

Q.1	In the chemical read	ction : $N_2 + 3H_2 \longrightarrow 21$	NH ₃			
	at equilibrium point,	state whether				
	[1] Equal volumes o	f N_2 and H_2 are reacting				
	[2] Equal masses of	N_2 and H_2 are reacting				
	[3] The reaction has	stopped				
	[4] The same amou	nt of ammonia is formed a	as is decomposed into N_2 an	d H ₂		
Q.2	In A + B 🔶 C. 1	The unit of equilibrium co	nstant is :			
	[1] Litre mole ⁻¹	[2] Mole litre	[3] Mole litre ⁻¹	[4] No unit		
Q.3	For the homogeneo	us reaction : $4NH_3 + 5O_2$	$4NO + 6H_2O$			
	the equilibrium cons	stant K_c , has the units of :		G		
	[1] Conc. ⁺¹⁰	[2] Conc. ⁺¹	[3] Conc1	[4] It is dimension less		
Q.4		al reaction having two rea uilibrium constant will :	ctants, is in equilibrium. If th	e concentrations of the reactants are		
	[1] Be doubled	[2] Be halved	[3] Become one fourth	[4] Remain the same		
Q.5	(I) $N_2 + O_2 \longrightarrow 2I$	NO	$(II) \frac{1}{2}N_2 + \frac{1}{2}O_2 \Longrightarrow$	NO		
	If K_1 and K_2 are equil	ibrium constants for react	ions (I) and (II) respectively,	then the relation between K_1 and K_2 is		
	[1] K ₁ = K ₂	$[2] K_2 = \sqrt{K_1}$	[3] K ₁ = 2K	[4] $K_1 = \frac{1}{2} K_2$		
Q.6	For the gas phase r	eaction : $C_2H_4 + H_2$	≥ C ₂ H ₆ (ΔH = − 32.7 k cal)			
	carried out in a vess	el, the equilibrium concer	ntration of C_2H_4 can be incre	ased by :		
	(a) Increasing the te	mperature	(b) Decreasing the pressure			
	(c) Removing some	H ₂	(d) Adding some $C_2 H_6$			
	Correct answer is :	•				
	[1] a, c, d	[2] a, b, c	[3] a, b	[4] a, b, c, d		
Q.7	An example of a rev	ersible reaction is :				
	$[1] Pb (NO_3)_2 (aq) +$	$2NaCI (aq) = PbCI_2(s) + 2$	2NaNO ₃ (aq)			
	[2] $AgNO_3$ (aq) + Na	CI (aq) = AgCI (s) + NaNo	D ₃ (aq)			
	[3] 2Na (s) + H ₂ O (I)	= 2NaOH (aq) + H_2 (aq)				
	[4] KNO ₃ (aq) + NaC	Cl (aq) = KCl (aq) + NaNO	₃ (aq)			
Q.8		of PCl ₅ is 104.16 but wher Cl ₅ at this temperature wil		density is reduced to 62. The degree		
	[1] 6.8%	[2] 68%	[3] 46%	[4] 64%		

				~				
Q.9	According to Le [1] Amount of soli		lding heat to a solid and [2] Amount of liquid	d liquid in equilibrium will cause the : d to decrease				
	[3] Temperature o	frise	[4] Temperature to	fall				
Q.10	For reaction : PCI	$_{3}(g) + Cl_{2}(g) \longrightarrow PCl_{5}(g)$	3)					
	the value of K_c at 2	250º C is 26. The value of	${}^{\rm F}{\rm K}_{\rm p}$ at this temperature wil	ll be :				
	[1] 0.61	[2] 0.57	[3] 0.83	[4] 0.46				
Q.11	CO and Cl_2 are al	lowed to interact in a 500	ml flask to form COCl_2					
	At equilibrium, co	ncentrations of CO, Cl_2 ar	nd COCl_2 are found 0.1, 0.	1 and 0.3 gm moles				
	respectively. The	equilibrium constant will b	De :	\sim				
	[1] 30	[2] 3	[3] 15	[4] 0.3				
ຊ.12	Which of the follo	wing oxides of nitrogen w	ill be most stable one :	c^{O}				
	[1] 2NO ₂ (g)	$\ge 2O_2(g) + N_2(g); K = 6$.7 × 10 ¹⁶ mol litre ⁻¹					
	[2] 2NO (g)	$\mathbf{E} \mathbf{N}_{2}(\mathbf{g}) + \mathbf{O}_{2}(\mathbf{g}); \mathbf{K} = 2.2$	× 10 ³⁰	S.				
	[3] 2N ₂ O ₅ (g)	≥ 2N ₂ (g) + 5O ₂ (g) ; K =	1.2 × 10 ³⁴ mol ⁵ litre ⁻⁵					
	[4] 2NO ₂ (g)	$\ge 2N_2(g) + O_2(g); K = 3$.5 × 10 ³³ Mol litre⁻¹					
Q.13		a sealed tube at 440°C till t onstant for dissociation is		ed. HI was found to be 22% decomposed.				
	[1] 0.282	[2] 0.0796	[3] 0.0199	[4] 1.99				
Q.14		ere heated in a closed ve value of equilibrium cons	-	equilibrium, 40% of PCI_5 dissociated into				
	[1] 0.267	[2] 0.53	[3] 2.63	[4] 5.3				
Q.15	If the equilibrium $H_2 + I_2 \longrightarrow 2HI$		HI \longrightarrow H ₂ + I ₂ is 0.25, t	he equilibrium constant for the reaction :				
	[1] 1.0	[2] 2.0	[3] 3.0	[4] 4.0				
Q.16	Oxidation of SO_2	by O_2 to SO ₃ is an exothe	rmic reaction. The yield o	f SO $_{_3}$ will be maximum if :				
	[1] Temperature is increased and pressure is kept constant							
	[2] Temperature is reduced and pressure is increased							
	[3] Both temperate	ure and pressure are incre	eased					
	[4] Both temperate	ure and pressure are redu	iced					
Q.17	The equilibrium co	onstant for equilibria:SO	$O_2(g) + \frac{1}{2}O_2(g) \longrightarrow SO_3$	(g)				
	and	2SO ₃ 2 SO	$_{2}(g) + O_{2}(g)$					
	are K_1 and K_2 resp	ectively. The relationship	between K_1 and K_2 is :					
	[1] $K_2 = K_1$	[2] $K_2 = K_1^2$	[3] K ₂ = 1/K ₁	[4] $K_2 = 1/K_1^2$				

Q.18 The rate at which a substance reacts depends on its :

[1] Atomic weight [2] Molecular weight [3] Equivalent weight [4] Active mass

Q.19 The equilibrium which remains unaffected by pressure change is :

 $[1] N_{2}(g) + O_{2}(g) \Longrightarrow 2NO(g) \qquad [2] 2SO_{2}(g) + O_{2}(g) \Longrightarrow 2SO_{3}(g)$ $[3] 2O_{3}(g) \Longrightarrow 3O_{2}(g) \qquad [4] 2NO_{2}(g) \Longrightarrow N_{2}O_{4}(g)$

Q.20 Le Chatelier's principle is applicable only to :

[1] Reaction under equilibrium

[3] Ionization of electrolytes

[4] None of these

[2] Reaction without equilibrium

Q.21 At 298 K, the equilibrium between N_2O_4 and NO_2 may be represented by the following equation $N_2O_4(g) \longrightarrow 2NO_2(g)$. If the total pressure of the equilibrium mixture is P and the degree of dissociation of $N_2O_4(g)$ at 298 K is x, which one of the following is the pressure of $N_2O_4(g)$ under this condition :

Q.22 For the reaction : $PCI_5(g) \longrightarrow PCI_3(g) + CI_2(g)$

the forward reaction at a constant temperature is favoured by :

- [1] Introducing an inert gas at constant volume
- [2] Introducing chlorine gas at constant volume
- [3] Introducing an inert gas at constant pressure
- [4] None of these
- **Q.23** One mole of SO₃ was placed in one litre vessel at a certain temperature. The following equilibrium was established $2SO_3 \longrightarrow 2SO_2 + O_2$. At equilibrium 0.6 moles of SO₂ were formed. The equilibrium constant of the reaction will be :

[1] 0.36 [2] 0.45 [3] 0.54 [4] 0.675

Q.24 Raising the temperature of a reversible chemical reaction :

[1] Favours the forward rate only [2] Favours the backward rate only

[3] Favours both the forward and backward rate [4] Favours neither the forward nor the backward rates

- **Q.25** The equilibrium constant for the reaction $H_2(g) + I_2(g) = 2HI(g)$ is 49. If the equation of the reaction is written as $\frac{1}{2}H_2 + \frac{1}{2}I_2(g) = HI(g)$ then :
 - [1] The value of equilibrium constant would change
 - [2] The value of equilibrium constant would remain the same
 - [3] Mole fraction of hydrogen reacted would change
 - [4] Mole fraction of HI formed will change

Q.26 "If a system at equilibrium is subjected to a change in any one of the factors such as temperature, pressure or concentration, the system adjusts itself in such a way as to annual the effect of that change". This is called :

[1] Avogadro's hypothesis

[2] Gay Lussac's law

[3] Boyle's law

- [4] Le Chatelier's principle
- **Q.27** For the reaction : $2SO_3 \rightarrow 2SO_2 + O_2$ the equilibrium constant expression is :

$$[1] K_{c} = \frac{2[SO_{2}] \times [O_{2}]}{2[SO_{3}]} \quad [2] K_{c} = \frac{[SO_{2}] \times [O_{2}]}{[SO_{3}]} \quad [3] K_{c} = \frac{[SO_{3}]^{2}}{[SO_{2}]^{2} \times [O_{2}]} \quad [4] K_{c} = \frac{[SO_{2}]^{2} \times [O_{2}]}{[SO_{3}]^{2}}$$

- Q.28 Which of the following reactions will be favoured at low pressure :
 - $[1] H_2 + I_2 \longrightarrow 2HI$ $[2] N_2 + 3H_2 \longrightarrow 2NH_3$ $[3] PCI_5 \longrightarrow PCI_3 + CI_2$ $[4] N_2 + O_2 \longrightarrow 2NO$
- **Q.29** $CH_3COOH + C_2H_5OH \longrightarrow CH_3COOC_2H_5 + H_2O (K_c = 4)$

In the above reaction one mole each of acetic acid and alcohol are heated in the presence of a little conc. H_2SO_4 . On equilibrium being attained :

- [1] One mole of ethyl acetate is formed
- [2] 2 moles of ethyl acetate are formed
- [3] 1/3 moles of ethyl acetate is formed
- [4] 2/3 moles of ethyl acetate is formed
- Q.30 When a catalyst is added to a system in equilibrium :
 - [1] The equilibrium concentrations are increased
 - [2] There is no effect on equilibrium concentrations
 - [3] The equilibrium concentrations are decreased
 - [4] The rate of forward reaction increase and that of backward reaction decreases
- **Q.31** Suppose the reaction : $PCl_5(s) \longrightarrow PCl_3(g) + Cl_2(g)$ is at equilibrium in a closed vessel. At a constant temperature on addition of PCl_5 , what will be effect on equilibrium concentration of $Cl_2(g)$:
 - [1] Will be decreased
 - [2] Will be increased
 - [3] Will remain unaffected
 - [4] Can not be predicated without the value of K_{p}
- **Q.32** Equilibrium concentrations of HI, I_2 and H_2 is 0.7, 0.1 and 0.1 moles/litre. Calculate equilibrium constant for reaction $I_2 + H_2 \longrightarrow 2HI$ is

	[1] 0.36	[2] 36	[3] 49	[4] 0.4
--	----------	--------	--------	---------

Q.33 Which of the following will shift the reaction $PCI_3 + CI_2 \longrightarrow PCI_5$ to the left side :

[1] Addition of PCI ₅	[2] Increase in pressure
[3] Decrease in temperature	[4] Catalyst

Q.34 In which of the following equilibria the value of $K_{_{\!\!P}}$ is less than $K_{_{\!\!C}}$: $[2] N_2 + 3H_2 \implies 2NH_3$ $[1] H_2 + I_2 \implies 2HI$ $[4] CO + H_2O \longrightarrow CO_2 + H_2$ $[3] N_2 + O_2 \implies 2NO$ An equilibrium mixture for the reaction : $2H_2S(g) = 2H_2(g) + S_2(g)$ has 0.5 mole H_2S , 0.1 mole of H_2 and Q.35 0.4 mole S_2 in a one litre vessel. The equilibrium constant of this reaction is given by : [1] 0.004 mole litre⁻¹ [2] 0.08 mole litre⁻¹ [3] 0.016 mole litre⁻¹ [4] 0.160 mole litre⁻¹ Q.36 What will be the rate of decomposition of a gas at a particular temperature, if concentration of the gas is 0.05 mole/litre ? Rate constant of decomposition of gas at this temperature is 10⁻⁴ min⁻¹. [1] 5 × 10⁻⁶ [2] 1 × 10⁻⁴ [3] 5 × 10⁻⁴ [4] 2 × 10⁻⁶ If the concentration of reactants and products is doubled, then the equilibrium constant (K) will be : Q.37 [4] unchanged [1] 2K [2] K₂/2 [3] K₂/4 Q.38 0.96 gram hydrogen iodide is heated at 400°C till equilibrium is established. 14.0 ml of N/10 Na,S,O, solution is needed to neutralize iodine obtained from this reaction, then calculate the percent amount of dissociation of HI: [1] 28% [4] 62.3%

Qus.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Ans.	4	1	2	4	2	4	4	2	1	1	3	1	3	1	4	2	4	4	1	1
Qus.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38		
Ans.	1	3	4	3	1	4	4	3	4	2	3	3	1	2	3	1	4	2		

Answer Key

Exercise # 2

Q.1		osed tube at 440°C till equilibri constant for this dissociation v		perature 22% of HI was dissoci-
	[1] 0.282	[2] 0.0796	[3] 0.0199	[4] 1.99
Q.2		were put into 10 litre flask and composition of CaCO ₃ is	d heated to 800 °C, 35% c	f CaCO $_{3}$ remained unreacted at
	[1] 1.145atm	[2] 0.145 atm	[3] 2.145 atm	[4] 3.145 atm
Q.3	A quantity of PCI_5 was	s heated in a 10 litre vessel at 2	50°C, PCl₅(g) + Cl₂(g) ===	\Rightarrow PCl ₃ (g) + Cl ₂ (g). At equilibrium
				The equilibrium constant of the
	[1] 0.02	[2] 0.05	[3] 0.04	[4] 0.025
Q.4	The equilibrium SO ₂ C	$Cl_2(g) \iff SO_2(g) + Cl_2(g)$ is	attained at 25°C in a close	ed container and inert gas helium
		of the following statement(s) is		6
	1. Concentrations of	SO_2 , CI_2 and $SO_2 CI_2$ change	2. More chlorine is fo	ormed
	3. Concentration of S	O_2 is reduced	4. More SO ₂ Cl ₂ is fo	med
	Correct answer is:			, ,
	[1] 1,2,3	[2] 2,3,4	[3] 3,4	[4] None
Q.5	Which of the following			
	Reaction	Degree of dissociatio	n Reaction	Degree of dissociation
	$[1] \operatorname{PCl}_5 \longrightarrow \operatorname{PCl}_3 +$	$-Cl_2$ $\frac{D-d}{d}$	$[2] N_2 O_4 \rightleftharpoons 2NO$	$\frac{M_t - M_o}{2d}$
	$[3] H_2 + I_2 \longrightarrow 2HI$	$\frac{\sqrt{K}}{\sqrt{K}+2}$	[4] A + B 🚞 C	+ D $\frac{\sqrt{K}}{2+\sqrt{K}}$
Q.6	For the reaction [1] a	nd [2]		
	[1] A ==== B + C	[2] D === 2E given k	K _{p1} : K _{p2} : : 9 : 1	
	If the degree of disso ratio			at equilibria [1] and [2] are in the
	[1] 3 : 1	[2] 36 : 1	[3] 1 : 1	[4] 0.5 : 1
Q.7		g graphs represents an exothe		
	[1] ² - 1/T	[2] $\stackrel{\stackrel{\checkmark}{\simeq}}{=}$ 1/T	[3] ^{Y^a}	[4] ^Y ^C - 1/T
Q.8	For the reaction 2HI(g) \longrightarrow H ₂ (g) + I ₂ (g); Δ H = +	ve which of the following	plot is correct
		a) (
	↑ ۲ ق [1] ⁰		[3] ⁰ [3] ⁰	ר בא [4] ^ס
	1/T	L1/T	∠1/T	1/T

 $CO + H_2O$ ^K $CO_2 + H_2$; $CO + O_2$ ^{K₁} CO_2 ; $H_2 + O_2$ ^{K₂} H_2O [2] K = $(K_1K_2)^2$ [1] K = $K_1 K_2$ [3] K = $(K_1K_2)^{-1/2}$ [4] K = K₁/K₂ Effect of temperature on equilibrium constant is given by $\log K_2 - \log K_1 = \frac{-\Delta H}{2.303R} \left[\frac{1}{T_2} - \frac{1}{T_1} \right]$. Then for a endot-Q.10 hermic reaction the false statement is [1] $\left| \frac{1}{T_2} - \frac{1}{T_1} \right|$ = positive [2] log K₂ > log K₁ [3] ΔH = positive $[4] K_2 > K_1$ Q.11 For the reaction : 2HI(g) $H_2(g) + I_2(g)$, the degree of dissociation (α) of HI(g) is related to equilibrium constant K by the expression $[3] \sqrt{\frac{2K_{P}}{1+2K_{P}}}$ [2] $\sqrt{\frac{1+2K_{P}}{2}}$ [1] $\frac{1+2\sqrt{K_{P}}}{2}$ List Y Q.12 List X (A) A B heat (i) Equilibrium constant (ii) Adaptation of low temp. (B) r_{h}/r_{f} (iii) (Equilibrium constant)⁻¹ $(C) r_{h}/r_{h}$ (D) 2A(g) + B(g)(iv) A(g) + B(g)C(q) + D(q)C(g)(E) No effect of pressure (v) ∆n < 0 Correct match list X and Y [1] A-(ii), B-(iii), C-(i), D-(v), E-(iv) [2] A-(iii), B-(ii), C-(i), D-(v), E-(iv) [3] A-(iv), B-(iii), C-(i), D-(v), E-(ii) [4] None of these cC + dD, Δ H = QKJ. If the higher yield of product is obtained by the increase in pressure and Q.13 aA + bB decrease in temp. then [1] (c+d) > (a+b) and Q positive[2](c+d) > (a+b) and Q negative [3] (c+d) < (a+b) and Q negative [4] (c+d) < (a+b) and Q positive Q.14 When heating PCI, then it decompose PCI, and CI, in form of gas, The density of gas mixture is 70.2 and 57.9 at 200°C and 250°C. The degree of dissociation of PCI, at 200°C and 250°C if [1] 48.50% & 80% [2] 60% & 70% [3] 70% & 80% [4] 80% & 90% If log kp₂ - log kp₁ = $x \left[\frac{1}{T_1} - \frac{1}{T_2} \right]$ then value of x is Q.15 $[3] \frac{1}{2.303K}$ [1] AH°/2.303R [2] ∆H^o [4] None of these Q.16 Series of equal reaction Represent by general equation E + F = G + H. In this equation each reaction of series reached at equilibrium and their equilibrium constant are follows which of the following reaction equilibrium established too late [3]K_c = 0.010 [1] $K_c = 2 \times 10^5$ [2] K_c = 85 [4] $K_c = 7 \times 10^8$ Equilibrium constant in condition of there reversible equation ; $Cu^{+2} + 4NH_3 = \frac{\kappa_1}{\kappa_{-1}} = Cu(NH_3)_4^{+2}$ Q.17 [1] k₁k₁ $[2]k_1/k_1$ $[3] k_{-1} / k_{1}$ $[4] (k_1)^2$

Some gaseous equilibrium have following relation in equilibrium constants

Q.9

In a gaseous mixture moles of A, B and C are 'a' 'b' and 'c' if total volume is V litre and mole fraction of A, B and Q.18 C are X_A , X_B and X_C then which of the following relation is incorrect. [2] $X_{B} = \frac{b}{a+b+c}$ [3] $X_{c} = \frac{c}{a+b+c}$ [1] $X_{A} = \frac{a}{a+b+c}$ $[4] X_A + X_B = 1 + X_C$ X₂ + Y₂ $\exists \Box \Box$ 2XY reaction was studied at a certain temperature. In the beginning 1 mole of X₂ was taken in a Q.19 one litre flask and 2 moles of Y₂ was taken in another 2 litre flask. What is the equilibrium concentration of X₂ and Y₂ (Given equilibrium concentration of [XY] = 0.6 moles/lit. $[1] \left(\frac{1}{3} - 0.3\right) \cdot \left(\frac{2}{3} - 0.3\right) \qquad [2] \left(\frac{1}{3} - 0.6\right) \cdot \left(\frac{2}{3} - 0.6\right) \qquad [3] (1 - 0.3), (2 - 0.3)$ [4] (1–0.6), (2–0.6) Reaction is $-2SO_2 + O_2 = 0$ 2SO₃ Q.20 For the formation of one ton of SO₃, what, would be the quantity of O₂ required [4] 0.002 Ton [1] 0.20 Ton [2] 0.02 ton [3] 2.0 Ton Q.21 For reaction aA 🗄 🗄 🕮 ℓ L + mM. In condition of suddenly volume increase degree of dissociation a is decrease it represent that. $[1] a < (\ell + m)$ $[2] a = (\ell + m)$ [3] a = (ℓ − m) [4] a > $(\ell + m)$ XY_2 dissociates as $XY_2(g) \oplus \oplus \oplus XY(g) + Y(g)$ Q.22 Initial pressure of XY₂ is 600 mm Hg. At equilibrium the total pressure is 800 mm Hg. Calculate the value of K₂. It is assumed that the volume of the system remains unchanged [1] 100 [2] 400 [3] 200 [4] 50 In a .25 litre tube occur dissociation of NO. Its initial mole is 4. If its degree of dissociation is 10%. The K_o for Q.23 Rxn 2 NO \square \square \square N₂ + O₂ [3] $\frac{1}{16}$ $[4] \frac{1}{32}$ $[1] \overline{(18)^2}$ The equilibrium constant for the reaction $N_2 + O_2 = 0$ 2NO is 0.0842 at 3500K. The fraction of equilibrium Q.24 mixture of N₂ and O₂ converted into NO is [1] 12.66% [2] 17.2% [3] 15.9% [4] 16.0% Q.25 The vapour density of PCI₅ is 104 but when heated to 230°C, its V.D. is reduced to 52. The degree of dissociation of PCI_s at this temperature will be [1] 6.8% [2] 100% [3] 46% [4] 64% The value K for $H_2(g) + CO_2(g) \oplus H_2O(g) + CO(g)$ is 1.80 at 1000°C. If 1.0 mole of each H_2 and CO_2 are Q.26 placed in 1 litre flask, the final equilibrium concentration of CO at 1000°C will be [1] 0.295 M [2] 0.385 M [3] 0.572M [4] 0.473 M Q.27 The decomposition of N₂O₄ to NO₂ is carried out at 280°C. When equilibrium is reached, 0.2 mol of N₂O₄ and 2×10^{-3} mol of NO₂ are present in 2 litres solution. The K_c for the reaction N₂O₄ $\square \square \square$ 2NO₂ is [1] 1 × 10⁻² [2] 1 × 10⁻⁵ [3] 2 × 10⁻³ [4] 2 × 10⁻⁵

40-5

If K_a for a reaction A (g) + 2 B (g) $\exists \Box \Box$ 3C (g) + D (g) is 0.05 atm at 1000 K. Its K_a in terms of R will be Q.28

[1] 20000 R [2] 0.02 R [3]
$$5 \times 10^{-5}$$
 R [4] $\frac{5 \times 10^{-5}}{R}$

An equilibrium mixture for the reaction $2 H_2 S(g) = 2H_2 (g) + S_2 (g)$ had one mole of hydrogen sulphide 0.2 Q.29 mole of H₂ and 0.8 mole of S₂ in a 2 litre vessel. The value of K_c in mole litre⁻¹ is [1] 0.004 [2] 0.016 [3] 0.080 [4] 0.160

Q.30 K₁ and K₂ are equilibrium constant for reactions [1] and [2] $N_{2}(g) + O_{2}(g) = 2NO(g)$

NO (g)
$$\square \square \square \square \frac{1}{2} N_2(g) + \frac{1}{2} O_2(g)$$

Then

- [1] $K_1 = \left(\frac{1}{K_2}\right)^2$ [2] $K_1 = K_2^2$
-[1][2] $[4] K_1 = (K_2)^0$ [3] K₁ =
- Q.31 The equilibrium constant for the reaction

Zn (s) + Cu²⁺ (aq) \square \square Zn²⁺ (aq) + Cu (s) + and Cu (s) 2 Ag⁺ (aq) \square \square Cu²⁺ (aq) + 2Ag (s) are K, and K, respectively. Then the equilibrium constant for the reaction

Zn (s) + 2 Ag⁺ (aq) $\square \square \square$ Zn²⁺ (aq) + 2 Ag (s) will be

$$[1] K_1 + K_2 \qquad [2] K_1 \times K_2 \qquad [3] K_1 / K_2 \qquad [4] K_1 - K_2$$

For an equilibrium change involving gaseous phase, the forward reaction is firs order while the reverse reaction Q.32 is second order. The unit of K_p for the forward equilibrium is

[1] Atm [2] Atm² [3] Atm⁻¹ [4] Atm⁻²

Q.33 Ammonia forms complexes with Ag⁺ according to the following reactions

(i)
$$Ag[H_2O]_2 + NH_3(aq) = 12 m [Ag[NH_3] [H_2O(aq)]^+ + H_2O(\ell)$$

(ii)
$$[Ag(NH_3)(H_2O) (aq)]^+ + NH_3(aq) = Ag(NH_3)_2^+ (aq) + H_2O(\ell)$$

[2] 0.5

The equilibrium constants of equilibrium (i) and (ii) are 2.0 × 10³ and 8.3 × 10³ respectively. Equilibrium constant of the following reaction $[Ag(H_2O)_2(aq)^+ + 2NH_3(aq) \oplus M_3(aq)_2^+ + 2H_2O(\ell)$ will be -

[1] 4.15 [2]
$$2.0 \times 10^3$$

- [3] 8.3 × 10³ [4] 16.6 × 10⁶ Two is the equilibrium constant for the reaction $A_2 + B_2 \oplus \oplus$ 2AB at a given temperature. What is the degree
- of dissociation for A2 or B2-

[1] 0.2

Q.34

[3]
$$\frac{1}{1+\sqrt{2}}$$

[4] $\frac{\sqrt{2}}{1+\sqrt{2}}$

At temperature, T, a compound AB₂(g) dissociates according to the reaction $2AB_2(g) = 2AB(g) + B_2(g)$ with Q.35 a degree of dissociation x, which is small compared with unity, the expression for kp, in terms of x and the total pressure, P is -

[1]
$$\frac{Px^3}{2}$$
 [2] $\frac{Px^2}{2}$ [3] $\frac{Px^3}{3}$ [4] $\frac{Px^2}{2}$

[4] √2 . α.

Q.36 For the equilibrium CaCO₃(s) $\square \square \square$ CaO(s) + CO₂(g) which of the following expressions is correct [1] $K_p = [CaO] [CO_2] / [CaCO_3]$ [2] $K_p = [P_{CaO} \times P_{CO2}] / P_{CaCO3}$ [4] All of these [3] $K_p = P_{CO_2}$ Q.37 One mole of the N₂ is mixed with 3 moles of H₂ in a litre container. If 50% of H₂ is converted into ammonia by the reaction. N₂ (g) + 3H₂ (g) $\exists \Box \Box$ 2NH₃ (g), then the total number of moles of gas a the equilibrium are [1] 1.5 [2] 4.5 [3] 3.0 [4] 6.0 For the system A(g) + 2B (g) 10^{-10} C (g), the equilibrium concentration are Q.38 A = 0.06 mol L^{-1} ; B = 0.12 mol L^{-1} ; C = 0.216 mol L^{-1} . The Keq of the reaction is [3] 4 × 10⁻³ [1] 250 [2] 416 [4] 125 If K₁ represent the equilibrium constant for reaction H₂ + I₂ $\exists \Box \Box$ 2HI & K₂ for ½ I₂ $\exists \Box \Box$ HI, the relation Q.39 between $K_1 \& K_2$ would be [3] $\sqrt{K_1} = K_2$ $[4] \sqrt{\mathsf{K}_1} = \sqrt{\mathsf{K}_2}$ [2] $\sqrt{K_1} \times K_2 = 1$ [1] $K_1 \times K_2 = 1$ In a Bodenstein experiment, one mol H₂ and two mol I₂ are taken initially in a one litre flask. If at equilibrium 0.5 Q.40 mol H₂ are present, the equilibrium concentrations of \tilde{I}_2 and HI in mol F^1 are [3] 1.5 , 1.0 [1] 0.5, 1.0 (20 1.0, 0.5 [4] 1.5, 0.5 The reaction : CH₃COOH + C₂H₅OH \square \square \square CH₃COOC₂H₅ + H₂O is studied in a 2 ℓ vessel by taking initially a mol Q.41 acetic acid and b mole ethanol. At equilibria, x mol each of ester and water are formed. The value of K for this reaction is equal to [3] $\frac{2x^2}{(a-x)(b-x)}$ [4] $\frac{x^2}{2(a-x)(b-x)}$ [1] $\frac{4x^2}{(a-x)(b-x)}$ [2] $\frac{x^2}{(a-x)(b-x)}$ At a total equilibrium pressure of 1.0 atmosphere, the degree of dissociation of phosgene is 0.2 Q.42 $COCl_{2}(g)$ $\Box \Box \Box$ $CO(g) + Cl_{2}(g)$ Now the same equilibrium is established at the same temperature in presence of N₂ gas at a partial pressure of 0.4 atm. in a total pressure of 1.0 atm. The new degree of dissociation, α , is – $[2] \alpha > 0.2$ $[1] \alpha < 0.2$ $[3] \alpha = 0.2$ $[4] \alpha = 0$ In the study of the reaction Q.43 Cl, + PCl, PCl, PCl,

partial pressures of Cl_2 , PCl_3 and PCl_5 at equilibrium are 0.1, 0.1 and 0.2 atm respectively at 250°C. At the same temperature, in another experiment on the same reaction, at equilibrium the partial pressures of PCl_3 and Cl_2 are half those in the first experiment. The partial pressure of the PCl_5 at equilibrium in the second experiment is

 $[3] \sqrt{2\alpha_1}$

```
[1] One–fourth of the first [2] Half of the first [3] One–eight of the first [4] One–third of the first
Q.44 At a given temperature the following reaction is allowed to reach equilibrium in a vessel of volume V_1 litre. The degree of dissociation is \alpha_1. If by keeping the temperature fixed the volume of the reaction vessel is doubled (assuming the degrees of dissociation to be small) the new degree of dissociation shall be
```

[2] $\sqrt{\frac{\alpha_1}{2}}$

PCI₅ PCI₃ + CI₂

[1] 2α₁

Q.45 For the general reaction

A nB

the degree of dissociation is measured from vapour density measurements. If the degree of dissociation, the observed and theoretical vapour densities be α , d_o and d_t respectively, then

$$[1] \alpha = \frac{d_{o} - d_{t}}{d_{t} (n+1)} \qquad [2] \alpha = \frac{d_{o} - d_{t}}{d_{t}} \qquad [3] \alpha = \frac{(d_{o} - d_{t})(n-1)}{d_{t}} \qquad [4] \alpha = \frac{d_{o} - d_{t}}{d_{o} (n-1)}$$

Q.46 The correct expression for equilibrium constant K_c, for the reaction

 $H_2(g) + \frac{1}{2}O_2(g0) + H_2O(g)$ is $[1] [H_2O] / [H_2] [\frac{1}{2}O_2] \qquad [2] P_{H_2O} / P_{O_2}^{1/2} \cdot P_{H_2} \qquad [3] [H_2O] / [H_2] [O_2]^{1/2}$ [4] $P_{H_{2}O} / \frac{1}{2} P_{O_2} \cdot P_{H_2}$ Q.47 The reversible reaction Cu(NH₂),²⁺ + SO₂²⁻ $Cu(NH_3)_3SO_3 + NH_3$ is at equilibrium. What would not happen if ammonia is added -[2] [Cu (NH₂), SO₂] would increase [1] [SO₃²⁻] would increase [3] The value of equilibrium constant would not change [4] [Cu $(NH_3)_3^{2+}$] would increase For the irreversible reaction $I_2 + 2S_2O_3^{2-} \longrightarrow 2I^- + S_4O_6^{2-}$ the correct statement is Q.48 [1] Addition of potassium iodide would lead to depending of the violet colour [2] Addition of BaCl₂ will make the reaction faster due to removal of I⁻ as Bal₂ [3] The number of moles of tetrathiosulphate formed at the end of the reaction would be equal to half the moles of thiosulphate reacted [4] None of these At a certain temperature, K_c for Q.49 $SO_2(g) + NO_2(g)$ $SO_3(g) + NO(g)$ is 16 If we take one mole each of all the four gases, what will be equilibrium concentration of NO, and NO respectively [2] 0.6 , 0.6 [3] 0.6, 0.4 [4] 0.4, 0.4 [1] 0.4, 1.6 The reaction between thiocyanate and ferric ion is represented by the reaction Q.50 SCN⁻ (aq) + Fe⁺³ (aq) [Fe (SCN)⁻² Colourless yellow deep red Addition of thiocyanate ion to the equilibrium mixture will make [1] The solution more deep red [2] The solution colourless [3] The solution yellow [4] The concentration of the complex ion to decrease

Qus.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Ans.	3	1	3	4	4	2	4	2	4	1	4	1	3	1	1	3	2	4	1	1
Qus.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
Ans.	4	1	1	1	2	3	2	4	2	1	2	1	4	3	1	3	3	1	3	3
Qus.	41	42	43	44	45	46	47	48	49	50										
Ans.	2	2	1	4	2	3	2	3	1	1										

Answer Key

Exercise # 3

Q.1	The relation between equ	uilibrium constant K_{p} and K_{c} is	K _c is – [IIT-1994 ; MP PMT-1994; CPMT-1997]				
	$[1] K_{c} = K_{p} (RT)^{\Delta n}$	[2] $K_p = K_c (RT)^{\Delta n}$	$[3] K_{p} = \left(\frac{K_{c}}{RT}\right)^{\Delta n}$	[4] $K_p - K_c = (RT)^{\Delta n}$			
Q.2	Which of the following co	nditions is favourable for the p	production of ammonia by H	aber's process			
				[MP PMT-1994]			
	[1] High concentration of	reactants	[2] Low temperature and	high pressure			
	[3] Continuous removal o	fammonia	[4] All the above				
Q.3	In which of the following	reaction, the value of K_{p} will be	e equal to K _c	[MP PMT-1995]			
	$[1] H_2 + I_2 \rightleftharpoons 2HI$		$[2] \operatorname{PCl}_{5} \rightleftharpoons \operatorname{PCl}_{3} + \operatorname{Cl}_{3}$				
	$[3] 2NH_3 \Longrightarrow N_2 + 3H_2$		$[2] PCI_5 \Longrightarrow PCI_3 + CI_3$ $[4] 2SO_2 + O_2 \Longrightarrow 2SC_3$	03			
Q.4	Which of the following rea	actions proceeds at low press	ure				
		[MP PET-198	5 ; CPMT–1984; MP PMT-	-1995 ; Raj. PMT–1997]			
	$[1] N_2 + 3H_2 \implies 2NH_3$		$[2] H_2 + I_2 \iff 2HI$				
	$[3] \operatorname{PCI}_{5} \rightleftharpoons \operatorname{PCI}_{3} + \operatorname{CI}_{3}$	2	$[4] N_2 + O_2 \rightleftharpoons 2NO$				
Q.5	In which of the following	reaction $K_p > K_c$		[AFMC-1995]			
	$[1] N_2 + 3H_2 \implies 2NH_3$		$[2] H_2 + I_2 \iff 2HI$				
	$[3] \operatorname{PCI}_3 + \operatorname{CI}_2 \rightleftharpoons \operatorname{PCI}$	5	$[4] 2SO_{3} \rightleftharpoons O_{2} + 2S$	0 ₂			
Q.6	The standard state Gibb'	s free energy change for the is	somerization reaction				
	cis-2-pentene 💳 trar	ns–2–pentene is – 3.67 kJ mo	I⁻¹ at 400 K. If more trans-2-	pen-tene is added			
	to the reaction vessel	50					
	[1] More cis–2–pentene i	s formed	[2] Equilibrium shifts in the forward direction				
	[3] Equilibrium remains u	naltered	[4] More trans-2-pentene is produced				
Q.7	For the reaction $PCI_{s}(g)$	\implies PCl ₃ (g) + Cl ₂ (g)		[MP PET-1996]			
	[1] $K_{p} = K_{c}$	[2] $K_p = K_c (RT)^{-1}$	[3] $K_{p} = K_{c} (RT)$	[4] $K_p = K_c (RT)^2$			
Q.8	The equilibrium constant	t of the reaction $H_2(g) + I_2(g)$ ts original volume, the volume	\implies 2HI (g) is 64. If the	e volume of the container is			
	[1] 16	[2] 32	[3] 64	[4] 128			
Q.9	For the following gaseou	s reaction $H_2 + I_2 \implies 2HI$,	the equilibrium constant	[MP PMT-1996]			
	[1] $K_p > K_c$	[2] K _p < K _c	[3] $K_{p} = K_{c}$	[4] $K_p = 1/K_c$			
Q.10	According to Le-chatelie	r's principle, which of the follo	wing factors influence a che	emical system			
	[1] Concentration only		[2] Pressure only	[MP PMT-1996]			
	[3] Temperature only		[4] Concentration, pressu	ure and temperature			

Q.11	$\ln N_2 + 3H_2$ 2NH ₃ r	eversible reaction, increase ir	n pressure will favour	[D.PMT-1996]
	[1] Reaction in forward dir	ection	[2] Reaction in reverse di	rection
	[3] Will not exert any effe	ct	[4] In backward and forwa	ard direction equally
Q.12	In which of the following s	ystem, doubling the volume o	of the container cause a shi	ft to the right
				[AIIMS-1996]
	$[1] H_2(g) + CI_2(g)$	2HCI (g)	$[2] 2CO(g) + O_2(g)$	2CO ₂ (g)
	$[3] N_2(g) + 3H_2(g)$ 2	NH ₃ (g)	$[4] PCl_{5}(g) PCl_{3}(g)$	$) + Cl_{2}(g)$
Q.13	$2NO_2$ $2NO + O_2$;	$K = 1.6 \times 10^{-12}$, NO + 7	1/2 O ₂ NO ₂ ; K' =	[CPMT-1996]
	[1] K' = $\frac{1}{K^2}$	[2] K' = $\frac{1}{K}$	$[3] K' = \frac{1}{\sqrt{K}}$	[4] None of these
Q.14	The equilibrium constant	for the reaction $N_2 + 3H_2$	$2NH_3$ is K, then the e	equilibrium constant for the
	equilibrium $NH_3 = \frac{1}{2}$	$N_2 + \frac{3}{2} H_2$ is -	<u>,</u> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	[CBSE-1996]
	[1] 1/K	[2] 1/K ²	[3] \K	[4] \\1/K
Q.15	Which of the following is r	not favourable for SO_3 formati	on $2SO_2(g) + O_2(g)$	$2SO_{3}(g); \Delta H = -45.0 \text{ kcal}$
	[1] High pressure	0	[2] High temperature	[MP PET-1997]
	[3] Decreasing SO_3 conce	entration	[4] Increasing reactant co	oncentration
Q.16	For which one of the follo	wing reactions $K_p = K_c$		[MP PET-1997]
	$[1] N_2 + 3 H_2$ $2NH_3$		$[2] N_2 + O_2$ 2NO	
	$[3] PCI_5 PCI_3 + CI_2$		[4] 2SO ₃ 2SO ₂ + 0	0 ₂
Q.17	The equilibrium constant	for the reversible reaction, N_2	$+ 3H_2$ 2NH ₃ is K and	d for the reaction $1/2 N_2 + 3/2$
	$2 H_2$ NH ₃ the equil	ibrium constant is K'. K and k	K' will be related as -	[MP PET-1997]
	[1] K = K'	[2] K' = \sqrt{K}	[3] K = $\sqrt{K'}$	[4] K × K' = 1
Q.18	What would happen to a re unchanged	eversible reaction at equilibriu	m when an inert gas is adde	ed while the volume remains [MP PMT-1997]
	[1] More of the product wi	ll be formed	[2] Less of the product w	ill be formed
	[3] More of the reactant w	ill be formed	[4] It remains unaffected	
Q.19	The rate at which substar	ces react depends on their		[MP PMT-1997]
	[1] Atomic weight	[2] Molecular weight	[3] Equivalent weight	[4] Active mass
Q.20	Which statement for equi	librium constant is true for the	e reaction A + B C	[CPMT-1997]
	[1] Not changes with temp	perature	[2] Changes when cataly	st is added
	[3] Both 1 & 2		[4] Changes with tempera	ature
Q.21		nts is increased by 'x', then K		[AFMC-1997]
	[1] ln (K/x)	[2] K/x	[3] K + x	[4] K

Q.22	In which of the follow	wing case K_{p} is less than K_{c}		[AFMC-1997]
		+ Cl ₂	$[2] H_2 + CI_2 = 100 2HCI$	
	[3] 2SO ₂ + O ₂	2SO ₃	[4] All of these	
Q.23	For the reaction CO	$(g) + \frac{1}{2} O_2(g) \square \square \square CO_2(g) ; \frac{K}{K}$	$\frac{P}{c}$ is equivalent to –	[MP PET/PMT-1998]
	[1] 1	[2] RT	$[3] \frac{1}{\sqrt{RT}}$	[4] (RT) ^{1/2}
Q.24	Formation of SO_3 ta	kes place according to the reaction	on $2SO_2 + O_2 = 2SO_3$;	$\Delta H = -45.2$ kcal.
	Which of the followir	ng factors favours the formation of	SO ³	
	[1] Increase in temp	erature [2] Increase in pressure	[3] Removal of oxygen	[4] Increase in volume
ຊ.25	For the reaction CC CO_2 (g) can be incre	$O(g) + H_2O(g) = \Box \Box \Box CO_2(g) + H_2O(g)$	₂ (g) at a given temperature	, the equilibrium amount of [IIT-1998]
	[1] Adding a suitable	e catalyst	[2] Adding an inert gas	
	[3] Decreasing the v	olume of the container	[4] Increasing the amount	t of CO(g)
Q.26	In a 500 ml capacity	vessel CO and Cl_2 are mixed to	for COCI ₂ . At equilibrium, it c	ontains 0.2 moles of COCI_2
	and 0.1 mole of eac	h of CO and Cl_2 . The equilibrium of	constant K_c for the reaction C	$O + Cl_2 = OCl_2$ is
				[CBSE-1998]
	[1] 5	[2] 10	[3] 15	[4] 20
Q.27	In the reaction 4NH react to completion	$_{3}(g) + 5O_{2}(g) \rightarrow 4NO(g) + 6H_{2}O(\ell)$	when 1 mole of ammonia ar	nd 1 mole of O ₂ are made to [CBSE-1998]
	[1] 1.0 mole of H_2O i	s produced	[2] 1.0 mole of NO will be	produced
	[3] All the oxygen w	ill be consumed	[4] All the ammonia will b	e consumed
ຊ.28		\rightarrow C + D. Initially we start with eqnes of A. What is the equilibrium		At equilibrium we find the [CBSE-1998]
	[1] 4	[2] 2	[3] 1/4	[4] 1/2
Q.29		ng 3 moles of hydrogen and 1 mo al volumes at the same temperatu	-	mpletely into ammonia, the [Karnataka CET-1998]
	[1] 2 : 1	[2] 1 : 2	[3] 3 : 1	[4] 1 : 3
ຊ.30	An equilibrium mixtu	ure of the reaction $2H_2S(g) = \Phi$	$2H_2(g) + S_2(g)$ had 0.5 mole	H_2S , 0.10 mole H_2 and 0.4
		essel. The value of equilibrium co		[AIIMS-1998]
	[1] 0.004	[2] 0.008	[3] 0.016	[4] 0.160
Q.31	For the following ch	emical reaction 2X + Y 🗄 🖽 Z, tl	ne expression of equilibrium (constant will be
				[MP PMT-1999]
	[1] $K_c = \frac{[X]^2[Y]}{[Z]}$	[2] $K_c = \frac{[X] [Y]^2}{[Z]}$	[3] $K_c = \frac{[Z]}{[X]^2 [Y]}$	[4] $K_{c} = \frac{[Z]}{[X] [Y]^{2}}$
Q.32	For the chemical rea	action $3X(g) + Y(g) = \bigoplus X_3Y(g)$,	the amount of $X_3 Y$ at equilibrium	rium is affected by -
		-	[2] Temperature ach	[IIT 4000]

[1] Temperature and pressure

[4] Temperature, pressure and catalyst

[IIT-1999]

[2] Temperature only

[3] Pressure only

Q.33	Consider the imaginary	equilibrium : 4A + 5B	4X + 6Y	[RPMT-2000]
	The equilibrium constar	ht K_{c} has the unit		
	[1] Mole ² litre ⁻²	[2] Litre mole ⁻¹	[3] Mole litre ⁻¹	[4] Litre ² mole ⁻²
Q.34	Two moles of PCI ₅ were into PCI ₃ and Cl ₂ . The va	heated in a closed vessel alue of equilibrium constar	of 2 litre capacity. At equili at	prium 40% of PCl ₅ was dissociated [RPMT-2000]
	[1] 0.267	[2] 0.53	[3] 2.67	[4] 5.3
Q.35	Relationship between, I	${\sf K}_{\sf p}$ and ${\sf K}_{\sf c}$ for gaseous equi	ilibrium is	[RPMT-2000]
	[1] $K_p = (K_c)^{\Delta n} RT$	[2] $K_p = K_c(RT)^{\Delta n}$	[3] $K_{c} = (K_{p})^{\Delta n} RT$	[4] $K_c = K_p (RT)^{\Delta n}$
Q.36	If X is the degree of dis	ssociation for the reactior	$1 N_2 O_4$ $2 NO_2$. What	are the total number of moles at [RPMT-20001]
	[1] 1	[2] 2	[3] 1 + X	[4] (1 – X) ²
Q.37	For a reversible reaction the value of equilibrium		te constant respectively ar	e 2.5 × 10 ⁻⁴ and 7.5 × 10 ⁻⁴ . What is [RPMT-2001]
	[1] 3	[2] 1/3	[3] 1	[4] None
Q.38	In which of the following	equilibrium, change in the	e volume of the system do	es not alter the number of moles
	$[1] N_2(g) + O_2(g)$	2NO(g)	[2] PCI ₅ (g)	PCl ₃ (g) + Cl ₂ (g) [AIEEE-2002]
	$[3] N_2(g) + 3H_2(g)$	2NH ₃ (g)	[4] SO ₂ Cl ₂	$SO_2(g) + CI_2(g)$
Q.39	For the reaction CO(g)	+ $\frac{1}{2}O_2(g)$ $CO_2(g),$	K _p /K _c is	[AIEEE-2002]
	[1] RT	[2] (RT) ⁻¹	[3] (RT) ^{-1/2}	[4] (RT) ^{1/2}
Q.40	If the equilibrium consta	int for the reaction		[RPMT-2002]
	$N_2 + 3H_2 = 2NH_3$,	is K then the equilibrium	, constant for the reaction	
	$2N_2 + 6H_2$ $4NH_3$,	would be equal to		
	[1] K ²	[2] \K	$[3] \frac{1}{\sqrt{K}}$	$[4] \frac{1}{K^2}$
Q.41	The reaction quotient (C			[CBSE-PMT-2003]
	$N_2(g) + 3H_2(g)$ 2	$NH_3(g)$ is given by $Q = \frac{[}{[N]}$	$\frac{\mathrm{NH_3}]^2}{\mathrm{_2}][\mathrm{H_2}]^3}$. The reaction wil	proceed from right to left if
	[1] Q < K _c	[2] Q > K _c	[3] Q = 0	$[4] Q = K_{c}$
Q.42	The following equilibria a	are given		[CBSE-PMT-2003]
	$N_2 + 3H_2$ $2NH_3$	K ₁ K ₃	$N_2 + O_2$ 21	NO K ₂
	$H_2 + \frac{1}{2}O_2 = H_2O$	K ₃		
	The equilibrium consta	nt of the reaction $2NH_3 + \frac{1}{2}$	$\frac{5}{2}O_2$ 2NO + 3H ₂ O,	in terms of $\rm K_{1}$. $\rm K_{2}$ and $\rm K_{3}$ is
	[1] K ₁ K ₂ / K ₃	[2] K ₁ K ₃ ² /K ₂	[3] K ₂ K ₃ ³ / K ₁	[CBSE-PMT-2003] [4] K ₁ K ₂ K ₃
Q.43		rium $N_2O_4(g)$ 2NO ² mol L ⁻¹ respectively. The		f N_2O_4 and NO_2 at equilibrium are n is [AIEEE-2003]
	[1] 3 × 10 ³ mol L ⁻¹	[2] 3.3 × 10 ² mole L ⁻¹	[3] 3 × 10⁻¹ mol L⁻	¹ [4] 3 × 10 ⁻³ mol L ⁻¹
Q.44	What is the equilibrium	expression for the reactio	n P ₄ (s)+ 50 ₂ P ₄ O ₄	(s)? [AIEEE-2004]
	•		+	
	$[1] K_{c} = 1/ [O_{2}]^{5}$	$[2] K_{c} = [P_{A}O_{A}] / 5[P_{A}]$		[4] $K_{c} = [P_{4}O_{10}]/[P_{4}][O_{2}]^{5}$

				CHEMICAL EQUILIBRIUM
Q.45	For the reaction CO(g)	$+ Cl_2(g) = COCl_2$	(g) the K_{P}/K_{c} is equal to:	[AIEEE-2004]
	[1] 1.0	[2] RT	[3] √RT	[4] 1/RT
Q.46	The equilibrium consta	nt for the reaction $N_2(g)$	$+ O_2(g) = 2NO(g)$ at the t	temperature T is 4×10^{-4} . The value
	of K_{c} for the reaction N	$O(g) = \frac{1}{2} N_2(g) +$	$\frac{1}{2}O_2(g)$ at the same tempera	ture is [AIEEE-2004]
Q.47	[1] 0.02 For the reaction	[2] 50	[3] 4 × 10 ⁻⁴	[4] 2.5 × 10 ² [AIEEE 2005]
	When K_p and K_c are co	ompared at 184ºC it is ter than, less than or e	× 10 ⁻⁶ at 184°C) (R = 0.083 found that qual to K_c depends upon the t	
Q.48	The exothermic format	tion of CIF_3 is represent		[AIEEE 2005]
	[1] Adding F ₂ [3] Removing Cl ₂	will increase the quant	ity of CIF ₃ in an equilibrium m [2] Increasing the [4] Increasing the	volume of the container temperature
Q.49	The equilibrium consta	ant for the reaction SO ₃	(g) $\square \square \square$ SO ₂ (g) + $\frac{1}{2}$ O ₂ (g) is	s K _c = 4.9 × 10 ⁻² . The value of K _c for
Q.50		[2] 9.8 × 10 ⁻² pride dissociates as foll uilibrium of the reactio	[3] 4.9 × 10 ⁻² ows, in a closed reaction vess	[AIEEE - 2006] [4] 416 sel, $PCI_{5}(g) \bigoplus \bigoplus PCI_{3}(g) + CI_{2}(g),$ dissocition of PCI_{5} is x, the partial [AIEEE - 2006]
	$[1]\left(\frac{2x}{1-x}\right)P$	$[2]\left(\frac{x}{x-1}\right)P$	$[3], \left(\frac{x}{1-x}\right)P$	$[4]\left(\frac{x}{x+1}\right)P$
Q.51	ments is not true?	. 71		mol ⁻¹ , which of the following state- [CPMT - 2006]
	[1] The equilibrium cor	nstant for the reaction i	s given by $K_p = \frac{[CO_2]}{[CH_4][O_2]}$	
Q.52	[2] Addition of $CH_4(g)$ (3] The reaction is exo [3] The reaction is exo [4] At equilibrium the co A mixture of ethyl alcoh propyl alcohol is 200 m temperature will be	or $O_2(g)$ at equilibrium withermic oncentration of $CO_2(g)$ nol and propyl alcohol h nm. If the mole fraction	will cause a shift to the right and $H_2O(\ell)$ are not equal as a vapour pressure of 290 m nof ethyl alcohol is 0.6, its vap	om at 300 K. The vapour pressure of bour pressure (in mm) at the same
	[1] 700	[2] 360	[3] 350	[4] 300 [AIEEE - 2007]

Answer Key

Qus.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Ans.	2	4	1	3	4	1	3	3	3	4	1	4	3	4	2	2	2	4	4	4
Qus.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
Ans.	4	3	3	2	4	2	3	1	1	3	3	1	3	1	2	3	2	1	3	1
Qus.	41	42	43	44	45	46	47	48	49	50	51	52								
Ans.	2	3	4	1	4	2	4	1	4	4	1	3								