} \cdot \frac{h}{2\pi}$. This	s momentum for
	an s-electron will be g			Ζι	[AIEEE 2003]
	h	1 h	[0]	h	
	$[1]\sqrt{2}.\frac{h}{2\pi}$	$[2] + \frac{1}{2} \cdot \frac{h}{2\pi}$	[3] zero	$[4] \frac{h}{2\pi}$	

Q.80	The number of d-elect	rons retained in Fe ²⁺ (At.	no. of Fe = 26) ion is :		[AIEEE 2003]
	[1] 6	[2] 3	[3] 4	[4] 5	
Q.81	The de Broglie wavele approximately :	ength of a tennis ball of n	nass 60 g moving with a	velocity of 10 me	tres per second is [AIEEE 2003]
	[1] 10 ⁻²⁵ metres	[2] 10 ⁻³³ metres	[3] 10 ⁻³¹ metres	[4] 10 ⁻¹⁶ metres	
Q.82		of hydrogen spectrum, th nps of the electron for Boł			o which one of the [AIEEE 2003]
	$[1] \ 2 \rightarrow 5$	$[2] \ 3 \rightarrow 2$	$[3] 5 \rightarrow 2$	$[4] \ 4 \rightarrow 1$	
Q.83	Which of the following	sets of quantum number	is correct for an electron	in 4f orbital ?	[AIEEE 2004]
	[1] n = 3, <i>l</i> = 2, m = –	4, s = $-\frac{1}{2}$			
	[3] n = 4, <i>l</i> = 3, m = +	1, s = + $\frac{1}{2}$	[4] n = 4, <i>l</i> = 3, m = +	4, s = $+\frac{1}{2}$	
Q.84	consider the ground st $l = 1$ and 2 are, respectively.	ate of Cr atom (Z = 24). Th ctively :	ne numbers of electrons v	vith the azimuthal c	uantum numbers, [AIEEE 2004]
	[1] 16 and 5	[2] 12 and 5	[3] 16 and 4	[4] 12 and 4	
Q.85	-	radiation emitted, when ir constant = $1.097 \times 10^7 \mathrm{m}^{-1}$		on falls from infinity	to stationary state [AIEEE 2004]
	[1] 9.1 × 10⁻ଃ nm	[2] 192 nm	[3] 406 nm	[4] 91 nm	
Q.86	Which one of the follow	wing sets of ions represer	nts the collection of isoele	ectronic species ?	[AIEEE 2004]
	[1] Na⁺, Mg²⁺, Al³⁺, Cl⁻		[2] Na⁺, Ca²⁺, Sc³⁺, F⁻		
	[3] K⁺, Cl⁻, Mg²⁺, Sc³⁺	0	[4] K⁺, Ca²⁺, Sc³⁺, Cl⁻		
Q.87	Consider the following	nuclear relations :			[AIEEE 2004]
	$^{238}_{92}$ M \rightarrow^{x}_{y} N+2 $^{4}_{2}$ He	9	$^{x}_{y}N \rightarrow^{A}_{B}L + 2\beta^{+}$		
	The number of neutro	ns in the element L is :			
	[1] 146	[2] 144	[3] 140	[4] 142	
Q.88	Which of the following	have same radius as hyd	rogen n = 1 :		[IIT Scr. 2004]
	[1] He+, n = 2	[2] Be ⁺³ , n = 2	[3] Li ⁺² , n =2	[4] Li ⁺² , n = 3	
Q.89	The ratio of charge and	d mass would be greater f	or -		[BHU 2005]
	[1] Proton	[2] Electron	[3] Neutron	[4] Alpha	
Q.90	Magnitude of K.E. in a	n orbit is eaual to -			[BCECE 2005]
	[1] Half of the potential	energy	[2] Twice of the potentia	al energy	
	[3] One fourth of the po	otential energy	[4] None of these		
Q.91	Number of neutron in (C ¹² is -			[BCECE 2005]
	[1] 6	[2] 7	[3] 8	[4] 9	

Q.92 The most probable radius (in pm) for finding the electron in He+ is -[AIIMS 2005] [1] 0.0 [2] 52.9 [3] 26.5 [4] 105.8 Q.93 The energy of second Bohr orbit of the hydrogen atom is -328 kJ mol⁻¹. hence the energy of fourth Bohr orbit would be -[CBSE PMT 2005] [1] -41 kJ mol-1 [4] -82 kJ mol-1 [2] -1312 kJ mol-1 [3] -164 kJ mol⁻¹ Q.94 What is the packet of energy called [AFMC 2005] [1] Electron [2] Photon [3] Positron [4] Proton Q.95 A metal surface is exposed to solar radiations [DPMT 2005] [1] The emitted electrons have energy less than a maximum value of energy depending upon frequency of incident radiations [2] The emitted electrons have energy less than maximum value of energy depending upon intensity of incident radiation [3] The emitted electrons have zero energy [4] The emitted electrons have energy equal to energy of photons of incident light Q.96 [DPMT 2005] Which of the following transitions have minimum wavelength [2] $n_2 \longrightarrow n_1$ $[1] n_{1} \longrightarrow n_{1}$ [4] n₂ -[3] n, -→ n, Q.97 For an electron if the uncertainty in velocity is Δv , the uncertainty in its position (Δx) is given by -[DPMT 2005] hm [4] $\frac{4\pi m}{h \Delta v}$ [1] hm∆v 4πm∆\ Q.98 Orbital is -[DPMT 2005] [1] Circular path around the nucleus in which the electron revolves [2] Space around the nucleus where the probability of finding the electron is maximum [3] Amplitude of electrons wave [4] None of these Q.99 If magnetic quantum number of a given atom represented by -3, then what will be its principle quantum [BHU 2005] number [2] 3 [3] 4 [4] 5 [1] 2 Q.100 The total number of orbitals in an energy level designated by principal quantum number n is equal to -[J & K CET 2005] [1] 2n [2] 2n² [3] n [4] n² Q.101 The number of radial nodes of 3s and 2p orbitals are respectively -[IIT-JEE 2005] [2] 0, 2 [1] 2, 0 [3] 1, 2 [4] 2, 1 Q.102 Number of unpaired electrons in Mn⁴⁺ is -[DPMT 2005] [1] 3 [4] 4 [2] 5 [3] 6

Q.103 Which of the following sequence is correct as per Aufbau principle [DPMT 2005] [1] 3s < 3d < 4s < 4p [2] 1s < 2p < 4s < 3d [3] 2s < 5s < 4p < 5d [4] 2s < 2p < 3d < 3p Q.104 Electronic configuration of deuterium atom is -[J&K CET 2005] [1] 1s¹ [2] 2s² [3] 2s¹ [4] 1s² Q.105 According to Bohr's theory, the angular momentum of an electron is 5th orbit is -[AIEEE 2006] [1] 1.0 h/π [2] 10 h/π [3] 2.5 h/π [4] 25h/π Uncertainty in the position of an electron (mass = 9.1×10^{-31} kg) moving with a velocity 300 ms⁻¹, accurate Q.106 upto 0.001 %, will be -[AIEEE 2006] [1] 5.76 × 10⁻²m [2] 1.92 × 10⁻²m [3] 3.84 × 10⁻²m [4] 19.2 × 10⁻²m $(h = 6.63 \times 10^{-34} \text{ Js})$ Q.107 Which one of the following sets of ions represents a collection of isoelectronic species ? [AIEEE 2006] [2] N³⁻, O²⁻, F⁻, S²⁻ [1] Ba²⁺, Sr²⁺, K⁺, Ca²⁺ [4] K⁺, Cl⁻, Ca²⁺, Sc³⁺ [3] Li+, Na+, Mg²⁺, Ca²⁺ Q.108 Which of the following sets of quantum numbers represents the highest energy of an atom? [AIEEE 2007] [1] n = 4, l = 0, m = 0, s = $+\frac{1}{2}$ [2] n = 3, l = 0, m = 0, s = $+\frac{1}{2}$ www.reeilik [4] n = 3, l = 2, m = 0, s = $+\frac{1}{2}$ [3] n = 3, l = 1, m = 0, s = $+\frac{1}{2}$

		~						4	nsv	ver	Ke	У								
Qus.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Ans.	1	3	3	4	1	4	3	1	3	1	4	2	2	3	2	2	4	3	2	4
Qus.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
Ans.	4	3	2	2	4	3	3	1	3	2	3	3	3	2	1	1	3	4	4	3
Qus.	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
Ans.	2	1	2	1	3	2	2	3	3	1	1	1	2	3	1	4	2	2	1	2
Qus.	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
Ans.	1	3	3	3	2	4	4	2	1	1	1	1	3	1	1	1	1	2	3	1
Qus.	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100
Ans.	2	3	3	2	4	4	2	2	2	1	1	3	4	2	1	1	3	2	3	4
Qus.	101	102	103	104	105	106	107	108												
Ans.	1	1	2	1	3	4	4	4												