

| Q.1  | Ratio of O <sub>2</sub> and N <sub>2</sub> in a              | mixture .of these gase                    | es is 1 : 4, then what will          | be the ratio of numbers of molecules in              |  |  |  |  |
|------|--------------------------------------------------------------|-------------------------------------------|--------------------------------------|------------------------------------------------------|--|--|--|--|
|      | the mixture of the gases                                     | s?                                        |                                      |                                                      |  |  |  |  |
|      | (1) 1:4                                                      | (2) 7 : 32                                | (3) 3 : 16                           | (4) 3:32                                             |  |  |  |  |
| Q.2  | What should be the rati tively?                              | o of root mean square                     | velocity of molecular hy             | /drogen and molecular oxygen, respec-                |  |  |  |  |
|      | (1) 4 : 1                                                    | (2) 1 : 4                                 | (3) 1 : 2                            | (4) 1 : 8                                            |  |  |  |  |
| Q.3  | Maximum number of me                                         | olecules are present in                   |                                      |                                                      |  |  |  |  |
|      | (1) 54 g of N <sub>2</sub> O <sub>5</sub>                    | (2) 28 g of CO                            | (3) 36 g of H <sub>2</sub> O         | (4) 46 g of C <sub>2</sub> H <sub>5</sub> OH.        |  |  |  |  |
| Q.4  | Number of atoms in 12                                        | gram of <sub>6</sub> C <sup>12</sup> is   |                                      |                                                      |  |  |  |  |
|      | (1)6                                                         | (2) 6 x 10 <sup>-23</sup>                 | (3) 12                               | (4) 12 x 6 X 10 <sup>23</sup>                        |  |  |  |  |
| Q.5  | A gas at 30° C is Com                                        | pressed to reduce its                     | volume to half of its ini            | tial volume. At what temperature will it             |  |  |  |  |
|      | become double of its ini                                     | tial volume?                              |                                      |                                                      |  |  |  |  |
|      | (1) 60°C                                                     | (2)303°C                                  | (3) 240°C                            | (4) 606°C                                            |  |  |  |  |
| Q.6  | Volume of a gas at 35°                                       | C and 1 atmospheric                       | pressure is 3.75 litre. If           | volume is to be made 3.0 litre at same               |  |  |  |  |
|      | pressure, then the temp                                      | perature will be                          |                                      | $\sim$                                               |  |  |  |  |
|      | (1)-26.6°C                                                   | (2) 0°C                                   | (3) 3.98°C                           | (4) 28°C                                             |  |  |  |  |
| Q.7  | Which of the following i                                     | s incorrect relation in t                 | the critical constants Vc,           | Tc and Pc?                                           |  |  |  |  |
|      | (1) a = 3 PcVc <sup>2</sup>                                  | (2) $b = Vc/3$                            | (3) Tc = 8a/27Rb                     | (4) b = 3 x Vc                                       |  |  |  |  |
| Q.8  | At what temperature, th                                      | e RMS velocities of hy                    | drogen (1 atm. pressure              | e) and oxygen (NTP) will be same                     |  |  |  |  |
|      | (1) 37 K                                                     | (2) 17 K                                  | (3) 512K                             | (4) 27 K                                             |  |  |  |  |
| Q.9  | 5 grams each of HF, HC                                       | CI, HBr and HI have be                    | en taken at 87° C and 7              | 50 mm pressure. Which of the following               |  |  |  |  |
|      | should have maximum v                                        | volume?                                   | $\sim$                               |                                                      |  |  |  |  |
|      | (1) HF                                                       | (2) HCI                                   | (3) HBr                              | (4) HI                                               |  |  |  |  |
| Q.10 | Temperature of 20 lit re-                                    | s of nitrogen at constan                  | nt pressure is increased             | from 100 K to 300 K, then the change in              |  |  |  |  |
|      | volume will be                                               |                                           |                                      |                                                      |  |  |  |  |
|      | (1) 80 litre                                                 | (2) 60 litre                              | (3) 40 litre                         | (4) 20 litre                                         |  |  |  |  |
| Q.11 | Value of average free                                        | path at 1 atmospheric                     | pressure is L, then what             | at should be its value at 5 atmospheric              |  |  |  |  |
|      | pressure?                                                    |                                           |                                      |                                                      |  |  |  |  |
|      | (1) 2/5 L                                                    | (2) 5 L                                   | (3) L/5                              | (4) Uncertain                                        |  |  |  |  |
| Q.12 | Equal molecules of N <sub>2</sub> a then the pressure will b | and O <sub>2</sub> are kept in a clo<br>e | osed container at pressu             | Ire P. If N <sub>2</sub> is removed from the system, |  |  |  |  |
|      | (1) P                                                        | (2) 2P                                    | (3) P/2                              | (4) P <sup>2</sup>                                   |  |  |  |  |
| Q.13 | Order of the rate of diffu                                   | usion of $SO_2$ , $CO_2$ , PC             | ${ m I}_3$ and ${ m SO}_3$ will be   |                                                      |  |  |  |  |
|      | (1) SO <sub>2</sub> > SO <sub>3</sub> > PCl <sub>3</sub> >   | CO <sub>2</sub>                           | (2) $CO_2 > SO_2 > SO_3$             | > PCl <sub>3</sub>                                   |  |  |  |  |
|      | (3) PCl <sub>3</sub> > SO <sub>3</sub> > SO <sub>2</sub> =   | > CO <sub>2</sub>                         | (4) $CO_2 > SO_2 > PCI_3$            | > SO <sub>3</sub>                                    |  |  |  |  |
| Q.14 | What should be the pre                                       | ssure of 2 mole of an i                   | deal gas at 546 K and 44             | 4.8 litre volume? .                                  |  |  |  |  |
|      | (1) 2 atm.                                                   | (2) 1 atm.                                | (3) 4 atm.                           | (4) 5 atm.                                           |  |  |  |  |
| Q.15 | At 27° C and 750 mm p                                        | ressure, volume of a g                    | jas is 38 ml, then its volu          | ime at STP will be                                   |  |  |  |  |
|      | (1) 34 ml                                                    | (2) 43 ml                                 | (3) 4.3 ml                           | (4) 3.4 ml                                           |  |  |  |  |
| Q.16 | At which temperature, t K?                                   | he average velocity of                    | N <sub>2</sub> molecules will be equ | al to the velocity of He molecules at 300            |  |  |  |  |
|      | (1) 2100 K                                                   | (2) 1100 K                                | (3) 420 K                            | (4) None of the above                                |  |  |  |  |
| Q.17 | What should be the par                                       | tial pressure of $H_2$ in a               | flask, if 2.016 gram of H            | $I_2$ and 16.0 gram of $O_2$ are present in it?      |  |  |  |  |
|      | (1) 1/8 of total pressure                                    | _                                         | (2) 1/6 of total pressure            | e                                                    |  |  |  |  |
|      | (3) 1/4 of total pressure                                    |                                           | (4) 2/3 or total pressure            |                                                      |  |  |  |  |

| Q.18         | What should be the vo                                                                                              | lume of O <sub>2</sub> obtained on                      | decomposition of 15 ml                                                                         | 20% H <sub>2</sub> O <sub>2</sub> at STP?             |  |  |  |  |  |  |
|--------------|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------------------|--|--|--|--|--|--|
|              | (1) 150 ml                                                                                                         | (2) 300 ml                                              | (3) 200 ml                                                                                     | (4) 250 ml                                            |  |  |  |  |  |  |
| Q.19         | 21 % by volume of oxy                                                                                              | /gen is present in one li                               | tre of air. What should be                                                                     | e the number of moles in oxygen ?                     |  |  |  |  |  |  |
|              | (1) 0.186                                                                                                          | (2) 0.21                                                | (3) 2.10                                                                                       | (4) 0.93                                              |  |  |  |  |  |  |
| Q.20         | If the density of a gas                                                                                            | A is 1.5 times that of B t                              | hen the molecular mass                                                                         | of A is M. The molecular mass of B will               |  |  |  |  |  |  |
|              | be                                                                                                                 |                                                         |                                                                                                |                                                       |  |  |  |  |  |  |
|              | (1) 1.5M                                                                                                           | (2) M/1.5                                               | (3) 3M                                                                                         | (4) M/3                                               |  |  |  |  |  |  |
| Q.21         | Which of the following                                                                                             | is not heavier than dry a                               | air                                                                                            |                                                       |  |  |  |  |  |  |
|              | (1) Moist air                                                                                                      | (2) SO <sub>2</sub>                                     | (3) Cl <sub>2</sub>                                                                            | (4) O <sub>2</sub>                                    |  |  |  |  |  |  |
| Q.22         | When the pressure-of                                                                                               | 5L of N <sub>2</sub> is doubled and                     | its temperature is raised                                                                      | d from 300K to 600K, the final volume of              |  |  |  |  |  |  |
|              | the gas would be                                                                                                   |                                                         |                                                                                                | ~                                                     |  |  |  |  |  |  |
|              | (1) 10L                                                                                                            | (2) 5L                                                  | (3) 15L                                                                                        | (4) 20L                                               |  |  |  |  |  |  |
| Q.23         | One mole of $CO_2$ contained                                                                                       | ain                                                     | 00                                                                                             |                                                       |  |  |  |  |  |  |
|              | (1) $6.02 \times 10^{23}$ atoms                                                                                    | of C                                                    | (2) $6.02 \times 10^{23}$ atoms (                                                              | of O                                                  |  |  |  |  |  |  |
| _            | (3) 18.1 x 10 <sup>23</sup> molecu                                                                                 | iles of CO <sub>2</sub>                                 | (4) 3 gm atoms of $CO_2$                                                                       | <b>O</b>                                              |  |  |  |  |  |  |
| Q.24         | In the gas equation PV                                                                                             | <pre>/ = nRT, the value of univ</pre>                   | versal gas constant woul                                                                       | d depend only on                                      |  |  |  |  |  |  |
|              | (1) The nature of the g                                                                                            | as                                                      | (2) The pressure of the                                                                        | gas                                                   |  |  |  |  |  |  |
|              | (3) The temperature of                                                                                             | the gas                                                 | (4) The units of measur                                                                        | rement                                                |  |  |  |  |  |  |
| Q.25         | At constant temperatu                                                                                              | re, in a given mass of a                                | n ideal gas                                                                                    | 2                                                     |  |  |  |  |  |  |
|              | (1) The ratio of pressure and volume always remains constant                                                       |                                                         |                                                                                                |                                                       |  |  |  |  |  |  |
|              | (2) Volume always ren                                                                                              | nains constant                                          |                                                                                                |                                                       |  |  |  |  |  |  |
|              | (3) Pressure always re                                                                                             | emains constant.                                        | 0                                                                                              |                                                       |  |  |  |  |  |  |
| 0.00         | (4) The product of pres                                                                                            | ssure and volume alway                                  | s remains constant.                                                                            |                                                       |  |  |  |  |  |  |
| Q.26         | (4) DV 4 (2m No.                                                                                                   |                                                         | al gas equation                                                                                |                                                       |  |  |  |  |  |  |
| 0.07         | (1) $PV = 1/3m NU$                                                                                                 | (2) $PV = nRT$                                          | (3) $P = \rho R I/M$                                                                           | (4) PV = RI                                           |  |  |  |  |  |  |
| Q.27         | (1) Ideal seese                                                                                                    | (2) Declarage                                           |                                                                                                |                                                       |  |  |  |  |  |  |
| 0.20         | (1) Ideal gases                                                                                                    | (2) Real gases                                          | (3) vapours                                                                                    | (4) Non-real gases.                                   |  |  |  |  |  |  |
| Q.20         |                                                                                                                    | (2) 27                                                  | (2) = 4                                                                                        |                                                       |  |  |  |  |  |  |
| 0.20         |                                                                                                                    | (Z) Z1                                                  | (3) 54                                                                                         | (4) 81                                                |  |  |  |  |  |  |
| Q.29         | (1) Completely kinetic                                                                                             | (2) Completely peter                                    | tial (2) KE + DE                                                                               |                                                       |  |  |  |  |  |  |
| 0.20         | The value of gas const                                                                                             | (2) Completely poter                                    | (3) KE + FE                                                                                    | (4) All the above                                     |  |  |  |  |  |  |
| Q.30         | (1) 1 col                                                                                                          |                                                         |                                                                                                | (4) 4 col                                             |  |  |  |  |  |  |
| 0.31         | (1) Ital                                                                                                           | $(2) \ge cal$                                           | (5) 5 cal                                                                                      |                                                       |  |  |  |  |  |  |
| Q.51         | (1) Increase by the sar                                                                                            | ne magnitude                                            | (2) become double                                                                              | olumes                                                |  |  |  |  |  |  |
|              | (1) Increase by the sat                                                                                            | ne magnitude<br>o of their molecular mas                |                                                                                                |                                                       |  |  |  |  |  |  |
|              | (4) increases but to dif                                                                                           | ferent extent                                           | 0000                                                                                           |                                                       |  |  |  |  |  |  |
| 0.32         | Dalton's law of partial                                                                                            | pressure is not applicat                                | le to                                                                                          |                                                       |  |  |  |  |  |  |
| 4.72         | (1) H <sub>a</sub> and N <sub>a</sub> mixture                                                                      |                                                         | (2) H <sub>a</sub> and Cl <sub>a</sub> mixture                                                 |                                                       |  |  |  |  |  |  |
|              | (3) $H_2$ and $CO_2$ mixture                                                                                       | e                                                       | (4) None                                                                                       |                                                       |  |  |  |  |  |  |
| Q.33         | A cylinder is filled with                                                                                          | -<br>n a gaseous mixture co                             | ntaining equal masses                                                                          | of CO and N <sub>2</sub> . The ratio of their partial |  |  |  |  |  |  |
| Q.32<br>Q.33 | Dalton's law of partial<br>(1) $H_2$ and $N_2$ mixture<br>(3) $H_2$ and $CO_2$ mixtur<br>A cylinder is filled with | pressure is not applicat<br>e<br>n a gaseous mixture co | ole to<br>(2) H <sub>2</sub> and Cl <sub>2</sub> mixture<br>(4) None<br>ontaining equal masses | of CO and N <sub>2</sub> . The ratio of their partial |  |  |  |  |  |  |

pressure is-

(1) 
$$P_{N_2} = P_{CO}$$
 (2)  $P_{CO} = 0.875 P_{N_2}$  (3)  $P_{CO} = 2 P_{N_2}$  (4)  $P_{CO} = \frac{1}{2} P_{N_2}$ 

| Q.34     | A certain mass of a gas ture would the gas occu                                                 | occupies a volume of 2<br>py a volume of 4 litres                                | 21itres at STP. Keeping                             | the pressure constant at what tempera-                                             |
|----------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------------------------------|
|          | (1) 546°C                                                                                       | (2) 273°C                                                                        | (3) 100°C                                           | (4) 50°C                                                                           |
| Q.35     | If 500 ml of a gas 'A' at 10<br>will be-                                                        | 000 torr and 1000 ml of                                                          | gas 'B' at 800 torr are pla                         | aced in a 2L container, the final pressure                                         |
|          | (1) 100 torr                                                                                    | (2) 650 torr                                                                     | (3) 1800 torr                                       | (4) 2400 torr                                                                      |
| Q.36     | The total pressure of a r                                                                       | mixture of two gases is                                                          | 5                                                   |                                                                                    |
|          | (1) The sum of partial pr                                                                       | essures of each gas                                                              | (2) The difference in pa                            | artial pressures                                                                   |
|          | (3) The product of partia                                                                       | Ipressures                                                                       | (4) The ratio of partial p                          | pressures.                                                                         |
| Q.37     | Equal masses of SO <sub>2</sub> , C partial pressures of CH <sub>2</sub>                        | CH <sub>4</sub> and O <sub>2</sub> are mixed i<br><sub>1</sub> in the mixture is | in empty container at 29                            | 8 K, when total pressure is 2.1 atm. The                                           |
|          | (1) 0.5 atm                                                                                     | (2) 0.75 atm                                                                     | (3) 1.2 atm                                         | (4) 0.6 atm.                                                                       |
| Q.38     | A 0.5 dm <sup>3</sup> flask contains gm dm <sup><math>-3</math></sup> and that of B = gases is- | s gas 'A' and 1 dm <sup>3</sup> flas<br>1.5 gm dm <sup>-3</sup> and the i        | sk contains gas 'B' at the molar mass of A = 1/2 of | same temperature. If density of $A = 3.0$ B, then the ratio of pressure exerted by |
|          | (1) $P_{A}/P_{B} = 2$                                                                           | (2) $P_{\rm A}/P_{\rm P} = 1$                                                    | (3) $P_{4}/P_{5}=4$                                 | (4) $P_{4}/P_{2} = 3$                                                              |
| Q.39     | Avogadro's number of he                                                                         | elium atom weighs                                                                | (-) · A · B                                         | ( ) · A · B                                                                        |
|          | (1) 1 gm                                                                                        | (2) 4 gm                                                                         | (3) 8 gm                                            | (4) 4 x 6.02 x 10 <sup>23</sup> gm                                                 |
| Q.40     | Equal volumes of all gas                                                                        | ses under the same co                                                            | nditions of temperature a                           | and pressure contain equal number of                                               |
|          | (1) Atoms                                                                                       | (2) Molecules                                                                    | (3) Radicals                                        | (4) Compound atoms.                                                                |
| Q.41     | Two flasks A and B of 50 flasks will contain -                                                  | 00 ml each are respec                                                            | tively filled with O <sub>2</sub> and               | SO <sub>2</sub> at 300 K and 1 atm. pressure. The                                  |
|          | (1) The same number of                                                                          | atoms                                                                            | (2) The same number of                              | of molecules                                                                       |
|          | (3) More number of mol                                                                          | es in flask A as compa                                                           | ared to flask B                                     |                                                                                    |
| _        | (4) The same amount of                                                                          | gases                                                                            | $\sim$                                              |                                                                                    |
| Q.42     | Number of molecules in                                                                          | one litre of water is clo                                                        | ose to                                              |                                                                                    |
|          | (1) 18 x 6.023 x 10 <sup>23</sup>                                                               |                                                                                  | (2) $\frac{18}{22.4 \times 10^{23}}$                |                                                                                    |
|          | (3) 55.5 x 6.023 x 10 <sup>23</sup>                                                             |                                                                                  | (4) None of these                                   |                                                                                    |
| Q.43     | While He is allowed to ex                                                                       | kpand through a small j                                                          | et under adibetic conditio                          | on heating effect is observed. This is due                                         |
|          | to the fact that                                                                                |                                                                                  |                                                     |                                                                                    |
|          | (1) Helium is an inert ga                                                                       | S                                                                                | (2) Helium is a noble g                             | as                                                                                 |
|          | (3) Helium is an ideal ga                                                                       | is                                                                               | (4) The inversion temp                              | . of helium is very low                                                            |
| Q.44     | A gas 'A' having molecu                                                                         | lar weight 4 diffuses th                                                         | nrice as fast as the gas E                          | B. The molecular weight of gas B is                                                |
| 0.45     | (1) 36<br>The increase in a second second                                                       | (2) 12                                                                           | (3) 18                                              | (4) 24                                                                             |
| Q.45     | 1 ne increasing order of                                                                        | effusion among the ga                                                            | (2) H NH O CO                                       | U <sub>2</sub> IS                                                                  |
|          | $(1) \Pi_2, CO_2, N\Pi_3, O_2$                                                                  |                                                                                  | $(2) \Pi_2, \Pi \Pi_3, U_2, UU_2$                   |                                                                                    |
| 0.46     | (3) $\Pi_2$ , $\Theta_2$ , $\Pi\Pi_3$ , $\Theta_2$<br>The rate of diffusion of n                | aethana at a given tem                                                           | (4) $CO_2$ , $O_2$ , $N\Pi_3$ , $\Pi_2$             | a gas X. The molecular weight of X is                                              |
| Q.40     | (1) 6/                                                                                          | (2) 32                                                                           |                                                     |                                                                                    |
| Q 47     | A gas X diffuses three ti                                                                       | mes faster than anoth                                                            | er gas Y the ratio of the                           | ir densities i.e. D.:D. is                                                         |
| <b>.</b> | (1) 1/3                                                                                         | (2) 1/9                                                                          | (3) 1/6                                             | (4) $1/12$                                                                         |
| Q.48     | A gas is found to have a                                                                        | formula [CO] If its-v                                                            | apour density is 70 the v                           | value of x is                                                                      |
|          | (1) 2.5                                                                                         | (2) 3.0                                                                          | (3) 5.0                                             | (4) 6.0                                                                            |
| Q.49     | The density of a gas is e moles and $M -$ molecular                                             | equal to ? (P = pressure                                                         | e; V = volume; T = tempe                            | erature, R = gas constant, n = number of                                           |
|          | (1) nP                                                                                          | (2) PM / RT                                                                      | (3) P / RT                                          | (4) M/V                                                                            |
| Q.50     | In which of the following                                                                       | pairs the gaseous spe                                                            | cies diffuse through a po                           | prous plug with the same rate of diffusion                                         |
| <b></b>  | (1) NO, CO                                                                                      | (2) NO, CO <sub>2</sub>                                                          | (3) NH <sub>3</sub> , PH <sub>3</sub>               | (4) NO, $C_2H_6$                                                                   |

|                                      | Gases deviate from ideal gas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | s benaviour at higi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n pressure. Which of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | e following is correct for non ideality                                                                                                                                                                                                                                                             |
|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                      | (1) At high pressure, the colli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ision between the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | gas molecules become                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | es enormous                                                                                                                                                                                                                                                                                         |
|                                      | (2) At high pressure, the gas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | molecules move                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | only in one direction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                     |
|                                      | (3) At high pressure, the volu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ime of gas becom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | es insignificant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                     |
|                                      | (4) At high pressure the inter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | molecular interac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | tion become significant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                     |
| Q.52                                 | If saturated vapours are con                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | npressed slowly (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | temperature remaining                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | constant) to half the initial volume, the                                                                                                                                                                                                                                                           |
|                                      | vapour pressure will                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                     |
|                                      | (1) Become four times (2) I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Become doubled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (3) Remain unchanged                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | I (4) Become half                                                                                                                                                                                                                                                                                   |
| Q.53                                 | If a gas is expanded at consta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ant temperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                     |
|                                      | (1) Number of molecules of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | he das decreases                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                     |
|                                      | (2) The kinetic energy of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | molecule decreas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | es                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                     |
|                                      | (3) The kinetic energy of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | molecules remair                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | is the same                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                     |
|                                      | (4) The kinetic energy of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | molecules increa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ses                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                     |
| Q.54                                 | Four rubber tubes are respec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ctively filled with F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | lo. Oo. No and He. The t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ube which will be reinflated first is                                                                                                                                                                                                                                                               |
|                                      | (1) $H_{o}$ filled tube (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $O_{\circ}$ filled tube                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (3) N <sub>o</sub> filled tube                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (4) He filled tube                                                                                                                                                                                                                                                                                  |
| Q 55                                 | A vessel has two equal com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | partments A and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $R_{\rm containing}$ H <sub>a</sub> and $O_{\rm a}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | respectively each at 1 atm pressure If                                                                                                                                                                                                                                                              |
| 4.00                                 | the wall separating the comp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | artment is remove                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ed, the pressure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                     |
|                                      | (1) Will remain unchanged in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A and B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (2) Will increase in A a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | and decrease in B                                                                                                                                                                                                                                                                                   |
|                                      | (3) Will decrease in A and in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | crease in B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (4) Will increase in bo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | th A and B                                                                                                                                                                                                                                                                                          |
| Q.56                                 | The P of real gases is less th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nan the o of an ide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | eal gas because.of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                     |
|                                      | (1) Increase in number of col                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | lisions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (2) 'Finite size of mole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | cule                                                                                                                                                                                                                                                                                                |
|                                      | (3) Increase in KE of molecul                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | les                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (4) Intermolecular force                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | es                                                                                                                                                                                                                                                                                                  |
| Q.57                                 | In the Haber process metallic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | oxides catalvse r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | eaction between gaseou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | us nitrogen and hydrogen to vield ammo-                                                                                                                                                                                                                                                             |
|                                      | nia whose volume (STP) rela                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | tive to the total vo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | lume of reactants (STP)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | would be                                                                                                                                                                                                                                                                                            |
|                                      | (1) One-fourth (2) H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Half                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (3) The same                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (4) Three - fourth                                                                                                                                                                                                                                                                                  |
| Q.58                                 | A flask of methane ( $CH_{4}$ ) was                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | s weighed. Metha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ne was then pushed out                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | t and the flask again weighed when filled                                                                                                                                                                                                                                                           |
|                                      | with oxygen at the same tem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | perature and pres                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | sure. The mass of oxyg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | jen would be                                                                                                                                                                                                                                                                                        |
|                                      | with oxygen at the barrie term                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                     |
|                                      | (1) The same as the methane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (2) Half of the methane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Э.                                                                                                                                                                                                                                                                                                  |
|                                      | <ul><li>(1) The same as the methane</li><li>(3) Double of that of methane</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <ul><li>(2) Half of the methane</li><li>(4) Negligible in compare</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | e.<br>arison to that of methane                                                                                                                                                                                                                                                                     |
| Q.59                                 | <ul><li>(1) The same as the methane</li><li>(3) Double of that of methane</li><li>A balloon filled with methane</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | e<br>(CH <sub>4</sub> ) is pricked v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (2) Half of the methane<br>(4) Negligible in compa<br>with a sharp point and q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | e.<br>arison to that of methane<br>uickly plunged into a tank of hydrogen at                                                                                                                                                                                                                        |
| Q.59                                 | <ul> <li>(1) The same as the methane</li> <li>(3) Double of that of methane</li> <li>A balloon filled with methane</li> <li>the same pressure. After son</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | e<br>( $CH_4$ ) is pricked v<br>netime, the balloc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (2) Half of the methane<br>(4) Negligible in compa<br>with a sharp point and q<br>on will have -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | e.<br>arison to that of methane<br>uickly plunged into a tank of hydrogen at                                                                                                                                                                                                                        |
| Q.59                                 | <ul> <li>(1) The same as the methane</li> <li>(3) Double of that of methane</li> <li>A balloon filled with methane</li> <li>the same pressure. After son</li> <li>(1) Enlarged</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $(CH_4)$ is pricked v<br>netime, the balloc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (2) Half of the methane<br>(4) Negligible in compa<br>with a sharp point and q<br>on will have -<br>(2) Collapsed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | e.<br>arison to that of methane<br>uickly plunged into a tank of hydrogen at                                                                                                                                                                                                                        |
| Q.59                                 | <ul> <li>(1) The same as the methane</li> <li>(3) Double of that of methane</li> <li>A balloon filled with methane</li> <li>the same pressure. After son</li> <li>(1) Enlarged</li> <li>(3) Remain unchanged in size</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                             | e $(CH_4)$ is pricked v<br>netime, the balloc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <ul> <li>(2) Half of the methane</li> <li>(4) Negligible in company</li> <li>with a sharp point and quantum will have -</li> <li>(2) Collapsed</li> <li>(4) Ethylene (C<sub>2</sub>H<sub>4</sub>) in</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | e.<br>arison to that of methane<br>uickly plunged into a tank of hydrogen at<br>side it                                                                                                                                                                                                             |
| Q.59<br>Q.60                         | <ul> <li>(1) The same as the methane</li> <li>(3) Double of that of methane</li> <li>A balloon filled with methane</li> <li>the same pressure. After son</li> <li>(1) Enlarged</li> <li>(3) Remain unchanged in size</li> <li>A gas approaches an ideal gas</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                      | e<br>(CH <sub>4</sub> ) is pricked w<br>netime, the balloc<br>e<br>as behaviour wher                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <ul> <li>(2) Half of the methane</li> <li>(4) Negligible in company</li> <li>with a sharp point and quantum will have -</li> <li>(2) Collapsed</li> <li>(4) Ethylene (C<sub>2</sub>H<sub>4</sub>) in the second s</li></ul>                   | e.<br>arison to that of methane<br>uickly plunged into a tank of hydrogen at<br>side it                                                                                                                                                                                                             |
| Q.59<br>Q.60                         | <ul> <li>(1) The same as the methane</li> <li>(3) Double of that of methane</li> <li>(3) Double of that of methane</li> <li>A balloon filled with methane</li> <li>the same pressure. After som</li> <li>(1) Enlarged</li> <li>(3) Remain unchanged in size</li> <li>A gas approaches an ideal gas</li> <li>(1) Compressed to a smaller</li> </ul>                                                                                                                                                                                                                                                                                                          | e $(CH_4)$ is pricked with the balloc e as behaviour where $r$ volume at constant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <ul> <li>(2) Half of the methane</li> <li>(4) Negligible in company</li> <li>with a sharp point and quantum will have -</li> <li>(2) Collapsed</li> <li>(4) Ethylene (C<sub>2</sub>H<sub>4</sub>) in the moduli of the m</li></ul>                   | e.<br>arison to that of methane<br>uickly plunged into a tank of hydrogen at<br>side it                                                                                                                                                                                                             |
| Q.59<br>Q.60                         | <ul> <li>(1) The same as the methane</li> <li>(3) Double of that of methane</li> <li>(3) Double of that of methane</li> <li>(3) Double of that of methane</li> <li>(4) The same pressure. After some</li> <li>(1) Enlarged</li> <li>(3) Remain unchanged in size</li> <li>(3) Remain unchanged in size</li> <li>(1) Compressed to a smaller</li> <li>(2) Temperature is raised keep</li> </ul>                                                                                                                                                                                                                                                              | e<br>(CH <sub>4</sub> ) is pricked v<br>netime, the balloc<br>e<br>as behaviour wher<br>volume at consta<br>pping the volume of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <ul> <li>(2) Half of the methane</li> <li>(4) Negligible in company</li> <li>with a sharp point and quark</li> <li>(2) Collapsed</li> <li>(4) Ethylene (C<sub>2</sub>H<sub>4</sub>) in the temp.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | e.<br>arison to that of methane<br>uickly plunged into a tank of hydrogen at<br>side it                                                                                                                                                                                                             |
| Q.59<br>Q.60                         | <ul> <li>(1) The same as the methane</li> <li>(3) Double of that of methane</li> <li>(3) Double of that of methane</li> <li>(3) Double of that of methane</li> <li>(4) The same pressure. After some</li> <li>(5) Remain unchanged in size</li> <li>(6) A gas approaches an ideal gas</li> <li>(1) Compressed to a smaller</li> <li>(2) Temperature is raised kees</li> <li>(3) More gas is introduced in</li> </ul>                                                                                                                                                                                                                                        | e<br>(CH <sub>4</sub> ) is pricked w<br>netime, the balloc<br>e<br>as behaviour wher<br>volume at consta<br>sping the volume of<br>to the same volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <ul> <li>(2) Half of the methane</li> <li>(4) Negligible in company</li> <li>(4) Negligible in company</li> <li>(4) a sharp point and que on will have -</li> <li>(2) Collapsed</li> <li>(4) Ethylene (C<sub>2</sub>H<sub>4</sub>) in the same temperative of temp</li></ul>                   | e.<br>arison to that of methane<br>uickly plunged into a tank of hydrogen at<br>side it<br>ture                                                                                                                                                                                                     |
| Q.59<br>Q.60                         | <ul> <li>(1) The same as the methane</li> <li>(3) Double of that of methane</li> <li>(3) Double of that of methane</li> <li>(3) Double of that of methane</li> <li>(4) Volume is increased keep</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                  | e<br>(CH <sub>4</sub> ) is pricked whether<br>netime, the balloc<br>e<br>as behaviour whether<br>volume at consta<br>pping the volume of<br>to the same volume<br>poing the temp. cor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <ul> <li>(2) Half of the methane</li> <li>(4) Negligible in company</li> <li>(4) Negligible in company</li> <li>(4) A sharp point and que on will have -</li> <li>(2) Collapsed</li> <li>(4) Ethylene (C<sub>2</sub>H<sub>4</sub>) in the temp.</li> <li>(2) Constant</li> <li>(3) A stant</li> <li>(4) A stant</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | e.<br>arison to that of methane<br>uickly plunged into a tank of hydrogen at<br>side it<br>ture                                                                                                                                                                                                     |
| Q.59<br>Q.60<br>Q.61                 | <ul> <li>(1) The same as the methane</li> <li>(3) Double of that of methane</li> <li>(3) Double of that of methane</li> <li>(3) Double of that of methane</li> <li>the same pressure. After som</li> <li>(1) Enlarged</li> <li>(3) Remain unchanged in size</li> <li>A gas approaches an ideal gas</li> <li>(1) Compressed to a smaller</li> <li>(2) Temperature is raised keep</li> <li>(3) More gas is introduced in</li> <li>(4) Volume is increased keep</li> <li>Longest mean free path stand</li> </ul>                                                                                                                                               | e $(CH_4)$ is pricked whether the balloc $(CH_4)$ is pricked whether the balloc $C$ as behaviour where $C$ volume at constance $C$ to the same volume of the temp. correct ds for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <ul> <li>(2) Half of the methane</li> <li>(4) Negligible in company</li> <li>(4) Negligible in company</li> <li>(4) A sharp point and que on will have -</li> <li>(2) Collapsed</li> <li>(4) Ethylene (C<sub>2</sub>H<sub>4</sub>) in a stant</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | e.<br>arison to that of methane<br>uickly plunged into a tank of hydrogen at<br>side it<br>ture                                                                                                                                                                                                     |
| Q.59<br>Q.60<br>Q.61                 | (1) The same as the methane<br>(3) Double of that of methane<br>(3) Double of that of methane<br>(3) Double of that of methane<br>the same pressure. After som<br>(1) Enlarged<br>(3) Remain unchanged in size<br>A gas approaches an ideal gas<br>(1) Compressed to a smaller<br>(2) Temperature is raised keep<br>(3) More gas is introduced in<br>(4) Volume is increased keep<br>Longest mean free path stand<br>(1) Nitrogen (N <sub>2</sub> ) (2) (                                                                                                                                                                                                   | e $(CH_4)$ is pricked v<br>netime, the balloc<br>e as behaviour where<br>volume at constate<br>ping the volume of<br>to the same volume<br>bing the temp. cords for<br>Oxygen $(O_2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <ul> <li>(2) Half of the methane</li> <li>(4) Negligible in company</li> <li>(4) Negligible in company</li> <li>(2) Collapsed</li> <li>(4) Ethylene (C<sub>2</sub>H<sub>4</sub>) in</li> <li>(4) Ethylene (C<sub>2</sub>H<sub>4</sub>) in</li> <li>(5) Constant</li> <li>(6) ne at the same temperation</li> <li>(7) Hydrogen (H<sub>2</sub>)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | e.<br>arison to that of methane<br>uickly plunged into a tank of hydrogen at<br>side it<br>ture<br>(4) Chlorine (Cl <sub>2</sub> )                                                                                                                                                                  |
| Q.59<br>Q.60<br>Q.61<br>Q.62         | (1) The same as the methane<br>(3) Double of that of methane<br>A balloon filled with methane<br>the same pressure. After son<br>(1) Enlarged<br>(3) Remain unchanged in siz<br>A gas approaches an ideal ga<br>(1) Compressed to a smaller<br>(2) Temperature is raised keep<br>(3) More gas is introduced im<br>(4) Volume is increased keep<br>Longest mean free path stand<br>(1) Nitrogen (N <sub>2</sub> ) (2) O                                                                                                                                                                                                                                      | e<br>(CH <sub>4</sub> ) is pricked w<br>netime, the balloc<br>e<br>as behaviour wher<br>volume at consta<br>eping the volume of<br>to the same volum<br>bing the temp. cor<br>ds for<br>Oxygen (O <sub>2</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <ul> <li>(2) Half of the methane</li> <li>(4) Negligible in company</li> <li>(4) Negligible in company</li> <li>(2) Negligible in company</li> <li>(2) Collapsed</li> <li>(4) Ethylene (C<sub>2</sub>H<sub>4</sub>) in the same (C<sub>2</sub>H<sub>4</sub>) in the same temperation of te</li></ul> | e.<br>arison to that of methane<br>uickly plunged into a tank of hydrogen at<br>side it<br>ture<br>(4) Chlorine (Cl <sub>2</sub> )                                                                                                                                                                  |
| Q.59<br>Q.60<br>Q.61<br>Q.62         | (1) The same as the methane<br>(3) Double of that of methane<br>(3) Double of that of methane<br>A balloon filled with methane<br>the same pressure. After som<br>(1) Enlarged<br>(3) Remain unchanged in size<br>A gas approaches an ideal gas<br>(1) Compressed to a smaller<br>(2) Temperature is raised keep<br>(3) More gas is introduced in<br>(4) Volume is increased keep<br>Longest mean free path stand<br>(1) Nitrogen (N <sub>2</sub> )<br>(2) C<br>A gas can be liquefied by<br>(1) Cooling<br>(2) C                                                                                                                                           | e $(CH_4)$ is pricked with the balloc of the same volume of the temp. Consistent of the same volume of the temp. Consistent of the same volume of the temp. Consistent of the temp. Construction of temp. C | <ul> <li>(2) Half of the methane</li> <li>(4) Negligible in company</li> <li>(4) Negligible in company</li> <li>(2) Collapsed</li> <li>(4) Ethylene (C<sub>2</sub>H<sub>4</sub>) in</li> <li>(4) Ethylene (C<sub>2</sub>H<sub>4</sub>) in</li> <li>(5) Constant</li> <li>(6) The same temperation of the same temperation</li> <li>(3) Hydrogen (H<sub>2</sub>)</li> <li>(3) Both</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <ul> <li>arison to that of methane</li> <li>uickly plunged into a tank of hydrogen at</li> <li>side it</li> <li>(4) Chlorine (Cl<sub>2</sub>)</li> <li>(4) None of these.</li> </ul>                                                                                                                |
| Q.59<br>Q.60<br>Q.61<br>Q.62<br>Q.63 | (1) The same as the methane<br>(3) Double of that of methane<br>A balloon filled with methane<br>the same pressure. After som<br>(1) Enlarged<br>(3) Remain unchanged in siz<br>A gas approaches an ideal ga<br>(1) Compressed to a smaller<br>(2) Temperature is raised keep<br>(3) More gas is introduced im<br>(4) Volume is increased keep<br>Longest mean free path stand<br>(1) Nitrogen (N <sub>2</sub> ) (2) (2)<br>A gas can be liquefied by<br>(1) Cooling (2) (2)                                                                                                                                                                                | e<br>$(CH_4)$ is pricked with<br>metime, the balloc<br>e<br>as behaviour where<br>volume at constate<br>ping the volume of<br>to the same volume<br>bing the temp. corr<br>ds for<br>Oxygen (O <sub>2</sub> )<br>Compressing<br>upacity 1 Land 2L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <ul> <li>(2) Half of the methane</li> <li>(4) Negligible in company</li> <li>(4) Negligible in company</li> <li>(2) Collapsed</li> <li>(3) Hydrogen (H<sub>2</sub>)</li> <li>(3) Both</li> <li>(3) Both</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <ul> <li>arison to that of methane</li> <li>uickly plunged into a tank of hydrogen at</li> <li>side it</li> <li>(4) Chlorine (Cl<sub>2</sub>)</li> <li>(4) None of these.</li> <li>of them contains 1 mole of a gas. The</li> </ul>                                                                 |
| Q.59<br>Q.60<br>Q.61<br>Q.62<br>Q.63 | (1) The same as the methane<br>(3) Double of that of methane<br>(3) Double of that of methane<br>(3) Double of that of methane<br>the same pressure. After som<br>(1) Enlarged<br>(3) Remain unchanged in size<br>A gas approaches an ideal gas<br>(1) Compressed to a smaller<br>(2) Temperature is raised keep<br>(3) More gas is introduced in<br>(4) Volume is increased keep<br>Longest mean free path stand<br>(1) Nitrogen (N <sub>2</sub> ) (2) (2)<br>A gas can be liquefied by<br>(1) Cooling (2) (2) (2)<br>Two flasks X and Y have can<br>temperature of the flask are                                                                          | e $(CH_4)$ is pricked with the balloc in th | <ul> <li>(2) Half of the methane</li> <li>(4) Negligible in company</li> <li>(4) Negligible in company</li> <li>(2) Collapsed</li> <li>(3) Hydrogen (H<sub>2</sub>)</li> <li>(3) Both</li> <li>(3) Both</li> <li>(3) Respectively and each</li> <li>(4) a speed of mole</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <ul> <li>arison to that of methane</li> <li>uickly plunged into a tank of hydrogen at</li> <li>side it</li> <li>(4) Chlorine (Cl<sub>2</sub>)</li> <li>(4) None of these.</li> <li>of them contains 1 mole of a gas. The</li> <li>lecules in X is twice as those in Y. The</li> </ul>               |
| Q.59<br>Q.60<br>Q.61<br>Q.62<br>Q.63 | (1) The same as the methane<br>(3) Double of that of methane<br>the same pressure. After som<br>(1) Enlarged<br>(3) Remain unchanged in siz<br>A gas approaches an ideal ga<br>(1) Compressed to a smaller<br>(2) Temperature is raised keep<br>(3) More gas is introduced im<br>(4) Volume is increased keep<br>Longest mean free path stand<br>(1) Nitrogen (N <sub>2</sub> ) (2) (2)<br>A gas can be liquefied by<br>(1) Cooling (2) (2)<br>Two flasks X and Y have can<br>temperature of the flask are<br>pressure in flask X would be               | e<br>$(CH_4)$ is pricked with<br>metime, the balloc<br>e<br>as behaviour where<br>volume at constate<br>eping the volume of<br>to the same volume<br>to the same volume<br>of the temp. corr<br>ds for<br>Oxygen (O <sub>2</sub> )<br>Compressing<br>upacity 1 Land 2L<br>so adjusted that                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <ul> <li>(2) Half of the methane</li> <li>(4) Negligible in company</li> <li>(4) Negligible in company</li> <li>(2) Collapsed</li> <li>(3) Ethylene (C<sub>2</sub>H<sub>4</sub>) in the same temperation of the same tem</li></ul>                   | <ul> <li>arison to that of methane</li> <li>uickly plunged into a tank of hydrogen at</li> <li>side it</li> <li>(4) Chlorine (Cl<sub>2</sub>)</li> <li>(4) None of these.</li> <li>of them contains 1 mole of a gas. The</li> <li>lecules in X is twice as those in Y. The</li> </ul>               |
| Q.59<br>Q.60<br>Q.61<br>Q.62<br>Q.63 | (1) The same as the methane<br>(3) Double of that of methane<br>(3) Double of that of methane<br>(3) Double of that of methane<br>the same pressure. After som<br>(1) Enlarged<br>(3) Remain unchanged in size<br>A gas approaches an ideal gas<br>(1) Compressed to a smaller<br>(2) Temperature is raised keep<br>(3) More gas is introduced in<br>(4) Volume is increased keep<br>Longest mean free path stand<br>(1) Nitrogen (N <sub>2</sub> ) (2) (2)<br>A gas can be liquefied by<br>(1) Cooling (2) (2) (2)<br>Two flasks X and Y have can<br>temperature of the flask are<br>pressure in flask X would be<br>(1) Same as that in Y                 | e $(CH_4)$ is pricked whether the balloc<br>e as behaviour where $r$ volume at constate<br>pping the volume of to the same volume of to the same volume of the temp. conds for<br>Oxygen (O <sub>2</sub> )<br>Compressing<br>pacity 1 Land 2L<br>e so adjusted that                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <ul> <li>(2) Half of the methane</li> <li>(4) Negligible in company</li> <li>(4) Negligible in company</li> <li>(2) Collapsed</li> <li>(3) Ethylene (C<sub>2</sub>H<sub>4</sub>) in the same temperation of temperation of temperation of temperation of temperation of temperation of temperati</li></ul>                   | <ul> <li>arison to that of methane</li> <li>uickly plunged into a tank of hydrogen at</li> <li>side it</li> <li>ture</li> <li>(4) Chlorine (Cl<sub>2</sub>)</li> <li>(4) None of these.</li> <li>of them contains 1 mole of a gas. The</li> <li>lecules in X is twice as those in Y. The</li> </ul> |
| Q.59<br>Q.60<br>Q.61<br>Q.62<br>Q.63 | (1) The same as the methane<br>(3) Double of that of methane<br>(3) Double of that of methane<br>(3) Double of that of methane<br>the same pressure. After som<br>(1) Enlarged<br>(3) Remain unchanged in siz<br>A gas approaches an ideal ga<br>(1) Compressed to a smaller<br>(2) Temperature is raised keep<br>(3) More gas is introduced im<br>(4) Volume is increased keep<br>Longest mean free path stand<br>(1) Nitrogen (N <sub>2</sub> ) (2) O<br>A gas can be liquefied by<br>(1) Cooling (2) O<br>Two flasks X and Y have can<br>temperature of the flask are<br>pressure in flask X would be<br>(1) Same as that in Y<br>(3) Twice of that in Y | e<br>$(CH_4)$ is pricked with<br>metime, the balloc<br>e<br>as behaviour where<br>volume at constate<br>eping the volume of<br>to the same volume<br>to the same volume<br>of the temp. cond<br>ds for<br>Oxygen (O <sub>2</sub> )<br>Compressing<br>upacity 1 Land 2L<br>is so adjusted that                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <ul> <li>(2) Half of the methane</li> <li>(4) Negligible in comparison with a sharp point and quark on will have -</li> <li>(2) Collapsed</li> <li>(4) Ethylene (C<sub>2</sub>H<sub>4</sub>) in the constant</li> <li>(2) Collapsed the same temperation of the same tem</li></ul>                   | <ul> <li>arison to that of methane</li> <li>uickly plunged into a tank of hydrogen at</li> <li>side it</li> <li>(4) Chlorine (Cl<sub>2</sub>)</li> <li>(4) None of these.</li> <li>of them contains 1 mole of a gas. The</li> <li>lecules in X is twice as those in Y. The</li> </ul>               |



Q.78 The root mean square velocity of an ideal gas in a closed container of fixed volume is increased from 5 x 10<sup>4</sup> cm. s<sup>-1</sup> to 10 x 10<sup>4</sup> cm. s<sup>-1</sup>. Which of the following statements might correctly explain how the change accomplished (1) By heating the gas, the temperature is doubled (2) By heating the gas, the pressure is made four times (3) By heating the gas, the volume is tripled' (4) By heating the gas, the pressure is doubled. Q.79 With increase in pressure, the mean free path (2) Becomes zero (1) Increases. (3) Decreases (4) Remains constant Q.80 If the mean free path is I at one atm pressure then its value at 5 atm pressure (2)  $\frac{2}{5}l$ (3)  $\frac{\ell}{5}$ (1) 5l(4) Unpredictable. Q.81 The free path of a gas molecule is the distance (1) Between the two opposite walls of the container (2) Which molecules travel inone second (3) Through which a molecule moves between two successive collisions (4) None of these Which of the following substances can be used for drying of gases Q.82 (3) CaO  $(1) P_2 O_5$  $(2) H_2 SO_4$ (4) all Q.83 With increase of pressure, the mean free path (1) Decreases (2) Increases (3) Becomes zero (4) Remains same Q.84 Collision frequency (Z) of a gas at a particular pressure (1) Decreases with the rise in temperature (2) Increases with the rise in temperature (3) Decreases initially and thereafter increases (4) Unpredictable. Q.85 If X is the total number of collision which a gas molecule registers with others per a gas molecule registers with others per unit time under particular conditions, then the collision frequency of the gas containing N molecules per unit volume is (1) X/N (3) 2NX (4) NX/2 WWW.

Answer Key - 1

| Qus. | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 |
|------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| Ans. | 2  | 1  | 3  | 2  | 4  | 1  | 4  | 2  | 1  | 3  | 3  | 3  | 4  | 1  | 1  | 4  | 4  | 2  | 2  | 2  | 1  | 2  | 1  | 4  | 4  |
| Qus. | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 |
| Ans. | 1  | 2  | 2  | 1  | 2  | 4  | 2  | 1  | 2  | 2  | 1  | 3  | 3  | 2  | 2  | 2  | 3  | 4  | 1  | 4  | 1  | 2  | 3  | 2  | 4  |
| a.p  | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | ខ  | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 |
| Ans. | 4  | 3  | 3  | 1  | 1  | 4  | 2  | 3  | 1  | 4  | 3  | 3  | 4  | 3  | 3  | 1  | 3  | 3  | 3  | 1  | 2  | 4  | 4  | 4  | 3  |
| Qus. | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| Ans. | 1  | 1  | 2  | 3  | 3  | 3  | 4  | 1  | 2  | 4  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |



| Q.1  | If the collision frequenc                          | y of a gas at 1 atm pre     | essure is Z then its collisi                       | ion frequency at 0.5 atm. is                 |
|------|----------------------------------------------------|-----------------------------|----------------------------------------------------|----------------------------------------------|
|      | [1]1.0Z                                            | [2] 0.707Z                  | [3] 2 Z                                            | [4] 0.50 Z                                   |
| Q.2  | The correct expression                             | for the vander waal's e     | equation of states is-                             |                                              |
|      | [1] (p + a/n <sup>2</sup> V <sup>2</sup> ) (V - nb | o) = nRT                    | [2] (p + an <sup>2</sup> /V <sup>2</sup> ) (V - nt | b) = $\Delta nRT$                            |
|      | $[3] (p + an^2/V^2) (V - b)$                       | = nRT                       | [4] (p + an <sup>2</sup> /V <sup>2</sup> ) (V - nt | b) = nRT                                     |
| Q.3  | The term that accounts                             | for intermolecular force    | e in vander Waal's equat                           | tion" for non ideal gas is                   |
|      | [1] RT                                             | [2] V - b                   | [3] (P + a / V <sup>2</sup> )                      | [4] [RT] <sup>-1</sup>                       |
| Q.4  | The critical temperature                           | e of a substance is         |                                                    |                                              |
|      | [1] The temperature abo                            | ove which the substanc      | e undergoes decomposi                              | ition                                        |
|      | [2] The temperature ab                             | ove which a substance       | e can exist only as a ga,s                         | 5                                            |
|      | [3] Boiling point of the s                         | ubstance                    |                                                    | [4] All are wrong                            |
| Q.5  | Critical temperature of t                          | he gas is the temperat      | ure                                                |                                              |
|      | [1] Below which it cannot                          | ot be liquified             | [2] Above which it canr                            | not be liquified                             |
|      | [3] At which it occupies                           | 22.4 L of volume            | [4] At which one mole                              | of it occupies volume of 22.4 L              |
| Q.6  | Molecular attraction and                           | d size of the molecules     | s in a gas are negligible a                        | at                                           |
|      | [1] Critical point                                 |                             | [2] High pressure                                  | $\sim$                                       |
|      | [3] High temperature an                            | d low pressure              | [4] Low temperature ar                             | nd high pressure.                            |
| Q.7  | A box of 1 L capacity is                           | divided into two equal      | compartments by a thin                             | partition which are filled with $2g H_2$ and |
|      | 16gm CH <sub>4</sub> respectively                  | . The pressure in eac       | h compartment is record                            | ded as P atm. The total pressure when        |
|      | partition is removed will                          | be                          |                                                    |                                              |
| • •  | [1] P                                              | [2] 2P                      | [3] P/2                                            | [4] P/4                                      |
| Q.8  | Which mixture of gases                             | at room temperature o       | does not obey Dalton's la                          | aw of parttarpressure                        |
| • •  | [1] NO <sub>2</sub> and O <sub>2</sub>             | [2] NH <sub>3</sub> and HCI | [3] CO and CO <sub>2</sub>                         | [4] $SO_2$ and $SO_3$                        |
| Q.9  | Average K. E. of CO <sub>2</sub> a                 | t 27°C is E. The averag     | be kinetic energy of N <sub>2</sub> a              | it the same temperature will be              |
|      | [1] E                                              | [2] 22E                     | [3] E/22                                           | [4] E / √2                                   |
| Q.10 | Helium atom is twice tin                           | nes heavier than a hyd      | lrogen molecule. At 25°C                           | C the average KE.of helium atom is           |
|      | [1] Twice that of hydroge                          | en                          | [2] Same as that of hyd                            | drogen                                       |
|      | [3] Four times that of hy                          | vdrogen                     | [4] Half that of hydroge                           | en.                                          |
| Q.11 | The rate of diffusion of h                         | nydrogen is about           |                                                    |                                              |
|      | [1] One half that of He                            |                             | [2] 1.4 times that of He                           | e                                            |
|      | [3] Twice that of He                               |                             | [4] Four times that of H                           | le                                           |
| Q.12 | The velocity possessed                             | by most of the gaseou       | us molecules is                                    |                                              |
|      | [1] Average velocity                               |                             | [2] Most probable velo                             | city                                         |
|      | [3] R.M.S. velocity                                |                             | [4] None of these.                                 |                                              |
| Q.13 | Which is not true in cas                           | e of an ideal gas           |                                                    |                                              |
|      | [1] It can be converted i                          | nto a liquid                | [2] There is no interact                           | ion between the molecules                    |
|      | [3] All molecules of the                           | gas move with same s        | peed                                               |                                              |
|      | [4] At a given temperatu                           | ure PV is proportional t    | to the amount of the gas                           |                                              |
| Q.14 | A 2.24L cyclinder of ox                            | xygen at N. T. P. is fou    | ind to develop a leakag                            | e. When the leakage was plugged the          |
|      | pressure dropped to 57                             | 0 mm of Hg. The numb        | per of moles of gas that e                         | escaped will be                              |
|      | [1] 0.025                                          | [2] 0.050                   | [3] 0.075                                          | [4] 0.09                                     |
| Q.15 | A tootball bladder contain                         | Ins equimolar proportio     | ns of $H_2$ and $O_2$ . The con                    | nposition by mass of the mixture effusing    |
|      |                                                    |                             |                                                    |                                              |
|      | [1] 1:4                                            | [2] 2. √2 : 1               | [3] 1 : 2 √2                                       | [4] 4: 1                                     |

| Q.16 | Which of the following s                             | amples weighing 10g.                                                     | . contains the greatest nu                           | umber of atoms -                            |
|------|------------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------|---------------------------------------------|
|      | [1] NH <sub>3</sub>                                  | [2] O <sub>2</sub>                                                       | [3] C <sub>2</sub> H <sub>6</sub>                    | [4] CO <sub>2</sub>                         |
| Q.17 | At constant temperature a one litre flask. The final | e 200 cm <sup>3</sup> of N <sub>2</sub> at 720<br>al pressure of mixture | ) mm and 400 cm <sup>3</sup> of O <sub>2</sub><br>is | at 750 mm pressure are put together in      |
|      | [1] 111 mm                                           | [2] 222 mm                                                               | [3] 333 mm                                           | [4] 444 mm                                  |
| Q.18 | 10 gm of a gas at NTP of                             | occupies 5 litres. The to                                                | emp. at which the volume                             | e becomes double for the same mass of       |
|      | gas at the same pressu                               |                                                                          | [0] 07000                                            | [4] 54690                                   |
| 0.10 | $\begin{bmatrix} 1 \end{bmatrix} 273 \text{ K}$      | [z] - 273 C                                                              | [3] 273 C                                            | [4] 540 C                                   |
| Q.13 | gas to behave like and i                             | deal gas                                                                 |                                                      | stant, noids. When do you expect a real     |
|      | [1] When temperature a                               | and pressure are low                                                     |                                                      |                                             |
|      | [2] When temperature a                               | ind pressure are high                                                    |                                                      |                                             |
|      | [3] When temperature is                              | s low and pressure is h                                                  | nigh                                                 |                                             |
|      | [4] When temperature is                              | s high and pressure is                                                   | low.                                                 |                                             |
| Q.20 | 26 c.c. of CO <sub>2</sub> are pass                  | ed over red. hot coke.                                                   | The volume of CO evolve                              | ed is                                       |
|      | [1] 15 c.c                                           | [2] 10 c.c.                                                              | [3] 32 c.c.                                          | [4] None                                    |
| Q.21 | The oxygen and hydrog                                | en formed during elec                                                    | trolysis of Water are in th                          | e weight ratio of                           |
|      | [1] 2 : 1                                            | [2] 8 : 1                                                                | [3] 16 : 1                                           | [4] 1 : 8                                   |
| Q.22 | If temperature and volu                              | me are same; the pres                                                    | sure of a gas obeying Va                             | nder Waals equation is                      |
|      | [1] Smaller than that of                             | an ideal gas                                                             | [2] Larger than that of a                            | an ideal gas                                |
|      | [3] Same as that of an i                             | deal gas                                                                 | [4] None of these.                                   |                                             |
| Q.23 | An open vessel containi                              | ng air is heated from 2                                                  | 7°C to 127°C. The fractio                            | n of air originally present which goes out  |
|      | of it is                                             |                                                                          | -0                                                   |                                             |
|      | $[1]\frac{3}{4}$                                     | $[2] \frac{1}{4}$                                                        | $[3] \frac{2}{2}$                                    | [4] $\frac{1}{8}$                           |
|      | 4                                                    | 4                                                                        |                                                      | 0                                           |
| Q.24 | A closed vessel contair                              | ns equal number of ox                                                    | ygen and hydrogen mol                                | ecules at a total pressure of 740 mm. If    |
|      | 0xygen is removed from                               | n the system, the pres                                                   | Sure -                                               | d                                           |
|      | [3] Becomes 1/9th of 7                               | 10 mm                                                                    | [2] Remains unchange                                 | 240 mm                                      |
| 0 25 | Which of the following in                            | s valid at absolute zero                                                 |                                                      |                                             |
| Q.20 | [1] KE of the gas becon                              | nes zero, but molecula                                                   | ar motion does not becor                             | ne zero                                     |
|      | [2] KE of the gas becom                              | nes zero and the mole                                                    | cular motion also becom                              | nes zero.                                   |
|      | [3] KE of the gas decrea                             | ases but does not bec                                                    | ome zero.                                            |                                             |
|      | [4] None of these.                                   |                                                                          |                                                      |                                             |
| Q.26 | If a gas is expanded at                              | constant temperature                                                     |                                                      |                                             |
|      | [1] The pressure decrea                              | ises                                                                     | [2] The K.E. of molecu                               | les remains the same                        |
|      | [3] The K.E. ofthemolec                              | ules decreases                                                           | [4] The No. of molecule                              | es of the gas increases.                    |
| Q.27 | Which of the following g                             | jas when passed throu                                                    | ugh dilute blood will impa                           | rts a cherry red colour to the solution     |
|      | [1] CO <sub>2</sub>                                  | [2] COCI <sub>2</sub>                                                    | [3] NH <sub>3</sub>                                  | [4] CO                                      |
| Q.28 | Most probable velocity,                              | average velocity and re                                                  | oot mean square velocity                             | are related as                              |
|      | [1] 1:1.128 :1.224                                   | [2]1:1.128:1.424                                                         | [3]1:2.128:1.224                                     | [4]1:1.428:1.442                            |
| Q.29 | The behaviour of tempo                               | orary gases like CO <sub>2</sub> a                                       | pproaches that of perma                              | nent gases like $N_2$ , $O_2$ etc. as we go |
|      | [1] Below critical temp.                             |                                                                          | [2] Above critical temp                              |                                             |
|      | [3] Above absolute zero                              | )                                                                        | [4] Below absolute zer                               | 0.                                          |

| Q.30           | Which of the following                | gases is adsorbed stron                | ngly by charcoal                      |                                                                              |
|----------------|---------------------------------------|----------------------------------------|---------------------------------------|------------------------------------------------------------------------------|
|                | [1] CO                                | [2] N <sub>2</sub>                     | [3] H <sub>2</sub>                    | [4] NH <sub>3</sub>                                                          |
| Q.31           | Which of the following                | does not change during                 | compression of a gas a                | at constant temperature                                                      |
|                | [1] Density of a gas                  |                                        | [2] The distance betwe                | een molecules                                                                |
|                | [3] Average velocity of               | molecules                              | [4] The number of col                 | lisions on one sq. cm per sec.                                               |
| Q.32           | To which of the followi               | ng gaseous mixture, the                | e Dalton's law of partial p           | pressure will not apply                                                      |
|                | [1] Hydrogen and carb                 | on dioxide                             | [2] Hydrogen and nitro                | ogen                                                                         |
|                | [3] Nitric oxide and ox               | ygen                                   | [4] Oxygen and nitrog                 | en.                                                                          |
| Q.33           | Reducing the pressure                 | e from 1.0 atm to 0.5 atm              | would change the num                  | ber of molecules in one mole of ammonia                                      |
|                | to -                                  |                                        |                                       |                                                                              |
|                | [1] 75% of initial volum              | 1e                                     | [2] 50% of initial volun              | ne                                                                           |
|                | [3] 25% of initial volum              | 1e                                     | [4] None ofthese                      |                                                                              |
| Q.34           | In a closed flask of 5li              | tres, 1.0 gm of H <sub>2</sub> is hea  | ated from 300 to 600 K.               | Which statem.ent is not correct                                              |
|                | [1] Pressure of the ga                | sincreases                             | [2] The rate of collision             | n increases                                                                  |
|                | [3] The number of mol                 | es of gas increases                    | [4] The energy of gase                | eous molecules increases.                                                    |
| Q.35           | In case of hydrogen ar                | nd helium the Vander Wa                | aals-forces are                       |                                                                              |
| <b>•</b> • • • | [1] Strong                            | [2] Very strong                        | [3] Weak                              | [4] Very weak                                                                |
| Q.36           | Which of the following                | represents the avogadro                | o number                              |                                                                              |
|                | [1] Number of molecu                  | les present-in 1 L of gas              | s at N.I.P.                           | •                                                                            |
|                | [2] Number of molecu                  | les present in 22.4 millo              | r gas at N. I. P.                     |                                                                              |
|                | [3] Number of molecu                  | les present in 22.4 L OI (             | gas at 298K and Tatm.                 |                                                                              |
| 0.37           | The mean values of de                 | ies present in one mole                | urated vapour for any st              | able substance are a linear function of                                      |
| Q.37           |                                       | [2] Pressure                           |                                       | [4] None offhese                                                             |
| Q 38           | Adiabatic demagnetis                  | ation is a technique use               | of for -                              |                                                                              |
| Q.00           | [1] Adiabatic expansio                | on of a das                            | [2] Production of low to              | emperature                                                                   |
|                | [3] Production of high t              | temperatures                           | [4] None of these                     |                                                                              |
| Q.39           | Which of the following                | can be most readily liqu               | efied? Given value of 'a              | ' for NH <sub>2</sub> = 4.17. CO <sub>2</sub> = 3.59. SO <sub>2</sub> = 6.71 |
|                | Cl <sub>2</sub> = 6.49)               |                                        |                                       | 5 <i>i</i> 2 <i>i</i> 2                                                      |
|                | [1] NH <sub>3</sub>                   | [2] Cl <sub>2</sub>                    | [3] SO <sub>2</sub>                   | [4] CO <sub>2</sub>                                                          |
| Q.40           | Which of the following                | is true                                | -                                     | _                                                                            |
|                | [1] $u_{rms} > \overline{v} > \alpha$ | [2] u <sub>rms</sub> < ⊽ < α           | $[3] u_{rms} > \overline{v} < \alpha$ | [4] $u_{rms} < \overline{v} > \alpha$                                        |
| Q.41           | Hydrogen and Argon a                  | are kept in two separate               | vessels at constant tem               | perature and pressure                                                        |
|                | [1] Both contain same                 | number of atoms                        | [2] The number of ato                 | ms of argon is half that of hydrogen.                                        |
|                | [3] The number of ator                | ms of argon is double the              | at of hydrogen                        |                                                                              |
|                | [4] None ofthese.                     |                                        |                                       |                                                                              |
| Q.42           | The vapour densities of               | of $CH_4$ and $O_2$ are in the         | ratio 1:2. The ratio of r             | rates of diffusions of $O_2$ and $CH_4$ at same                              |
|                | P and T is                            |                                        |                                       |                                                                              |
|                | [1] 1: 2                              | [2] 2 : 1                              | [3] 1 : 1.424                         | [4] 1 : 414 : 1                                                              |
| Q.43           | In a closed flask of 5 I              | itre, 1.0g of H <sub>2</sub> is heated | d from 300 to 600K. Wh                | ich statement is not correct                                                 |
|                | [1] Pressure of the gas               | s increases                            | [2] The rate of collision             | n increases                                                                  |
|                | [3] The number of mol                 | es of gas increases                    | [4] The energy of gase                | eous molecules increases                                                     |
| Q.44           | If pressure of a gas con<br>must be   | ntained in a closed vess               | el is increased by 0.4% v             | when heated by 1°C its initial temperature                                   |
|                | [1] 250K                              | [2] 250°C                              | [3] 2500K                             | [4] 25°C                                                                     |

| Q.45 | The volume of ammonia                           | a obtained by the comb          | ination of 10ml of N <sub>2</sub> and | d 30ml H <sub>2</sub> is                 |
|------|-------------------------------------------------|---------------------------------|---------------------------------------|------------------------------------------|
|      | [1] 20ml                                        | [2] 40ml                        | [3] 30ml                              | [4] 10ml                                 |
| Q.46 | There is 10 litre of a gas                      | at STP. Which of the f          | ollowing changes keeps                | the volume constant                      |
|      | [1] 273 K and 2 atm                             | [2] 273°C and 2 atm             | [3] 546°C and 0.5 atm                 | [4] 0°C and 0 atm                        |
| Q.47 | The density of oxygen g density twice the value | as at 25°C is 1.458 mg          | g/litre at one atmosphere             | . At what pressure will oxygen have the  |
|      | [1] 0.5 atm/25°C                                | [2] 2 atm/25°C                  | [3] 4 atm/25°C                        | [4] None                                 |
| Q.48 | Air contains 79% N <sub>2</sub> an oxygen is    | d 21% O <sub>2</sub> by volume. | If the barometric pressu              | re is 750mm Hg the partial pressure of   |
|      | [1] 157.7mmofHg                                 | [2] 175.5mmofHg                 | [3] 315.0mmofHg                       | [4] None                                 |
| Q.49 | At what temperature will of Ar at 400K          | be total kinetic energy         | (KE) of 0.30 mole of He I             | be the same as the total KE of 0.40 mole |
|      | [1] 400K                                        | [2] 373 K                       | [3] 533K                              | [4] 300 K                                |
| Q.50 | Four particles have spee                        | ed 2,3,4 and 5 cm/s re          | spectively. Their rms spe             | ed is                                    |
|      | [1] 3.5cm/s                                     | [2] (27/2) cm/s                 | [3] √ <u>54</u> cm/s                  | [4] ( <del>\54</del> /2) cm/s            |
|      | www                                             |                                 |                                       |                                          |

|      |    |    |    |    |    |    |    |    |    |    |    |    |    | - <b>J</b> |    | _  |    |    |    |    |    |    |    |    |    |
|------|----|----|----|----|----|----|----|----|----|----|----|----|----|------------|----|----|----|----|----|----|----|----|----|----|----|
| Qus. | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 14         | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 |
| Ans. | 2  | 4  | 3  | 2  | 2  | 3  | 1  | 2  | 1  | 2  | 2  | 2  | 1  | 1          | 4  | 3  | 4  | 3  | 4  | 4  | 2  | 1  | 2  | 1  | 2  |
| Qus. | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39         | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 |
| Ans. | 1  | 4  | 1  | 2  | 4  | 3  | 3  | 4  | 3  | 4  | 4  | 2  | 2  | 3          | 1  | 2  | 3  | 3  | 1  | 1  | 2  | 2  | 1  | 3  | 4  |

## Answer Key - 2

Exercise#3

| Q.1  | The density of the gas                                        | is equal to                                       |                                                       |                                                    | [CBSE 1991]                           |
|------|---------------------------------------------------------------|---------------------------------------------------|-------------------------------------------------------|----------------------------------------------------|---------------------------------------|
|      | (1) P/RT                                                      | (2) nP                                            | (3) MP/RT                                             | (4) M/V                                            |                                       |
| Q.2  | Some moles of O <sub>2</sub> diffu<br>diffuse through the sam | ise through a small ope<br>ne opening in 45 secor | ening in 18 seconds. Sar<br>ids. Molecular mass of th | me number of moles on the unknown gas is :         | of an unknown gas<br>[CPMT 1989]      |
|      | (1) 32 x $\frac{(18)^2}{(45)^2}$                              | (2) 32 x $\frac{(45)^2}{(18)^2}$                  | (3) $(32)^2 \times \frac{18}{45}$                     | (4) $(32)^2 \times \frac{45}{18}$                  |                                       |
| Q.3  | Which of the following g                                      | gases will have the high                          | nest rate of diffusion?                               |                                                    | [CPMT 1990]                           |
|      | (1) O <sub>2</sub>                                            | (2) NH <sub>3</sub>                               | (3) CO <sub>2</sub>                                   | (4) N <sub>2</sub>                                 |                                       |
| Q.4  | The mass of 6.02 x 10 <sup>2</sup>                            | <sup>23</sup> molecules of CO is                  |                                                       | <b>_</b>                                           | [CPMT 1986]                           |
|      | (1) 14 g                                                      | (2) 7.0g                                          | (3) 28 g                                              | (4) 56g                                            |                                       |
| Q.5  | 50 ml of a gas A diffuse conditions of pressure a             | e through a membrane<br>and temperature. If the   | in same time as for the open molecular mass of A is   | diffusin of 40 ml of gas<br>64, that of B would be | B under identical                     |
|      | (1) 250                                                       | (2) 200                                           | (3) 80                                                | (4) 100                                            |                                       |
| Q.6  | Select one correct state                                      | ements : In the gas eq                            | uation PV = nRT                                       | À.                                                 | [CBSE 1992]                           |
|      | (1) V denotes volume o                                        | f one mole                                        | (2) n is the number of I                              | molecules of a gas                                 |                                       |
| _    | (3) n moles of the gas h                                      | ave volume V                                      | (4) P is pressure of the                              | gas when only one mo                               | le of gas is present                  |
| Q.7  | 3.2 gofoxygen(at. mass total pressure of the ga               | s = 16) and 0.2g of hyc<br>is mixture will be:    | drogen (at. mass = 1 ) ar                             | e placed in a 1.12 litre                           | e flask at 0ºC. The<br>[C.B.S.E.1992] |
|      | (1) 4atm                                                      | (2) 1atm                                          | (3) 2 atm                                             | (4) 3 atm                                          |                                       |
| Q.8  | The number ofmoles of                                         | f H <sub>2</sub> in 0.224 litre of hyc            | drogen gas at STP is:                                 |                                                    | [M.L.N.R1994]                         |
|      | (1) 0.1                                                       | (2) 0.01                                          | (3) 0.001                                             | (4) 1                                              |                                       |
| Q.9  | If a gas is allowed to ex                                     | pand at constasnt tem                             | perature then:                                        |                                                    | [I.I.T.1986]                          |
|      | (1) Number, of molecul                                        | es of the gas decrease                            | S                                                     |                                                    |                                       |
|      | (2) Tbe kinetic energy of                                     | of gas molecules remai                            | ins the same                                          |                                                    |                                       |
|      | (3) The,kinetic energy of                                     | of gas molecules increa                           | ases                                                  |                                                    |                                       |
|      | (4) The kinetic energy c                                      | of gas molecules decre                            | ases                                                  |                                                    |                                       |
| Q.10 | If the pressure and abs                                       | olute temperature of 2                            | litres of CO <sub>2</sub> are doubled                 | I, the volume of $CO_2$ v                          | vould become:                         |
| _    | (1) 2 litres                                                  | (2) 4 litres                                      | (3) 5 litres                                          | (4) 7 litres                                       | [C.B.S.E.1991]                        |
| Q.11 | 0.24 g of a volatile gas substance? (Density of               | s upon vapourisation g<br>H <sub>2</sub> =0.089)  | ives 45 ml vapour at N.                               | T.P. What will be vap                              | our: density of the<br>[C.B.S.E.1996] |
|      | (1) 95.39                                                     | (2) 5.993                                         | (3) 95.93                                             | (4) 59.93                                          |                                       |
| Q.12 | 3.2g of oxygen (At. wt.<br>pressure of the gas mix            | = 16) and 0.2 gm of hyd<br>kture will be :        | drogen (At.wt = 1) are pla                            | aced in a 1.12 litre flas                          | sk at 0°C. The total<br>[IIT 1993]    |
|      | (1) 1 atm                                                     | (2) 4 atm                                         | (3) 3 at m                                            | (4) 2 atm                                          |                                       |
| Q.13 | Equal weights of ethar<br>pressure exerted by hy              | ne and hydrgoen are<br>drogen is :                | mixed in an empty cont                                | ainer at 25°C. The fr                              | action of the total<br>[IIT 1993]     |
|      | (1) 1 : 2                                                     | (2) 1 : 1                                         | (3) 1 : 16                                            | (4) 15 : 16                                        |                                       |
| Q.14 | 50 ml of hydrogen diffus to diffuse out is :                  | ses out through a small                           | hole from a vessel in 20 r                            | ninutes, time needed                               | for 40 ml of oxygen<br>[C.B.S.E 1994] |
|      | (1) 12 min                                                    | (2) 64 min                                        | (3) 8 min                                             | (4) 32 min                                         |                                       |
| Q.15 | A gas 'A' diffuses 5 time                                     | es faster than gas 'B'.                           | Density of 'A' com pare                               | d with 'B' is:                                     | [A.F.M.C.1994]                        |
|      | (1) 5                                                         | (2) 25                                            | (3)1/5                                                | (4) 1/25                                           |                                       |
| Q.16 | At STP the order of me                                        | an square velocity of n                           | nolecules of $H_2$ , $N_2$ , $O_2$ a                  | and HBr is:                                        | [C.B.S.E.1991]                        |
|      | (1) $H_2 > N_2 > O_2 > HBr$                                   | (2) HBr > $O_2 > N_2 > I$                         | $H_2(3)$ HBr > $H_2 > O_2 > N_2$                      | $N_2(4) N_2 > O_2 > H_2 > H_2$                     | lBr                                   |

| Q.17 | A container contains 1 atm and temperature 3                       | mole of a gas at 1 atm<br>327ºC, then new volume                             | pressure and 27ºC and<br>e is approximately :                     | its volume is 24.6 litre                          | s. If pressure is 10<br>[BHU 1998]  |
|------|--------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------|-------------------------------------|
|      | (1) 2 litres                                                       | (2) 48 litres                                                                | (3) 10 litres                                                     | (4) 15 litres                                     |                                     |
| Q.18 | The gas molecules have                                             | ve rms velocity of its mo                                                    | plecules as 1000 m/s. W                                           | hat is its average velo                           | city?[BHU 1998]                     |
|      | (1) 1012 m/s                                                       | (2) 921.58 m/s                                                               | (3) 546 m/s                                                       | (4) 960 m/s                                       |                                     |
| Q.19 | If the volume of 2 mole                                            | es of an ideal gas at 54                                                     | 0 K is 44.8 litre then its p                                      | oressure will be :                                | [AFMC 1998]                         |
|      | (1) 1 atmosphere                                                   | (2) 2 atmosphere                                                             | (3) 3 atomsphere                                                  | (4) 4 atmosphere                                  |                                     |
| Q.20 | The compressibility fac                                            | ctor of an ideal gas is                                                      |                                                                   |                                                   | [AIIMS 1997]                        |
|      | (1) 0                                                              | (2) 1                                                                        | (3) 2                                                             | (4) 4                                             |                                     |
| Q.21 | 3.2 g oxygen is diffuse                                            | d in 10 minutes. In sim                                                      | ilar conditions 2.8 g nitro                                       | gen will diffuse in :                             | [CET 1998]                          |
|      | (1) 9.3 minutes                                                    | (2) 8.2 minutes                                                              | (3) 7.6 minutes                                                   | (4) 11.8 minutes                                  |                                     |
| Q.22 | Wt. of 22.4 litres of Cl                                           | <sub>2</sub> gas is :                                                        |                                                                   | <u>, , , , , , , , , , , , , , , , , , , </u>     |                                     |
|      | (1) 17.25g                                                         | (2) 35.5g                                                                    | (3) 73 g                                                          | (4) None                                          |                                     |
| Q.23 | The mass of 1 x 10 <sup>22</sup> r                                 | nolecules of chlorine is                                                     | (approximately) :                                                 |                                                   | (C.E.T.1998)                        |
|      | (1) 0.3 g                                                          | (2) 0.6 g                                                                    | (3) 1.2 g                                                         | (4) 2.4 g                                         |                                     |
| Q.24 | One mole of N <sub>2</sub> O <sub>4</sub> (g) a K when 20% by mass | t 300 K is kept in a close<br>of N <sub>2</sub> O <sub>4</sub> (g) decompose | ed container under one a<br>s to NO <sub>2</sub> (g). The resulta | atmospheric pressure.<br>nt pressure is :         | It is heated to 600<br>(I.I.T.1996) |
|      | (1) 1.2 atm                                                        | (2) 2.4 atm                                                                  | (3) 2.0 atm                                                       | (4) 1.0 atm                                       |                                     |
| Q.25 | The ratio between the                                              | root mean square spee                                                        | ed of H <sub>2</sub> at 50 K and that                             | of O <sub>2</sub> at 800 K is:                    | (I.I.T 1996)                        |
|      | (1) 4                                                              | (2) 2                                                                        | (3) 1                                                             | (4) 1/4                                           |                                     |
| Q.26 | At which one of the foll expected to be minimu                     | owing temperature-pre<br>um ?                                                | essure conditions, the de                                         | eviation of a gas from                            | ideal behaviour is (C.B.S.E 1996)   |
|      | (1) 550Kand 1 atm                                                  | (2) 350K and 3 atm                                                           | (3) 250K and 4 atm                                                | (4) 450K and 2 atm                                |                                     |
| Q.27 | Consider. the following                                            | statements:                                                                  |                                                                   |                                                   | (I.C.S.Pr.1996)                     |
|      | (a) Molecules of differe                                           | ent gases have the sam                                                       | e kinetic energy at a give                                        | en temperature                                    |                                     |
|      | (b) The total kinetic en                                           | ergy for two moles of a                                                      | n ideal gas is equal to 3                                         | RT.                                               |                                     |
|      | (c) The ratio of specific 1.33 .                                   | c heat at constant press                                                     | sure and the specific hea                                         | at at constant volume                             | for noble gases is                  |
|      | (d) The gas with a large<br>of excluded volume "b"                 | er value of the ratio of crit                                                | tical temperature to critica                                      | al pressure (T <sub>c</sub> / P <sub>c</sub> ) wi | l have larger value                 |
|      | Of these statements:                                               | •                                                                            |                                                                   |                                                   |                                     |
|      | (1) a, b and c are corre                                           | ect                                                                          | (2) b,c and d are corre                                           | ct                                                |                                     |
|      | (3) a,c and dare correc                                            | t                                                                            | (4) a, band d are corre                                           | ct                                                |                                     |
| Q.28 | Inversion temperature                                              | of a gas is the temperat                                                     | ture:                                                             |                                                   | (I.C.S.Pr.1996)                     |
|      | (1) Above which no am                                              | nount of pressure can lie                                                    | quefy a gas                                                       |                                                   |                                     |
|      | (2) Below which a gas                                              | has to be cooled before                                                      | e itcan show Joule Thom                                           | son cooling                                       |                                     |
|      | (3) At which on the ap equilibrium.                                | plication of pressure.a                                                      | gas is completely conve                                           | rted into a liquid with                           | out having to be in                 |
|      | (4) Atwhich the disting                                            | tion between a liquid a                                                      | nd a gas disappears.                                              |                                                   |                                     |
| Q.29 | The compressiblility of                                            | f a gas is less than unity                                                   | y at STP therefore                                                |                                                   | [IIT 2000]                          |
|      | (1) $V_{m}$ > 22.4 litres                                          | (2) V <sub>m</sub> < 22.4 litres                                             | (3) V <sub>m</sub> = 22.4 litres                                  | (4) $V_{m} = 44.8$ litres                         |                                     |
| Q.30 | Which one of the follow                                            | ving is the ratio of the av                                                  | erage molecular kinetic                                           | energies of helium (ato                           | omic weight 4) and                  |
|      | sulphur dioxide (molec                                             | cular weight 64) at 300K                                                     |                                                                   |                                                   | [ICS Pr. 1997]                      |

| Q.31                                 | A 0.5 litres flask con<br>is 3.0 grams/litre and<br>ratio of pressure P <sub>A</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | tains gas 'A' and a one l<br>d that of gas 'B' is 1.5 g<br>/ P <sub>B</sub> exerted by the two                                                                                                                                                                                                                                                                                      | litre flask contains gas<br>rams/litre. The molar r<br>o gases is :                                                                                                                                                                                                                                                                                 | s 'B' at the temperature. T<br>mass of gas 'A' is one ha                                                                                                                           | he density of gas 'A'<br>If that of gas 'B'. The<br><b>[ICS.Pr. 1997]</b>                                                                                                                                 |
|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                      | (1) 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (2) 3                                                                                                                                                                                                                                                                                                                                                                               | (3) 2                                                                                                                                                                                                                                                                                                                                               | (4) 1                                                                                                                                                                              |                                                                                                                                                                                                           |
| Q.32                                 | At a temperature TK<br>by 50 K than the first<br>is equal to :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | , the pressure of 4.0g an<br>one. 0.8g of argon gas                                                                                                                                                                                                                                                                                                                                 | gon in a bulb is P. The l<br>had to be reomved to                                                                                                                                                                                                                                                                                                   | bulb is put in a bath having<br>maintain original pressu<br><b>[Roorkee</b> ]                                                                                                      | g temperature higher<br>re the temperature T<br><b>Screening. 1999]</b>                                                                                                                                   |
|                                      | (1) 510 K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (2) 200 K                                                                                                                                                                                                                                                                                                                                                                           | (3) 100 K                                                                                                                                                                                                                                                                                                                                           | (4) 73 K                                                                                                                                                                           |                                                                                                                                                                                                           |
| Q.33                                 | The rate of diffusion of nitrogen will be :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | of a gas having molecul                                                                                                                                                                                                                                                                                                                                                             | ar weight just double o                                                                                                                                                                                                                                                                                                                             | f nitrogen gas is 56 ml s <sup>_^</sup>                                                                                                                                            | <sup>1</sup> . the rate of diffusion<br>[C.P.M.T. 2000]                                                                                                                                                   |
|                                      | (1) 79.19 ml s <sup>-1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (2) 56 ml s <sup>-1</sup>                                                                                                                                                                                                                                                                                                                                                           | (3) 112.0 ml s <sup>-1</sup>                                                                                                                                                                                                                                                                                                                        | (4) 90.00 ml s <sup>-1</sup>                                                                                                                                                       |                                                                                                                                                                                                           |
| Q.34                                 | An ideal gas will hav                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | /e maximum density wh                                                                                                                                                                                                                                                                                                                                                               | nen :                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                    | [CPMT 2000]                                                                                                                                                                                               |
|                                      | (1) P = 1 atm, T = 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 00 K                                                                                                                                                                                                                                                                                                                                                                                | (2) P = 2 atm, T =                                                                                                                                                                                                                                                                                                                                  | = 150 K                                                                                                                                                                            |                                                                                                                                                                                                           |
|                                      | (3) P = 0.5 atm, T =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 600 K                                                                                                                                                                                                                                                                                                                                                                               | (4) P = 1.0 atm, T                                                                                                                                                                                                                                                                                                                                  | Г = 500K                                                                                                                                                                           |                                                                                                                                                                                                           |
| Q.35                                 | Two separate bulbs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | contain ideal gases A a                                                                                                                                                                                                                                                                                                                                                             | and B. The density of g                                                                                                                                                                                                                                                                                                                             | gas A is twice that of B. T                                                                                                                                                        | he molecular weight                                                                                                                                                                                       |
|                                      | of A is half that of B.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | The two gases are at th                                                                                                                                                                                                                                                                                                                                                             | ne same temperature.                                                                                                                                                                                                                                                                                                                                | The ratio of the pressure                                                                                                                                                          | e of A to that of B gas                                                                                                                                                                                   |
|                                      | is :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                    | [BHU 2000]                                                                                                                                                                                                |
|                                      | (1)2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (2) 1/2                                                                                                                                                                                                                                                                                                                                                                             | (3) 4                                                                                                                                                                                                                                                                                                                                               | (4) 1/4                                                                                                                                                                            |                                                                                                                                                                                                           |
| Q.36                                 | PV/T = constant. A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | real gas will behave as                                                                                                                                                                                                                                                                                                                                                             | an ideal gas :                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                    | [AFMC 2000]                                                                                                                                                                                               |
|                                      | (1) When both press                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | sure and temperature a                                                                                                                                                                                                                                                                                                                                                              | re high (2) Both press                                                                                                                                                                                                                                                                                                                              | sure and temperature are                                                                                                                                                           | e low.                                                                                                                                                                                                    |
|                                      | (3) Temperature high                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n and pressure low.                                                                                                                                                                                                                                                                                                                                                                 | (4) Pressure h                                                                                                                                                                                                                                                                                                                                      | high and temperature low                                                                                                                                                           | V                                                                                                                                                                                                         |
| Q.37                                 | A particular gas app<br>nitrogen = 14, gas c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | lication requires gaseo<br>constant R = 0.0821 lit.                                                                                                                                                                                                                                                                                                                                 | us nitrogen (N <sub>2</sub> ) with a atm. per deg. per mole                                                                                                                                                                                                                                                                                         | a density of 1.4 g/L at 27º<br>e). The gas pressure is e                                                                                                                           | C. (Atomic weight of equal to                                                                                                                                                                             |
|                                      | (1) 0.123 atm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (2) 1.23 atm                                                                                                                                                                                                                                                                                                                                                                        | (3) 1.0 atm                                                                                                                                                                                                                                                                                                                                         | (4) 10.0 atm                                                                                                                                                                       | [ICS Pr 2000]                                                                                                                                                                                             |
| Q.38                                 | The root mean squa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | re velocity of an ideal g                                                                                                                                                                                                                                                                                                                                                           | as at constant pressu                                                                                                                                                                                                                                                                                                                               | re varies with density (d)                                                                                                                                                         | ) as : [IIT 2001]                                                                                                                                                                                         |
|                                      | (1) d <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (2) √d                                                                                                                                                                                                                                                                                                                                                                              | (3) d                                                                                                                                                                                                                                                                                                                                               | (4) 1/ <sub>√d</sub>                                                                                                                                                               |                                                                                                                                                                                                           |
| 0 20                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                    |                                                                                                                                                                                                           |
| Q.33                                 | The Beans are cook                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ed earlier in pressure c                                                                                                                                                                                                                                                                                                                                                            | ooker, because :                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                    | [CBSE 2001]                                                                                                                                                                                               |
| Q.39                                 | The Beans are cook<br>(1) B.P. increases w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ed earlier in pressure c<br>ith increasing pressure                                                                                                                                                                                                                                                                                                                                 | ooker, because :                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                    | [CBSE 2001]                                                                                                                                                                                               |
| Q.33                                 | The Beans are cook<br>(1) B.P. increases w<br>(2) B.P. decreases w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ed earlier in pressure c<br>ith increasing pressure<br>vith increasing pressure                                                                                                                                                                                                                                                                                                     | ooker, because :                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                    | [CBSE 2001]                                                                                                                                                                                               |
| Q.39                                 | The Beans are cook<br>(1) B.P. increases w<br>(2) B.P. decreases w<br>(3) Extra pressure o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ed earlier in pressure c<br>ith increasing pressure<br>vith increasing pressure<br>f pressure cooker, softe                                                                                                                                                                                                                                                                         | ooker, because :<br>e<br>ens the beans                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                    | [CBSE 2001]                                                                                                                                                                                               |
| 4.55                                 | The Beans are cook<br>(1) B.P. increases w<br>(2) B.P. decreases w<br>(3) Extra pressure o<br>(4) Internal energy is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ed earlier in pressure c<br>ith increasing pressure<br>vith increasing pressure<br>f pressure cooker, softe<br>s not lost while cooking                                                                                                                                                                                                                                             | ooker, because :<br>e<br>ens the beans<br>in pressure cooker                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                    | [CBSE 2001]                                                                                                                                                                                               |
| Q.40                                 | The Beans are cook<br>(1) B.P. increases w<br>(2) B.P. decreases w<br>(3) Extra pressure o<br>(4) Internal energy is<br>The temperature be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ed earlier in pressure c<br>ith increasing pressure<br>vith increasing pressure<br>f pressure cooker, softe<br>s not lost while cooking<br>low which a gas cannot                                                                                                                                                                                                                   | ooker, because :<br>e<br>ens the beans<br>in pressure cooker<br>t be liquified is called :                                                                                                                                                                                                                                                          |                                                                                                                                                                                    | [CBSE 2001]<br>[AFMC 2001]                                                                                                                                                                                |
| Q.40                                 | The Beans are cook<br>(1) B.P. increases w<br>(2) B.P. decreases w<br>(3) Extra pressure o<br>(4) Internal energy is<br>The temperature be<br>(1) Inversion tempera                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ed earlier in pressure c<br>ith increasing pressure<br>vith increasing pressure<br>f pressure cooker, softe<br>s not lost while cooking<br>low which a gas cannot<br>ature                                                                                                                                                                                                          | ooker, because :<br>ens the beans<br>in pressure cooker<br>t be liquified is called :<br>(2) Critical temper                                                                                                                                                                                                                                        | rature                                                                                                                                                                             | [CBSE 2001]<br>[AFMC 2001]                                                                                                                                                                                |
| Q.40                                 | The Beans are cook<br>(1) B.P. increases w<br>(2) B.P. decreases w<br>(3) Extra pressure o<br>(4) Internal energy is<br>The temperature be<br>(1) Inversion temperature<br>(3) Neutral temperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ed earlier in pressure c<br>ith increasing pressure<br>vith increasing pressure<br>f pressure cooker, softe<br>s not lost while cooking<br>low which a gas cannot<br>ature<br>ure                                                                                                                                                                                                   | ooker, because :<br>ens the beans<br>in pressure cooker<br>t be liquified is called :<br>(2) Critical temper<br>(4) Curie tempera                                                                                                                                                                                                                   | rature<br>ture                                                                                                                                                                     | [CBSE 2001]<br>[AFMC 2001]                                                                                                                                                                                |
| Q.40<br>Q.41                         | The Beans are cook<br>(1) B.P. increases w<br>(2) B.P. decreases w<br>(3) Extra pressure o<br>(4) Internal energy is<br>The temperature be<br>(1) Inversion temperature<br>(3) Neutral temperature<br>A mixture of $NO_2$ an<br>gm. of the mixture?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ted earlier in pressure c<br>ith increasing pressure<br>vith increasing pressure<br>f pressure cooker, softe<br>s not lost while cooking<br>low which a gas cannot<br>ature<br>ure<br>d N <sub>2</sub> O <sub>4</sub> has a vapour d                                                                                                                                                | ooker, because :<br>ens the beans<br>in pressure cooker<br>t be liquified is called :<br>(2) Critical temper<br>(4) Curie tempera<br>ensity of 38.3 at 300 k                                                                                                                                                                                        | rature<br>ture<br>K. What is the number of                                                                                                                                         | [CBSE 2001]<br>[AFMC 2001]<br>moles of NO <sub>2</sub> in 100<br>[AFMC 2001]                                                                                                                              |
| Q.40<br>Q.41                         | The Beans are cook<br>(1) B.P. increases w<br>(2) B.P. decreases w<br>(3) Extra pressure o<br>(4) Internal energy is<br>The temperature be<br>(1) Inversion temperature<br>(3) Neutral temperature<br>A mixture of $NO_2$ and<br>gm. of the mixture?<br>(1) 0.437                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ted earlier in pressure c<br>ith increasing pressure<br>vith increasing pressure<br>f pressure cooker, softe<br>s not lost while cooking<br>low which a gas cannot<br>ature<br>ure<br>d N <sub>2</sub> O <sub>4</sub> has a vapour d<br>(2) 4.4                                                                                                                                     | ooker, because :<br>ens the beans<br>in pressure cooker<br>t be liquified is called :<br>(2) Critical temper<br>(4) Curie tempera<br>ensity of 38.3 at 300 k                                                                                                                                                                                        | rature<br>ture<br>K. What is the number of<br>(4) 3.86                                                                                                                             | [CBSE 2001]<br>[AFMC 2001]<br>moles of NO <sub>2</sub> in 100<br>[AFMC 2001]                                                                                                                              |
| Q.40<br>Q.41<br>Q.42                 | The Beans are cook<br>(1) B.P. increases w<br>(2) B.P. decreases w<br>(3) Extra pressure o<br>(4) Internal energy is<br>The temperature be<br>(1) Inversion temperature<br>(1) Inversion temperature<br>A mixture of NO <sub>2</sub> an<br>gm. of the mixture?<br>(1) 0.437<br>20% N <sub>2</sub> O <sub>4</sub> molecule<br>is :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ted earlier in pressure c<br>ith increasing pressure<br>vith increasing pressure<br>f pressure cooker, softe<br>s not lost while cooking<br>low which a gas cannot<br>ature<br>ure<br>id $N_2O_4$ has a vapour d<br>(2) 4.4<br>s are dissociated in a sa                                                                                                                            | ooker, because :<br>ens the beans<br>in pressure cooker<br>t be liquified is called :<br>(2) Critical temper<br>(4) Curie tempera<br>ensity of 38.3 at 300 k<br>(3) 3.4<br>ample of gas at 27°C a                                                                                                                                                   | rature<br>ture<br>K. What is the number of<br>(4) 3.86<br>Ind 760torr. The density o                                                                                               | [CBSE 2001]<br>[AFMC 2001]<br>moles of NO <sub>2</sub> in 100<br>[AFMC 2001]<br>of equilibrium mixture<br>[Roorkee 1996]                                                                                  |
| Q.40<br>Q.41<br>Q.42                 | The Beans are cook<br>(1) B.P. increases w<br>(2) B.P. decreases w<br>(3) Extra pressure o<br>(4) Internal energy is<br>The temperature be<br>(1) Inversion temperature<br>(3) Neutral temperature<br>A mixture of NO <sub>2</sub> an<br>gm. of the mixture?<br>(1) 0.437<br>20% N <sub>2</sub> O <sub>4</sub> molecule<br>is :<br>(1) 3.1 gL <sup>-1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ted earlier in pressure c<br>ith increasing pressure<br>vith increasing pressure<br>f pressure cooker, softe<br>s not lost while cooking<br>low which a gas cannot<br>ature<br>ure<br>d N <sub>2</sub> O <sub>4</sub> has a vapour d<br>(2) 4.4<br>s are dissociated in a sa<br>(2) 6.2 gL <sup>-1</sup>                                                                            | booker, because :<br>ens the beans<br>in pressure cooker<br>t be liquified is called :<br>(2) Critical tempera<br>(4) Curie tempera<br>ensity of 38.3 at 300 k<br>(3) 3.4<br>ample of gas at 27°C a<br>(3) 12.4 gL <sup>-1</sup>                                                                                                                    | rature<br>ture<br>K. What is the number of<br>(4) 3.86<br>and 760torr. The density of<br>(4) 18.6 gL <sup>-1</sup>                                                                 | [CBSE 2001]<br>[AFMC 2001]<br>moles of NO <sub>2</sub> in 100<br>[AFMC 2001]<br>of equilibrium mixture<br>[Roorkee 1996]                                                                                  |
| Q.40<br>Q.41<br>Q.42<br>Q.43         | The Beans are cook<br>(1) B.P. increases w<br>(2) B.P. decreases w<br>(3) Extra pressure o<br>(4) Internal energy is<br>The temperature be<br>(1) Inversion temperature<br>(1) Inversion temperature<br>A mixture of NO <sub>2</sub> an<br>gm. of the mixture?<br>(1) 0.437<br>20% N <sub>2</sub> O <sub>4</sub> molecule<br>is :<br>(1) 3.1 gL <sup>-1</sup><br>If 1 litre of N <sub>2</sub> is mixed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ted earlier in pressure c<br>ith increasing pressure<br>vith increasing pressure<br>f pressure cooker, softe<br>s not lost while cooking<br>low which a gas cannot<br>ature<br>ure<br>id $N_2O_4$ has a vapour d<br>(2) 4.4<br>s are dissociated in a sa<br>(2) 6.2 gL <sup>-1</sup><br>ed with 2 litres of $O_2$ at o                                                              | ooker, because :<br>ens the beans<br>in pressure cooker<br>t be liquified is called :<br>(2) Critical temper<br>(4) Curie tempera<br>ensity of 38.3 at 300 k<br>(3) 3.4<br>ample of gas at 27°C a<br>(3) 12.4 gL <sup>-1</sup><br>constant temperature.                                                                                             | rature<br>ture<br>K. What is the number of<br>(4) 3.86<br>and 760torr. The density of<br>(4) 18.6 gL <sup>-1</sup>                                                                 | [CBSE 2001]<br>[AFMC 2001]<br>moles of NO <sub>2</sub> in 100<br>[AFMC 2001]<br>of equilibrium mixture<br>[Roorkee 1996]<br>eration is                                                                    |
| Q.40<br>Q.41<br>Q.42<br>Q.43         | The Beans are cook<br>(1) B.P. increases w<br>(2) B.P. decreases w<br>(3) Extra pressure o<br>(4) Internal energy is<br>The temperature be<br>(1) Inversion temperature<br>(1) 0.437<br>20% N <sub>2</sub> O <sub>4</sub> molecule<br>is :<br>(1) 3.1 gL <sup>-1</sup><br>If 1 litre of N <sub>2</sub> is mixed<br>(1) Kinetic energy | ted earlier in pressure c<br>ith increasing pressure<br>vith increasing pressure<br>f pressure cooker, softe<br>s not lost while cooking<br>low which a gas cannot<br>ature<br>ure<br>id $N_2O_4$ has a vapour d<br>(2) 4.4<br>is are dissociated in a sa<br>(2) 6.2 gL <sup>-1</sup><br>ed with 2 litres of $O_2$ at a<br>(2) Partial pressure                                     | booker, because :<br>ens the beans<br>in pressure cooker<br>t be liquified is called :<br>(2) Critical tempera<br>(4) Curie tempera<br>ensity of 38.3 at 300 k<br>(3) 3.4<br>(3) 3.4<br>ample of gas at 27°C a<br>(3) 12.4 gL <sup>-1</sup><br>constant temperature.<br>e (3) Diffusion                                                             | rature<br>ture<br>K. What is the number of<br>(4) 3.86<br>and 760torr. The density of<br>(4) 18.6 gL <sup>-1</sup><br>. The phenomenon in op<br>(4) None                           | [CBSE 2001]<br>[AFMC 2001]<br>moles of NO <sub>2</sub> in 100<br>[AFMC 2001]<br>of equilibrium mixture<br>[Roorkee 1996]<br>eration is<br>[AFMC 2001]                                                     |
| Q.40<br>Q.41<br>Q.42<br>Q.43<br>Q.44 | The Beans are cook<br>(1) B.P. increases w<br>(2) B.P. decreases w<br>(3) Extra pressure o<br>(4) Internal energy is<br>The temperature be<br>(1) Inversion temperature<br>(3) Neutral temperature<br>A mixture of NO <sub>2</sub> and<br>gm. of the mixture?<br>(1) 0.437<br>20% N <sub>2</sub> O <sub>4</sub> molecule<br>is :<br>(1) 3.1 gL <sup>-1</sup><br>If 1 litre of N <sub>2</sub> is mixed<br>(1) Kinetic energy<br>An ideal gas expandon<br>Nm <sup>-2</sup> . The work dor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ted earlier in pressure c<br>ith increasing pressure<br>vith increasing pressure<br>f pressure cooker, softe<br>s not lost while cooking<br>low which a gas cannot<br>ature<br>ure<br>id $N_2O_4$ has a vapour d<br>(2) 4.4<br>is are dissociated in a sa<br>(2) 6.2 gL <sup>-1</sup><br>ed with 2 litres of $O_2$ at a<br>(2) Partial pressure<br>is in volume from 1×10<br>ie is– | ooker, because :<br>ens the beans<br>in pressure cooker<br>t be liquified is called :<br>(2) Critical temper<br>(4) Curie temperat<br>ensity of 38.3 at 300 k<br>(3) 3.4<br>ample of gas at 27°C a<br>(3) 12.4 gL <sup>-1</sup><br>constant temperature.<br>e (3) Diffusion<br><sup>-3</sup> m <sup>3</sup> to 1×10 <sup>-2</sup> m <sup>3</sup> at | rature<br>ture<br>K. What is the number of<br>(4) 3.86<br>and 760torr. The density of<br>(4) 18.6 gL <sup>-1</sup><br>. The phenomenon in op<br>(4) None<br>300K against a constan | [CBSE 2001]<br>[AFMC 2001]<br>moles of NO <sub>2</sub> in 100<br>[AFMC 2001]<br>of equilibrium mixture<br>[Roorkee 1996]<br>eration is<br>[AFMC 2001]<br>t pressure of 1×10 <sup>-5</sup><br>[AIEEE 2004] |

- Q.45 Which one of the following statements is NOT true about the effect of an increase in temperature on the distribution of molecular speed in a gas? [AIEEE 2005]
  - (1) The fraction of the molecules with the most probable speed increases
  - (2) The most probable speed increases
  - (3) The area under the distribution curve remains the same as under the lower temperature
  - (4) The distribution becomes broader
- Q.46 The relative rate of diffusion of Helium w.r.t. Methane under similar conditions of pressure and temperature is

[JEE 2005]

One mole of a monoatomic gas was expanded adiabatically agains constant external pressure (1 atm) from Q.47 volume 1 litre to 2 litre at an initial temperature of TK. The final temperature of the gas will be [JEE 2005]

(1) 
$$\frac{T}{2^{(5/3-1)}}$$
 (2) T (3)  $T - \frac{2}{3 \times 0.0821}$  (4)  $T + \frac{2}{3 \times 0.0821}$ 

An ideal is allowed to expand both reversibly and irreversibly in an isolated system. If T<sub>i</sub> is the initial Q.48 temperature and T, is the final temperature, which of the following statements is correct ? [AIEEE 2006]

[1]  $T_f > T_i$  for reversible process but  $T_f = T_i$  for irreversible process

 $[2] (T_f)_{rev} = (T_f)irrev$ 

- www. [3]  $T_f = T_i$  for both reversible and irreversible processes
- $[4] (T_f)_{irrev} > (T_f)_{rev}$

|      | -  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| Qus  | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 |
| Ans. | 3  | 2  | 2  | 3  | 4  | 3  | 1  | 2  | 2  | 1  | 4  | 2  | 4  | 2  | 4  | 1  | 4  | 2  | 2  | 3  | 1  | 4  | 3  | 2  | 3  |
| Qus  | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 |    |    |
| Ans  | 1  | 2  | 2  | 2  | 3  | 4  | 2  | 1  | 2  | 3  | 3  | 2  | 4  | 1  | 2  | 1  | 1  | 3  | 4  | 1  | 1  | 3  | 4  |    |    |

## Answer Key - 3