$\mathbf{S}_{\text {olved }} \quad \mathbf{E}_{\text {xample }}$

Ex. 1 Oxidation numbers of A, B and C are $+6,-2$ and -1 , respectively. What will be the formula of the molecule when A, B and C associate with each other ?
(1) $A B_{2} C_{2}$
(2) ABC_{2}
(3) $A B_{2} C$
(4) $\mathrm{A}_{2} \mathrm{BC}$

Sol. The total of positive and negative charge should be zero in the compound.
Thus, compound will be $\mathrm{AB}_{2} \mathrm{C}_{2}$ where $+6-4-2=0$
Ex. 2 One mole of $\mathrm{X}_{2} \mathrm{H}_{4}$ releases 10 moles of electrons to form a compound Y . What should be the oxidation number of X in the compound Y ?
(1) +3
(2) -3
(3) -6
(4) +1

Sol. $\mathrm{X}_{2} \mathrm{H}_{4}-10 \mathrm{e}^{-} \longrightarrow\left(\mathrm{X}_{2} \mathrm{H}_{4}\right)^{+10}$
$2 x+4=+10 \quad 2 x=10-4=6 \quad x=+3$

Ex. $33 \mathrm{CuO}+2 \mathrm{NH}_{3} \longrightarrow 3 \mathrm{Cu}+\mathrm{N}_{2}+3 \mathrm{H}_{2} \mathrm{O}$
In the above conversion, the oxidation number of nitrogen is changing in from
(1) +5 to 0
(2) 0 to +2
(3) -3 to 0
(4) -3 to -5

Sol. In $3 \mathrm{CuO}+2 \mathrm{NH}_{3} \longrightarrow \underset{0}{3 \mathrm{Cu}}+\underset{2}{\mathrm{~N}_{2}}+3 \mathrm{H}_{2} \mathrm{O}$
$x+3=0$
$x=-3$
Change in $0 . s=-3$ to 0

Ex. 4 What should be the oxidation number of S in $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}$?
(1) +5
(2) +6
(3) +4
(4) +7

Sol. $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}$
$+2+2 x-14=0$
$2 x=12$
$x=+6$

Ex. 5 Oxidation numbers of the two nitrogen atoms present in ammonium nitrate are respectively?
(1) +3 and +3
(2) 0 and 0
(3) -3 and +5
(4) -1 and -1

Sol.
(i) NH_{4}^{+1}
$\mathrm{NO}_{3}{ }^{-1}$
$X+4=+1 \quad x-6=-1 \quad \frac{-3+5}{2}=+1$

Average oxidation number
$x=-4+1, x=-3$
$x=+5$
Ex. 6 Oxidation number of iodine in the following reaction $\mathrm{IO}_{3}^{-1}+\mathrm{HI} \longrightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{I}_{2}$
(1) increases
(2) decreases
(3) increases as well as decreases
(4) neither increases nor decrease

Sol. IO_{3}^{-1}
$+\mathrm{HI} \longrightarrow \mathrm{H}_{2} \mathrm{O}$
$x-6=-1$
$+1+x=0$
$x=0$
$+\quad I_{2}$
$x=+5 \quad x=-1$
Oxidation number decreases from +5 to 0 and increases from -1 to 0

Ex. 7 Oxidation product of $\mathrm{Na}_{3} \mathrm{AsO}_{3}$ is ?
(1) $\mathrm{As}_{2} \mathrm{O}_{3}{ }^{-3}$
(2) AsO_{4}^{-3}
(3) AsO_{3}
(4) AsO_{2}

Sol. $\mathrm{As}_{2} \mathrm{O}_{3}^{-3}$
(Arsenite)
AsO_{4}^{-3}
$x-6=3$
(Arsenate)
$x=+3$
$x-8=-3$
$x=+5$
Ex. 8 Reaction between 1 mole of HgCl_{2} and 1 mole of SnCl_{2} occurs as follows. $2 \mathrm{HgCl}_{2}+\mathrm{SnCl}_{2} \rightarrow \mathrm{SnCl}_{4}+\mathrm{Hg}_{2} \mathrm{Cl}_{2}$ Which of the following ions will be there after completion of the reaction?
(1) $\mathrm{Hg}^{+1}, \mathrm{Sn}^{+2}, \mathrm{Sn}^{+4}$
(2) $\mathrm{Hg}^{+2}, \mathrm{Sn}^{+2}$
(3) $\mathrm{Sn}^{+2}, \mathrm{Sn}^{+4}$
(4) $\mathrm{Hg}^{+2}, \mathrm{Sn}^{+2}, \mathrm{Sn}^{+4}$

Sol. According to the reaction, 2 mole HgCl_{2} reacts with 1 mole SnCl_{2}. Therefore, $1 \mathrm{~mole} \mathrm{HgCl}_{2}$ will react with $1 / 2$ mole $\mathrm{SnCl}_{2} \& 1 / 2$ mole SnCl_{2} will be left. Thus, $\mathrm{Sn}^{+4}, \mathrm{Hg}^{+1}$ and Sn^{+2} ions will remain in the solution.

Ex. 9 In the presence of humidity, SO_{2}
(1) loses proton
(2) accepts electron
(3) is an oxidant
(4) is a reductant

Sol. $\mathrm{SO}_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2} \longrightarrow \mathrm{H}_{2} \mathrm{SO}_{4}$
Therefore, it changes from +4 to +6 . Due to this SO_{2} is a reductant.
$\mathrm{SO}_{2} \quad \mathrm{H}_{2} \mathrm{SO}_{4}$
$x-4=0 \quad+2+x-8=0$
$x=+4 \quad x=+6$

Ex. 10 In the following reaction, $\mathrm{MnO}_{4}{ }^{-1}+8 \mathrm{H}^{+}+5 \mathrm{e}^{-} \longrightarrow \mathrm{Mn}^{+2}+4 \mathrm{H}_{2} \mathrm{O}$ how many grams of KMnO_{4} should be taken if its 0.5 litre of 0.2 N solution is to be prepared?
(1) 31.6 g
(2) 63.2 g
(3) 158.0 g
(4) 94.8 g

Sol. $\mathrm{MnO}_{4}^{-1} \longrightarrow \mathrm{Mn}^{+2}$
$x-8=-1 \quad x=+2$
$x=+7$
Equivalent weight $=\frac{\text { Molecular weigth }}{\text { Change in oxidation number }} \quad=\frac{158}{5}=31.6 \mathrm{~g}$
Weight in $\mathrm{g}=$ Equivalent weight \times Normality \times Volume $=31.6 \times 0.2 \times 5=31.6 \mathrm{~g}$
Ex. 11 What will be the oxidation state of copper in $\mathrm{YBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{7}$, if oxidation state of (Y) is +3 ?
(1) $7 / 3$
(2) 7
(3) 3 and 5
(4) none of the above

Sol. $\mathrm{YBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{7}$
$+3+4+3 x-14=0 \quad 3 x=7 \quad x=7 / 3$
Ex. 12 How many moles of nitrogen produced by the oxidation of one mole of hydrazine by $\frac{2}{3}$ mole bromate ion ?
(1) $\frac{1}{3}$
(2) 1
(3) 1.5
(4) $\frac{2}{3}$

Sol. The balanced equation between $\mathrm{N}_{2} \mathrm{H}_{4}$ and $\mathrm{BrO}_{3}{ }^{-1}$ is
$3 \mathrm{~N}_{2} \mathrm{H}_{4}+2 \mathrm{BrO}_{3}^{-} \rightarrow 3 \mathrm{~N}_{2}+2 \mathrm{Br}^{-}+6 \mathrm{H}_{2} \mathrm{O}$
Dividing by 3 , we get : $\quad \frac{3}{3} \mathrm{~N}_{2} \mathrm{H}_{4}+\frac{2}{3} \mathrm{BrO}_{3}{ }^{-} \rightarrow \mathrm{N}_{2}+\frac{2}{3} \mathrm{Br}+2 \mathrm{H}_{2} \mathrm{O}$
Ans is 1

Ex. 13 How many moles of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ are reduced by 1 mole of formic acid?
(1) $\frac{1}{3}$ Mole
(2) 1 Mole
(3) $\frac{2}{3}$ Mole
(4) $\frac{5}{3}$ Mole

Sol. Equation is
$\mathrm{Cr}_{2} \mathrm{O}_{7}^{-2}+8 \mathrm{H}^{+}+3 \mathrm{HCOOH} \rightarrow 2 \mathrm{Cr}^{3+}+3 \mathrm{CO}_{2}+7 \mathrm{H}_{2} \mathrm{O}$
$\because 3$ moles of formic acid reduces $=1$ mole $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$
$\therefore 1$ mole of formic acid reduce $=\frac{1}{3}$ mole $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$

Ans is $1 / 3$ mole

Ex. 14 One mole KMnO_{4} oxidises how many moles of ferrous oxalate?
(1) $\frac{1}{5}$
(2) $\frac{5}{3}$
(3) $\frac{1}{3}$
(4) $\frac{2}{3}$

Sol. Reaction is
$\left.5 \mathrm{e}+8 \mathrm{H}^{+}+\mathrm{MnO}_{4}^{-} \rightarrow \mathrm{Mn}^{+2}+4 \mathrm{H}_{2} \mathrm{O}\right] \times 3$
$\left.\mathrm{Fe}^{+2} \rightarrow \mathrm{Fe}^{+3}+\mathrm{e}\right] \times 5$
$\left.\mathrm{C}_{2} \mathrm{O}_{4}{ }^{-2} \rightarrow 2 \mathrm{CO}_{2}+2 \mathrm{e}\right] \times 5$
$5 \mathrm{Fe}^{+2}+24 \mathrm{H}^{+}+3 \mathrm{MnO}_{4}^{-}+5 \mathrm{C}_{2} \mathrm{O}_{4}^{-} \rightarrow 3 \mathrm{Mn}^{+2}+5 \mathrm{Fe}^{+3}+10 \mathrm{CO}_{2}+12 \mathrm{H}_{2} \mathrm{O}$
$\because 3$ moles of KMnO_{4} oxidises $=5$ moles $\mathrm{FeC}_{2} \mathrm{O}_{4}$
$\therefore 1$ mole of KMnO_{4} oxidises $=\frac{5}{3}$ moles $\mathrm{FeC}_{2} \mathrm{O}_{4}$

Ans is $1 / 5$

Ex. $15 \mathrm{WO}_{3}+8 \mathrm{CN}^{-}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow\left[\mathrm{W}(\mathrm{CN})_{8}\right]^{4-}+1 / 2 \mathrm{O}_{2}+4 \mathrm{OH}^{-}$In the above process, oxidant is -
(1) WO_{3}
(2) CN^{-}
(3) $\mathrm{H}_{2} \mathrm{O}$
(4) O_{2}

Sol. Oxidation no. of W decreases
O.N. of W in $\mathrm{WO}_{3}=+6$
O.N. of W in $\left[\mathrm{W} /(\mathrm{CN})_{8}\right]^{4-}=+4$
Ans is WO_{3}

Ex. 16 How many ml. of 0.1 M oxalic acid solution is required to reduce 0.01 mole KMnO_{4} to MnO_{2} ?
(1) 250
(2) 150
(1) 100
(4) 500

Sol. $3 \mathrm{e}+8 \mathrm{H}^{+}+\mathrm{MnO}_{4}^{-} \rightarrow \mathrm{Mn}^{+4}+4 \mathrm{H}_{2} \mathrm{O}$
Equivalent weight $=\frac{\mathrm{M}}{3} \quad 0.01{\text { mole } \mathrm{KMnO}_{4}=0.03 \text { equivalent } \mathrm{KMnO}_{4}, ~}_{\text {E }}$
For oxalic acid : $\quad 0.1 \mathrm{M}$ oxalic acid $=0.2$ equivalent

We have:
normality $=($ equivalent $) \times \frac{1000}{V}$
$0.2=0.03 \times \frac{1000}{V}$

$$
\mathrm{V}=150 \mathrm{ml} .
$$

 z mole of electrons x, y and z are respectively.
(1) 1, 5, 4
(2) 1, 2, 3
(3) 2, 1, 3
(4) 2, 3, 4

Sol. The equation are :
$\mathrm{NO}_{3}{ }^{-}+2 \mathrm{H}^{+}+\mathrm{e} \rightarrow \mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O}$
$\mathrm{NO}_{3}{ }^{-}+6 \mathrm{H}^{+}+5 \mathrm{e} \rightarrow 0.5 \mathrm{~N}_{2}+3 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{NO}_{3}{ }^{-}+5 \mathrm{H}^{+}+4 \mathrm{e} \rightarrow 0.5 \mathrm{~N}_{2} \mathrm{O}+2.5 \mathrm{H}_{2} \mathrm{O}$
$\therefore \mathrm{x}, \mathrm{y}$ and z respectively are 1,5 and 4 .

Ex. 18 Calculate the equivalent weight of potassium permanganate $\left(\mathrm{KMnO}_{4}\right)$ in (i) neutral medium (ii) acidic medium (iii) alkaline medium, by oxidation number method.

Sol. (i) $M n^{+7}+3 e \rightarrow M n^{+4}$; Eq. wt. $=M / 3$
(ii) $\mathrm{Mn}^{+7}+5 \mathrm{e} \rightarrow \mathrm{Mn}^{+2}$; Eq. wt. $=\mathrm{M} / 5$
(iii) $\mathrm{Mn}^{+7}+1 \mathrm{e} \rightarrow \mathrm{Mn}^{+6}$; Eq. wt. $=\mathrm{M} / 1$

Ex. 19 An element A in a compound $A B D$ has an oxidation no. A^{-n}. It is oxidised by $\mathrm{Cr}_{2} \mathrm{O}_{7}^{-2}$ in acid medium. In an experiment 1.68×10^{-3} mole of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ was required for 3.26×10^{-3} mole of the compound ABD. Calculate new oxidation state of A.

Sol. $A^{-n} \longrightarrow A^{+a}+(a+n) e$
$6 \mathrm{e}+\mathrm{Cr}_{2}{ }^{+6} \longrightarrow 2 \mathrm{Cr}^{+3}$
$\therefore \quad$ Meq. of $\mathrm{A}^{-n}=$ Meq. of $\mathrm{Cr}_{2} \mathrm{O}_{7}^{-2}$ or $3.26 \times 10^{-3} \times(\mathrm{a}+\mathrm{n})=1.68 \times 10^{-3} \times 6$
$\therefore a+n=3 \quad$ or $\quad a=\mathbf{3}-\mathbf{n}$

Ex. 20 Find out the value of n in $\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+}+\mathrm{ne} \rightarrow \mathrm{Mn}^{+2}+4 \mathrm{H}_{2} \mathrm{O}$
Sol. \therefore Total charge on L.H.S. $=$ Total charge on R.H.S.

$$
-1+8-(-\mathrm{n})=+2 ; \quad \therefore \mathrm{n}=5
$$

Ex. 21 In the reaction $8 \mathrm{Al}+3 \mathrm{Fe}_{3} \mathrm{O}_{4} \rightarrow 4 \mathrm{Al}_{2} \mathrm{O}_{3}+9 \mathrm{Fe}$
(a) Which element is oxidised or reduced ?
(b) Total number of electrons transferred during the change.

Sol. $8 \mathrm{Al}^{0} \rightarrow 4 \mathrm{Al}_{2}^{3+}+24 \mathrm{e}$
$24 \mathrm{e}+3 \mathrm{Fe}_{3}{ }^{(8 / 3)+} \rightarrow 9 \mathrm{Fe}^{0}$
or
$8 \mathrm{Al}^{0}+3 \mathrm{Fe}_{3}^{(8 / 3)+} \rightarrow 4 \mathrm{Al}_{2}{ }^{3+}+9 \mathrm{Fe}$

Reductant is Al i.e. Al is oxidised

Oxidant is $\mathrm{Fe}_{3} \mathrm{O}_{4}$ or $\mathrm{Fe}^{(8 / 3)+}$ i.e. $\mathrm{Fe}^{(8 / 3)+}$ is reduced
Number of electrons used during redox change $=\mathbf{2 4}$
Ex. 22 A student unsuccessfully tried to balance the following equation :
$\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+\mathrm{Fe}^{3+}+\mathrm{H}^{+} \rightarrow \mathrm{Cr}^{3+}+\mathrm{Fe}^{2+}+\mathrm{H}_{2} \mathrm{O}$. Why could not student balance the equation?
Sol. Both parts are reduction part i.e. Cr^{+6} as well as Fe^{3+} both are reduced without a reductant which is not possible.

Ex. 23 Six moles of Cl_{2} undergo a loss and gain of 10 moles of electrons to form two oxidation state of Cl .
Write down the two half reactions \& find out the oxidation number of each Cl atom involved.
Sol.

$$
\begin{aligned}
6 \mathrm{Cl}_{2} & \rightarrow 2 \mathrm{Cl}^{5+}+10 \mathrm{Cl}^{-} \\
& +5 ; \quad-1
\end{aligned}
$$

Q. 1 Reduction is defined as:
(1) Increase in positive valency
(2) Gain of electrons
(3) Loss of protons
(4) Decrease in negative valency
Q. 2 A compound contains atoms X, Y and Z the oxidation number of X is $+2, Y$ is +5 and Z is -2 therefore a possible formula of the compound is:
(1) $X Y Z_{2}$
(2) $X_{2}\left(Y Z_{3}\right)_{2}$
(3) $\mathrm{X}_{3}\left(\mathrm{YZ} \mathrm{Z}_{4}\right)_{2}$
(4) $X_{3}\left(Y_{4} Z\right)_{2}$
Q. 3 The atomic number of an element which shows the oxidation state of +3 is :
(1) 13
(2) 32
(3) 33
(4) 17
Q. 4 Which of the following is the correct oxidation number of phosphorus in $\mathrm{Mg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$:
(1) -3
$(2)+2$
(3) +5
$(4)+3$
Q. $5 \quad \mathrm{Co}(\mathrm{s})+\mathrm{Cu}^{2+}(\mathrm{aq}) \rightarrow \mathrm{Co}^{2+}(\mathrm{aq})+\mathrm{Cu}(\mathrm{s})$. The above reaction is :
(1) Oxidation reaction
(2) Reduction reaction
(3) Redox reaction
(4) None of these
Q. 6 Which of the following reactions depict the oxidising behavior of $\mathrm{H}_{2} \mathrm{SO}_{4}$
(1) $2 \mathrm{PCl}_{5}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 2 \mathrm{POCl}_{3}+2 \mathrm{HCl}+\mathrm{SO}_{2} \mathrm{Cl}_{2}$
(2) $2 \mathrm{NaOH}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$
(3) $\mathrm{NaCl}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{NaHSO}_{4}+\mathrm{HCl}$
(4) $2 \mathrm{HI}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{I}_{2}+\mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
Q. 7 Oxidation number of sulphur in $\mathrm{Na}_{2} \mathrm{SO}_{4}$ is :
(1) -2
(2) +6
(3) +2
(4) -6
Q. 8 Oxidation state of O_{2} in $\mathrm{H}_{2} \mathrm{O}_{2}$ is :
(1) -2
(2) -1
(3) +1
$(4)+2$
Q. 9 In $\mathrm{C}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CO}+\mathrm{H}_{2}, \mathrm{H}_{2} \mathrm{O}$ acts as :
(1) Oxidising agent
(2) Reducing agent
(3) Both
(4) None
Q. 10 If three electrons are lost by a metalion M^{3+}, its final oxidation number should be :
(1) 0
(2) +6
(3) +2
$(4)+4$
Q. 11 Oxidation number of Fe in $\mathrm{K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ is :
(1) +2
(2) +3
(3) +1
$(4)+4$
Q. 12 Reducing agent is that:
(1) Which takes electrons
(2) Which takes protons
(3) Which donates electrons
(4) Which donates protons
Q. 13 HBr and HI reduce sulphuric acid. HCl can reduce KMnO_{4} and HF can reduce :
(1) $\mathrm{H}_{2} \mathrm{SO}_{4}$
(2) KMnO_{4}
(3) $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$
(4) None of these
Q. 14 The compound which gives oxygen on moderate heating is :
(1) Ferric oxide
(2) Zinc oxide
(3) Mercuric oxide
(4) Aluminium oxide
Q. 15 Oxidation number of sulphur in $\mathrm{S}_{2} \mathrm{Cl}_{2}$ is :
(1) +1
(2) 0
(3) -1
$(4)+6$
Q. 16 In a reaction between zinc and iodine in which zinc iodide is formed, what is being oxidised :
(1) Zinc ions
(2) Iodide ions
(3) Zinc atom
(4) lodine
Q. 17 Oxidation number of sulphur in $\mathrm{S}_{2} \mathrm{O}_{2}{ }^{2-}$ is :
(1) -2
(2) +1
(3) +6
(4) 0
Q. 18 Oxidation number of nitrogen in NH_{3} is :
(1) -3
(2) +3
(3) 0
$(4)+5$
Q. 19 In acidic medium equivalent weight of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}($ molecular weight $=\mathrm{M})$ is :
(1) $\mathrm{M} / 3$
(2) $M / 4$
(3) M / 6
(4) $M / 2$
Q. 20 In the following reactions: $4 \mathrm{P}+3 \mathrm{KOH}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow 3 \mathrm{KH}_{2} \mathrm{PO}_{2}+\mathrm{PH}_{3}$
(1) Only phosphorus is oxidized
(2) Only phosphorus is reduced
(3) Phosphorus is both oxidized and reduced
(4) Phosphorus is neither oxidized nor reduced
Q. 21 The oxidation number of nitrogen in $\mathrm{NH}_{2} \mathrm{OH}$ is :
(1) +1
(2) -1
(3) -3
$(4)-2$
Q. 22 The reaction of $\mathrm{Zn}^{++}+2 \mathrm{e}^{-} \rightarrow \mathrm{Zn}$ is an example of :
(1) Oxidation
(2) Reduction
(3) Redox reaction
(4) None
Q. 23 Oxidation number of P in $\mathrm{KH}_{2} \mathrm{PO}_{2}$ is :
(1) +1
(2) 6
(3) 4
(4) 7
Q. 24 In the reaction $3 \mathrm{Cl}_{2}+6 \mathrm{OH}^{-} \rightarrow 5 \mathrm{Cl}^{-}+\mathrm{ClO}_{3}^{-}+3 \mathrm{H}_{2} \mathrm{O}$ chlorine is :
(1) Oxidised
(2) Reduced
(3) Oxidised as well as reduced
(4) Neither oxidised nor reduced
Q. 25 In the compounds KMnO_{4} and $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$, the highest oxidation state is of the element :
(1) Potassium
(2) Manganese
(3) Chromium
(4) Oxygen
Q. 26 In the reaction $3 \mathrm{Br}_{2}+6 \mathrm{CO}_{3}{ }^{2-}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow 5 \mathrm{Br}+\mathrm{BrO}_{3}-6 \mathrm{HCO}_{3}^{-}$
(1) Bromine is oxidised and carbonate is reduced
(2) Bromine is both reduced and oxidised
(3) Bromine is neither reduced nor oxidised
(4) Bromine is reduced and water is oxidised
Q. 27 A gas X bleaches a flower by reduction and another gas Y by oxidation these gases are , respectively
(1) $\mathrm{NH}_{3} \& \mathrm{SO}_{3}$
(2) $\mathrm{NO}_{2} \& \mathrm{~N}_{2} \mathrm{O}_{5}$
(3) $\mathrm{SO}_{2} \& \mathrm{Cl}_{2}$
(4) $\mathrm{SO}_{2} \& \mathrm{PCl}_{3}$
Q. 28 What will happen when copper rod is dipped in aluminium nitrate solution, if the electropositive properties are as follows: $\mathrm{Al}>\mathrm{Zn}>\mathrm{Cu}>\mathrm{Ag}$
(1) Aluminium will get deposited on the rod
(2) Colour of the solution will becomes blue
(3) Copper aluminium alloy will be formed
(4) No reaction will occur
Q. 29 The normal oxidation state of an element is -2 . The number of electrons in its outermost shell will be
(1) 4
(2) 2
(3) 6
(4) 8
Q. 30 For the reaction: $4 \mathrm{Fe}+3 \mathrm{O}_{2} \rightarrow 4 \mathrm{Fe}^{3+}+6 \mathrm{O}^{2-}$ which of the following is a wrong statement ?
(1) It is an example of redox reaction
(2) Metallic iron reduces to Fe^{3+}
(3) Fe is oxidised
(4) Metallic iron is a reducing agent
Q. 31 Oxidation number of Ni in $\mathrm{Ni}(\mathrm{CO})_{4}$ is:
(1) 0
(2) 4
(3) 8
(4) 2
Q. 32 The oxidation number of nitrogen in $\mathrm{NH}_{4} \mathrm{NO}_{3}$ is :
(1) +3
(2) +5
(3) -3 and +5
(4) +3 and +5
Q. 33 In acidic medium, reaction : $\mathrm{MnO}_{4}^{-} \rightleftharpoons \mathrm{Mn}^{2+}$ is an example of :
(1) Oxidation by three electrons
(2) Reduction by three electrons
(3) Oxidation by five electrons
(4) Reduction by five electrons
Q. 34 Which of the following halogens always shows only one oxidation state ?
(1) Cl
(2) F
(3) Br
(4) I
Q. 35 In the reaction
$\mathrm{MnO}_{4}^{-}+\mathrm{NO}_{2}^{-} \rightarrow \mathrm{NO}_{3}^{-}+\mathrm{Mn}^{2+}$ one mole of MnO_{4}^{-}oxidises \qquad moles of NO_{2}^{-}
(1) 5
(2) $5 / 2$
(3) 3
(4) $3 / 2$
Q. 36 In the following reaction
$\mathrm{As}_{2} \mathrm{~S}_{5}+\mathrm{NO}_{3}^{-} \rightarrow \mathrm{AsO}_{4}^{3-}+\mathrm{SO}_{4}{ }^{2-}+\mathrm{NO}_{2}$
The equivalent weight of $\mathrm{As}_{2} \mathrm{~S}_{5}$ is
(1) $M / 8$
(2) $M / 6$
(3) $\mathrm{M} / 40$
(4) $M / 30$
Q. 37 In a reaction the equivalent weight of KMnO_{4} becomes one third of its molecular weight. The oxidation state of Mn in the final product is
(1) +6
(2) +4
(3) +3
(4) +2
Q. 38 In which of the following compound oxidation number of Cl is +3 ?
(1) ICl
(2) ClO_{3}^{-}
(3) CIF_{3}
(4) HClO_{4}
Q. 39 The oxidation number of cobalt in $\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}$ is -
(1) +3
(2) -3
(3) +6
(4) -6
Q. 40 In which of the following compound oxidation number of iron is not +3
(1) $\mathrm{Fe}_{3} \mathrm{O}_{4}$
(2) $\mathrm{Fe}_{2} \mathrm{O}_{3}$
(3) FeCl_{3}
(4) FePO_{4}
Q. 41 The oxidation number of Mn in $\mathrm{MnC}_{2} \mathrm{O}_{4}$ is -
(1) +3
(2) $+8 / 3$
(3) +1
(4) +2
Q. 42 In the following equation $\mathrm{ClO}_{3}^{-}+6 \mathrm{H}^{+}+\mathrm{X} \rightarrow \mathrm{Cl}^{-}+3 \mathrm{H}_{2} \mathrm{O}$, then X is
(1) O
(2) $6 \mathrm{e}^{-}$
(3) O_{2}
(4) $5 \mathrm{e}^{-}$
Q. 43 The correct oxidation number of phosphorus in magnesium pyrophosphate $\left[\mathrm{Mg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}\right]$ is -
(1) +2
$(2)+3$
(3) -3
$(4)+5$
Q. 44 Oxidation number of sulphur in $\mathrm{H}_{2} \mathrm{SO}_{5}$ is -
(1) +2
(2) +4
(3) +8
$(4)+6$
Q. 45 In which of the following compound, iodine is in its highest oxidation state -
(1) KI
(2) KIO_{4}
(3) KI_{3}
(4) IF_{5}
Q. 46 Oxidation number of chlorine in Hypochlorous acid is-
(1) -1
(2) zero
(3) +1
$(4)+2$
Q. 47 Which one of the following compounds can act as an oxidising as well as reducing agent -
(1) KMnO_{4}
(2) $\mathrm{H}_{2} \mathrm{O}_{2}$
(3) BaO
(4) $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$
Q. 48 When acidic solution of ferrous ammonium sulphate is treated with potassium permanganate solution then the ion which is oxidised is -
(1) MnO_{4}^{-}
(2) NH_{4}^{+}
(3) Fe^{2+}
(4) $\mathrm{SO}_{4}{ }^{2-}$
Q. 49 The violent reaction between sodium and water is an example of -
(1) Reduction
(2) Oxidation
(3) Redox reaction
(4) Neutralization
Q. 50 The equivalent weight of reducing agent in the reaction
$2\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}+2 \mathrm{OH}^{-}+\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}-$
(1) 17
(2) 212
(3) 16
(4) $6 / 8$
Q. 51 In the formation of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ form PbO_{2} -
(1) PbO_{2} is oxidised
(2) PbO_{2} is reduced
(3) PbO_{2} is both oxidised and reduced.
(4) PbO_{2} is neither oxidised nor reduced
Q. 52 The compound in which oxidation state of metal is zero -
(1) $\mathrm{Fe}_{2}(\mathrm{CO})_{9}$
(2) $\mathrm{Ni}(\mathrm{CO})_{4}$
(3) $\mathrm{Fe}_{3}(\mathrm{CO})_{9}$
(4) All of the above
Q. 53 The oxidation state of phosphorus is +3 in -
(1) Orthophosphorous acid
(2) Orthophosphoric acid
(3) Pyrophosphoric acid
(4) Metaphosphoric acid
Q. 54 Which of the following is a true statement -
(1) Oxidation state of oxygen in HOF is zero.
(2) Oxidation state of fluorine in HOF is -1.
(3) Oxidation state of chlorine in HOCl is +1 .
(4) All of the above.
Q. 55 The following reaction is used in the extraction of chromium from its ore
$2 \mathrm{Fe}_{2} \mathrm{O}_{3} \cdot \mathrm{Cr}_{2} \mathrm{O}_{3}+4 \mathrm{Na}_{2} \mathrm{CO}_{3}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}+4 \mathrm{Na}_{2} \mathrm{CrO}_{4}+4 \mathrm{CO}_{2}$
What is true about the oxidation states of the substance in the reaction -
(1) Chromium is oxidised from +3 to +6 oxidation state.
(2) Iron is reduced from +3 to +2 oxidation state.
(3) Carbon is oxidised from +3 to +4 oxidation state
(4) There is no change in the oxidation states of the substances.
Q. 56 Oxidation state of nitrogen is incorrectly given for

Compounds
Oxidation states Compounds
(1) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}_{2}$ -3
(2) $\mathrm{NH}_{2} \mathrm{OH}$
(3) $\left(\mathrm{N}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{SO}_{4}$
$+2$
(4) $\mathrm{Mg}_{3} \mathrm{~N}_{2}$

- 1

Oxidation states

Which of the following is an example of reduction -
(1) $\mathrm{CuO} \rightarrow \mathrm{Cu}_{2} \mathrm{O}$
(2) $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-} \rightarrow\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$
(3) $\mathrm{KI} \rightarrow \mathrm{I}_{2}$
(4) $\mathrm{H}_{2} \mathrm{~S} \rightarrow \mathrm{~S}$
Q. 58 Out of the following acids which has different oxidation state of phosphorus as compared to others -
(1) Phosphorous acid
(2) Orthophosphoric acid
(3) Metaphosphoric acid
(4) Pyrophosphoric acid
Q. 59 Reaction $\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}+2 \mathrm{H}^{+} \rightarrow \mathrm{Ag}^{+}+2 \mathrm{NH}_{4}^{+}$is an example of -
(1) Oxidation
(2) Reduction
(3) Neither oxidation nor reduction
(4) Oxidation and reduction both
Q. 60 The brown ring complex compound is formulated as $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{NO}^{+}\right] \mathrm{SO}_{4}$. The oxidation state of iron is -
(1) 1
(2) 2
(3) 3
(4) zero
Q. 61 Which of the following reactions involves neither oxidation nor reduction -
(1) $\mathrm{CrO}_{4}{ }^{2-} \rightarrow \mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$
(2) $\mathrm{Cr} \rightarrow \mathrm{CrCl}_{3}$
(3) $\mathrm{VO}^{2+} \rightarrow \mathrm{V}_{2} \mathrm{O}_{2}$
(4) $2 \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-} \rightarrow \mathrm{S}_{4} \mathrm{O}_{6}{ }^{2-}$
Q. 62 When KMnO_{4} is reduced with oxalic acid in acidic solution, the oxidation number of Mn changes from -
(1) 7 to 4
(2) 6 to 4
(3) 7 to 2
(4) 4 to 2
Q. 63 What would happen when a small quantity of $\mathrm{H}_{2} \mathrm{O}_{2}$ is added to a solution of FeSO_{4} -
(1) Colour disappears
(2) H_{2} is evolved
(3) An electron is added to Fe^{++}
(4) An electron is lost by Fe^{++}
Q. 64 The oxidation number of each sulphur in $\mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}$ is -
(1) 2.5
(2) 2 and 3 (two S have +2 and the other two have +3)
(3) 2 and 4 (three S have +2 and one S has +4)
(4) 5 and 0 (two S have +5 and the other S have 0)
Q. 65 In a redox reaction $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ changes to $\mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}$. If the molecular weight of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ is M and equivalent weight E then -
(1) $M=3 E$
(2) $M=6 E$
(3) $E=2 M$
(4) $E=6 M$
Q. $66 \quad \mathrm{Fe}_{3} \mathrm{O}_{4}$ is oxidised to $\mathrm{Fe}_{2} \mathrm{O}_{3}$. If the molecular weight of $\mathrm{Fe}_{3} \mathrm{O}_{4}$ is M and equivalent weight E then -
(1) $E=M$
(2) $E=\frac{M}{3}$
(3) $E=\frac{2}{3} M$
(4) $E=\frac{3}{2} M$
Q. 67 In a triatomic molecule the oxidation states of atoms A, B and C are $+6,+1$ and -2 respectively. The molecular formula of the compound will be -
(1) $\mathrm{B}_{2} \mathrm{AC}_{4}$
(2) $\mathrm{B}_{2} \mathrm{~A}_{2} \mathrm{C}_{7}$
(3) Both of the above.
(4) None of the above
Q. 68 The reaction $2 \mathrm{TiCl}_{3} \rightarrow \mathrm{TiCl}_{2}+\mathrm{TiCl}_{4}$ example of -
(1) dissociation
(2) disproportation
(3) reversible reaction
(4) exothermic reaction
Q. 69 The anodic reaction in the electrolysis of the aqueous solution of NaCl is -
(1) Oxidation of chloride ion
(2) Evolution of oxygen
(3) reduction of chloride ion
(4) Oxidation of sodium ion.
Q. 70 Which of the following statements is not correct -
(1) Two mole of electrons are used in the reduction of MnO_{4}^{-}to MnO_{3}^{-}
(2) Three electrons per chromium atom are used in the reduction of dichromate by Fe (II)
(3) The oxidation state of oxygen is $-\frac{1}{2}$ in potassium superoxide.
(4) The oxidation number increases in the process of reduction.
Q. 71 In the reaction -
$2 \mathrm{FeCl}_{3}+\mathrm{H}_{2} \mathrm{~S} \rightarrow 2 \mathrm{FeCl}_{2}+2 \mathrm{HCl}+\mathrm{S}$
(1) FeCl_{3} is used as an oxidant.
(2) FeCl_{3} and $\mathrm{H}_{2} \mathrm{~S}$ both are oxidised.
(3) FeCl_{3} is oxidised and $\mathrm{H}_{2} \mathrm{~S}$ is reduced.
(4) $\mathrm{H}_{2} \mathrm{~S}$ is used as an oxidant.

Answer Key - 1

Qus.	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$	$\mathbf{1 5}$	$\mathbf{1 6}$	$\mathbf{1 7}$	$\mathbf{1 8}$	$\mathbf{1 9}$	$\mathbf{2 0}$
Ans.	2	3	1	3	3	4	2	2	1	2	2	3	4	3	1	2	2	1	3	3
Qus.	21	$\mathbf{2 2}$	$\mathbf{2 3}$	$\mathbf{2 4}$	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
Ans.	2	2	1	3	2	2	3	4	3	2	1	3	4	2	2	3	2	3	1	1
Qus.	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
Ans.	4	2	4	4	2	3	2	3	3	1	2	4	1	4	1	3	1	1	3	1
Qus.	61	62	63	64	65	66	67	68	69	70	71									
Ans.	1	3	4	4	2	1	3	2	1	4	1									

