		Solved		Example									
Ex.1	Oxidation numbers of A, B and C are $+6$, -2 and -1 , respectively. What will be the formula of the molecule when A, B and C associate with each other ?												
	(1) AB_2C_2	(2) ABC ₂		(3) AB ₂ C	(4) A	(4) A ₂ BC							
Sol.	The total of positive and	d negative charge should	be zero	in the compound.									
	Thus, compound will b	$e AB_2C_2$ where +6 – 4 – 2	2 = 0										
Ex.2	One mole of X_2H_4 releat X in the compound Y ?	ses 10 moles of electron	s to form	a compound Y. What sh	ould be th	e oxidation number of							
	(1) +3	(2) –3		(3) –6	(4) +	1							
Sol.	$X_2H_4 - 10e^{-1} \longrightarrow (X_2H_4)^{+10}$												
	2x + 4 = +10	2x = 10 - 4 = 6		x = +3	6								
Ex.3	$3CuO + 2NH_3 \longrightarrow 30$	Cu + N ₂ + 3H ₂ O		(\sim								
	In the above conversion, the oxidation number of nitrogen is changing in from												
	(1) +5 to 0	(2) 0 to +2		(3) –3 to 0	(4) –	3 to –5							
Sol.	$\ln 3CuO + 2NH_3 \longrightarrow 3Cu + N_2 + 3H_2O$												
	x+ 3 = 0	x = -3		:. Change in 0.s = - 3	8 to 0								
Ex.4	What should be the oxidation number of S in H S O 3												
_///	(1) +5	(2) +6		(3) +4	(4) +	7							
Sol.	H.S.O.		5										
	+2 + 2x - 14 = 0	2x = 12		x = +6									
	0 0 ↑ ↑ H_O_\$_O_\$_O_H ↓ ↓ 0 0	4100											
Ex.5	Oxidation numbers of t	he two nitrogen atoms pr	esent in	ammonium nitrate are re	espectivel	v?							
	(1) + 3 and + 3	(2) 0 and 0		(3) –3 and +5	(4) –	1 and -1							
Sol.	(i) NH. ⁺¹	NO_{a}^{-1}		Average oxidation num	nber								
	()												
	X + 4 = +1	x - 6 = -1		$\frac{-3+5}{2} = +1$									
	x = -4 + 1, x = -3	x = +5											
Ex.6	Oxidation number of io	dine in the following reac	$H_1 + HI \longrightarrow H_2O + I_2$	$+ HI \longrightarrow H_2O + I_2$									
	(1) increases		(2) decreases										
	(3) increases as well as	s decreases	(4) neither increases n	or decrea	se								
Sol.	IO ₃ ⁻¹	+ HI	\longrightarrow	H ₂ O	+	I ₂							
	x - 6 = -1	+ 1 + x = 0		x = 0		x = 0							
	x = +5	x = -1											

Oxidation number decreases from +5 to 0 and increases from -1 to 0

OXIDATION-REDUCTION

Ex.13 How many moles of K₂Cr₂O₇ are reduced by 1 mole of formic acid ? (3) $\frac{2}{2}$ Mole (4) $\frac{5}{3}$ Mole (1) $\frac{1}{3}$ Mole (2) 1 Mole Sol. Equation is $Cr_2O_7^{-2} + 8H^+ + 3HCOOH \rightarrow 2Cr^{3+} + 3CO_2 + 7H_2O$ \therefore 3 moles of formic acid reduces = 1 mole K₂Cr₂O₇ \therefore 1 mole of formic acid reduce = $\frac{1}{3}$ mole K₂Cr₂O₇ Ans is 1/3 mole Ex.14 One mole KMnO₄ oxidises how many moles of ferrous oxalate ? (2) $\frac{5}{2}$ (3) $\frac{1}{3}$ $(1)\frac{1}{5}$ Sol. Reaction is $Fe^{+2} \rightarrow Fe^{+3} + e] \times 5$ 5e + 8H⁺ + MnO₄⁻ \rightarrow Mn⁺² + 4H₂O] × 3 $C_2O_4^{-2} \rightarrow 2CO_2 + 2e] \times 5$ $5Fe^{+2} + 24H^{+} + 3MnO_{4}^{-} + 5C_{2}O_{4}^{-} \rightarrow 3Mn^{+2} + 5Fe^{+3} + 10CO_{2} + 12H_{2}O_{4}^{-}$ \therefore 3 moles of KMnO₄ oxidises = 5 moles FeC₂O₄ \therefore 1 mole of KMnO₄ oxidises = $\frac{5}{3}$ moles FeC₂O₄ Ans is 1/5 **Ex.15** WO₃ + 8CN⁻ + 2H₂O \rightarrow [W(CN)₈]⁴⁻ + 1/2 O₂ + 4OH⁻ In the above process, oxidant is -(2) CN -(3) H₂O (1) WO₂ $(4) O_{2}$ Sol. Oxidation no. of W decreases O.N. of W in WO₃ = +6 O.N. of W in $[W/(CN)_{g}]^{4-}$ = +4 Ans is WO, Ex.16 How many ml. of 0.1 M oxalic acid solution is required to reduce 0.01 mole KMnO₄ to MnO₂? (1) 250 (2) 150 (1)100(4)500**Sol.** $3e + 8H^+ + MnO_4^- \rightarrow Mn^{+4} + 4H_2O_4^-$ Equivalent weight = 0.01 mole $KMnO_4 = 0.03$ equivalent $KMnO_4$ For oxalic acid : 0.1M oxalic acid = 0.2 equivalent normality = (equivalent) × $\frac{1000}{V}$ We have: $0.2 = 0.03 \times$ V = 150 ml.Ex.17 When one mole NO₃⁻ is converted into 1 mole NO₂, 0.5 mole. N₂ and 0.5 mole N₂O respectively. It accepts x, y and z mole of electrons x, y and z are respectively.

(1) 1, 5, 4 (2) 1, 2, 3 (3) 2, 1, 3 (4) 2, 3, 4 Sol. The equation are : $NO_3^- + 2H^+ + e \rightarrow NO_2 + H_2O$ $NO_3^- + 6H^+ + 5e \rightarrow 0.5N_2 + 3H_2O$ $NO_3^- + 5H^+ + 4e \rightarrow 0.5N_2O + 2.5H_2O$

 \therefore x, y and z respectively are 1, 5 and 4.

Y.CON

- **Ex.18** Calculate the equivalent weight of potassium permanganate (KMnO₄) in (i) neutral medium (ii) acidic medium (iii) alkaline medium, by oxidation number method.
- $\label{eq:sol} \textbf{Sol.} \quad (i) \ Mn^{\scriptscriptstyle +7} + 3e \rightarrow Mn^{\scriptscriptstyle +4} \, ; \ Eq. \ wt. = M/3$

(ii) Mn^{+7} + 5e $\rightarrow Mn^{+2}$; Eq. wt. = M/5

- (iii) Mn^{+7} + 1e $\rightarrow Mn^{+6}$; Eq. wt. = M/1
- **Ex.19** An element A in a compound ABD has an oxidation no. A^{-n} . It is oxidised by $Cr_2O_7^{-2}$ in acid medium. In an experiment 1.68×10^{-3} mole of $K_2Cr_2O_7$ was required for 3.26×10^{-3} mole of the compound ABD. Calculate new oxidation state of A.

a = **3 – n**

C

Sol. $A^{-n} \longrightarrow A^{+a} + (a + n)e$

 $6e + Cr_2^{+6} \longrightarrow 2Cr^{+3}$

- :. Meq. of $A^{-n} = Meq.$ of $Cr_2O_7^{-2}$ or $3.26 \times 10^{-3} \times (a + n) = 1.68 \times 10^{-3} \times 6$
- \therefore a + n = 3 or

Ex.20 Find out the value of n in MnO_4^- + 8H⁺ + ne \rightarrow Mn⁺² + 4H₂O

Sol. \therefore Total charge on L.H.S. = Total charge on R.H.S.

$$-1 + 8 - (-n) = +2;$$
 $\therefore n = 5$

- **Ex.21** In the reaction 8 Al + 3 $\text{Fe}_3\text{O}_4 \rightarrow 4 \text{Al}_2\text{O}_3 + 9 \text{ Fe}$
 - (a) Which element is oxidised or reduced ?

(b) Total number of electrons transferred during the change.

- **Sol.** 8 Al⁰ \rightarrow 4Al₂³⁺ +24e
 - $24e + 3Fe_{3}^{(8/3)+} \rightarrow 9Fe^{0}$
- or $8AI^0 + 3 Fe_3^{(8/3)+} \rightarrow 4 AI_2^{3+} + 9Fe_3^{(8/3)+}$

Reductant is Al i.e. Al is oxidised

Oxidant is Fe_3O_4 or $Fe^{(8/3)+}$ i.e. **Fe**^{(8/3)+} is reduced

Number of electrons used during redox change = 24

Ex.22 A student unsuccessfully tried to balance the following equation :

 $Cr_2O_7^{2-}$ + Fe³⁺ + H⁺ \rightarrow Cr³⁺ + Fe²⁺ + H₂O . Why could not student balance the equation?

Sol. Both parts are reduction part i.e. Cr⁺⁶ as well as Fe³⁺ both are reduced without a reductant which is not possible.

Ex.23 Six moles of Cl₂ undergo a loss and gain of 10 moles of electrons to form two oxidation state of Cl.

Write down the two half reactions & find out the oxidation number of each CI atom involved.

Sol. $6Cl_2 \rightarrow 2 Cl^{5+} + 10 Cl^{-}$

Q.1	Reduction is defined as (1) Increase in positive (3) Loss of protons	s: valency	(2) Gain of electrons(4) Decrease in negative valency						
Q.2	A compound contains possible formula of the (1) XYZ ₂	atoms X, Y and Z the ox compound is : (2) $X_2(YZ_3)_2$	idation number of X is + (3) $X_3(YZ_3)_2$	2, Y is + 5 and Z is – 2 therefore a (4) $X_3(Y_4Z)_2$					
Q.3	The atomic number of a (1) 13	an element which shows (2) 32	the oxidation state of + 3 (3) 33	is : (4) 17					
Q.4	Which of the following i $(1) - 3$	s the correct oxidation nu (2) + 2	mber of phosphorus in Mg (3) + 5	$g_2 P_2 O_7$: (4) + 3					
Q.5	$Co(s) + Cu^{2+}(aq) \rightarrow Co^{2}$ (1) Oxidation reaction	²⁺ (aq) + Cu(s). The above (2) Reduction reaction	reaction is : (3) Redox reaction	(4) None of these					
Q.6	Which of the following r (1) $2PCI_5 + H_2SO_4 \rightarrow 2I$ (3) $NaCI + H_2SO_4 \rightarrow Na$	eactions depict the oxidis POCI ₃ + 2HCI + SO ₂ CI ₂ HSO_4 + HCI	ing behavior of H_2SO_4 : (2) 2NaOH + $H_2SO_4 \rightarrow I$ (4) 2HI + $H_2SO_4 \rightarrow I_2 + S$	$Na_2SO_4 + 2H_2O_5O_2 + 2H_2O_5O_2 + 2H_2O_5O_2 + 2H_2O_5O_5O_5O_5O_5O_5O_5O_5O_5O_5O_5O_5O_5O$					
Q.7	Oxidation number of su (1) – 2	llphur in Na ₂ SO ₄ is : (2) + 6	(3) + 2	(4) – 6					
Q.8	Oxidation state of O_2 in (1) – 2	H_2O_2 is : (2) - 1	(3) + 1	(4) + 2					
Q.9	In C + $H_2O \rightarrow CO + H_2$ (1) Oxidising agent	, H ₂ O acts as : (2) Reducing agent	(3) Both	(4) None					
Q.10	If three electrons are lo (1)0	st by a metal ion M ³⁺ , its f (2) + 6	inal oxidation number sho (3) + 2	ould be : (4) + 4					
Q.11	Oxidation number of Fe (1) + 2	∍ in K₃[Fe(CN) ₆] is : (2) + 3	(3) + 1	(4) + 4					
Q.12	Reducing agent is that (1) Which takes electro (3) Which donates elec	: ns trons	(2) Which takes protons (4) Which donates protons						
Q.13	HBr and HI reduce sulp $(1) H_2 SO_4$	huric acid. HCl can reduc (2) KMnO ₄	$ce KMnO_4$ and HF can red (3) K ₂ Cr ₂ O ₇	luce: (4) None of these					
Q.14	The compound which g (1) Ferric oxide	ives oxygen on moderate (2) Zinc oxide	heating is : (3) Mercuric oxide	(4) Aluminium oxide					
Q.15	Oxidation number of su (1) + 1	Ilphur in S ₂ Cl ₂ is : (2) 0	(3) – 1	(4) + 6					
Q.16	In a reaction between z (1) Zinc ions	inc and iodine in which zi (2) lodide ions	nc iodide is formed, what (3) Zinc atom	is being oxidised : (4) lodine					
Q.17	Oxidation number of su (1) – 2	llphur in $S_2 O_2^{2-}$ is : (2) + 1	(3) + 6	(4) 0					
Q.18	Oxidation number of nit $(1) - 3$	trogen in NH ₃ is : (2) + 3	(3) 0	(4) + 5					

Q.19	In acidic medium equiv (1) M / 3	valent weight of $K_2 Cr_2 O_7$ (r (2) M / 4	nolecular weight = M) is : (3) M / 6	(4) M / 2						
Q.20	In the following reactio	ons : 4P + 3KOH + 3H ₂ O -	→ 3KH₂PO₂ + PH₂							
	(1) Only phosphorus is	oxidized	(2) Only phosphorus is reduced							
	(3) Phosphorus is both	oxidized and reduced	(4) Phosphorus is neith	er oxidized nor reduced						
	—									
Q.21	The oxidation number	of nitrogen in NH ₂ OH is :		(4) 0						
	(1) + 1	(2) - 1	(3) - 3	(4) - 2						
Q.22	The reaction of Zn ⁺⁺ +	$2e^{-} \rightarrow Zn$ is an example of	of :							
	(1) Oxidation	(2) Reduction	(3) Redox reaction	(4) None						
0 22	Ovidation number of P									
Q.23		(2) 6	(3) 1	(Λ) 7						
	(1) 11	(2)0	(5) +							
Q.24	In the reaction $3Cl_2 + c_2$	$6OH^- \rightarrow 5CI^- + CIO_3^- + 3H_3$	$Cl^- + ClO_3^- + 3H_2O$ chlorine is :							
	(1) Oxidised		(2) Reduced	•						
	(3) Oxidised as well as	reduced	(4) Neither oxidised nor	reduced						
Q.25	In the compounds KMr	nO. and K.Cr.O., the high	est oxidation state is of t	ne element :						
	(1) Potassium	(2) Manganese	(3) Chromium	(4) Oxygen						
			C'							
Q.26	In the reaction $3Br_2 + 6$	$6CO_3^{2-} + 3H_2O \rightarrow 5Br^- + E$	$BrO_3^- + 6HCO_3^-$							
	(1) Bromine is oxidised and carbonate is reduced (2) Bromine is both reduced and oxidised									
	(3) Bromine is neither r	educed nor oxidised	(4) Bromine is reduced	and water is oxidised						
Q.27	A gas X bleaches a flo	wer by reduction and ano	ther gas Y by oxidation th	nese gases are , respectively						
	(1) NH ₃ & SO ₃	(2) NO ₂ & N ₂ O ₅	(3) SO ₂ & Cl ₂	(4) SO ₂ & PCI ₃						
0.28	What will bappen wher	connerted is dinned in a	luminium nitrate solution	if the electropositive						
Q.20	properties are as follow	$NS \cdot Al > 7n > Cu > Aq$								
	(1) Aluminium will get of	deposited on the rod	(2) Colour of the solution	on will becomes blue						
	(3) Copper aluminium a	alloy will be formed	(4) No reaction will occ	ur						
Q.29	The normal oxidation s	state of an element is -2 .	The number of electrons	in its outermost shell will be						
	(1) 4	(2) 2	(3) 6	(4) 8						
Q.30	For the reaction : 4Fe	+ 30, \rightarrow 4Fe ³⁺ + 6O ^{2–} whi	ch of the following is a wi	rong statement?						
	(1) It is an example of r	redox reaction	(2) Metallic iron reduces to Fe ³⁺							
	(3) Fe is oxidised		(4) Metallic iron is a reducing agent							
Q.31	Oxidation number of N	i in Ni(CO), is :								
	(1) 0	(2) 4	(3) 8	(4) 2						
										
Q.32	The oxidation number	of nitrogen in NH_4NO_3 is :								
	(1) + 3	(2) + 5	(3) – 3 and + 5	(4) + 3 and + 5						

Q.33	In acidic medium, reaction : MnO_4^{-} \longrightarrow Mn^{2+} is an example of :										
	(1) Oxidation by three e	lectrons	(2) Reduction by three e	lectrons							
	(3) Oxidation by five ele	ctrons	(4) Reduction by five ele	ectrons							
Q.34	Which of the following h	alogens always shows o	nly one oxidation state ?								
0.05	(1) Cl	(2) F	(3) Br	(4)							
Q.35	In the reaction $M_{PO} = 1 NO = 1 NO = 1$. М р2+									
	one mole of MnO $\overline{-}$ oxid	tises moles of N	NO -								
	(1) 5	(2) 5/2	(3) 3	(4) 3/2							
Q.36	In the following reaction										
	$As_2S_5 + NO_3^- \rightarrow AsO_4^{-3}$	⁻ + SO ₄ ²⁻ + NO ₂									
	The equivalent weight	of As_2S_5 is									
0 27	(1) M/8	(2) M/6	(3) M/40	(4) M/30							
Q.37	In a reaction the equivalent weight of KMnO ₄ becomes one third of its molecular weight. The oxidation state of Mn in the final product is										
	(1) + 6	(2) + 4	(3) + 3	(4) + 2							
Q.38	In which of the following	g compound oxidation nur	mber of Cl is + 3 ?								
	(1) ICI	(2) CIO ₃ -	(3) CIF ₃	(4) HCIO ₄							
Q.39	The oxidation number of	of cobalt in [Co(CN),] ³⁻ is -									
	(1) + 2	(2) 2	(2)	(4) 6							
	(1) + 3	(2) - 3	(3) + 0	(4) - 0							
Q.40	In which of the following	compound oxidation nur	nber of iron is not +3								
	(1) Fe ₃ O ₄	(2) Fe ₂ O ₃	(3) FeCl ₃	(4) FePO ₄							
Q.41	The oxidation number of	of Mn in MnC_2O_4 is -									
	(1) + 3	(2) + 8/3	(3) + 1	(4) +2							
Q.42	In the following equatio	n ClO ₃ ⁻ + 6 H ⁺ + X \rightarrow Cl ⁻ +	- 3H ₂ O, then X is								
	(1) O	(2) 6e⁻	(3) O ₂	(4) 5e [_]							
Q.43	The correct oxidation nu	umber of phosphorus in m	agnesium pyrophosphat	e [Mg ₂ P ₂ O ₇] is -							
	(1) + 2	(2) + 3	(3) - 3	(4) + 5							
Q.44	Oxidation number of su	Iphur in $H_2 SO_5$ is -									
	(1) + 2	(2) + 4	(3) + 8	(4) + 6							
Q.45	In which of the following	g compound, iodine is in if	ts highest oxidation state								
	(1) KI	(2) KIO ₄	(3) KI ₃	(4) IF ₅							
Q.46	Oxidation number of ch	lorine in Hypochlorous ac	id is–								
	(1)-1	(2) zero	(3) + 1	(4) + 2							
Q.47	Which one of the follow	ing compounds can act a	s an oxidising as well as	reducing agent -							
	(1) KMnO ₄	(2) H_2O_2	(3) BaO	(4) K ₂ Cr ₂ O ₇							
Q.48	When acidic solution of ion which is oxidised is	ferrous ammonium sulph	ate is treated with potass	ium permanganate solution then the							
	(1) MnO ₄ -	(2) NH ₄ ⁺	(3) Fe ²⁺	(4) SO ₄ ²⁻							

Q.49	The violent reaction between sodium and water is an example of -											
	(1) Reduction	(2) Oxidation	(3) Redox reaction	(4) Neutralization								
Q.50	The equivalent weight	of reducing agent in the re	action									
	2[Fe(CN) ₆] ³⁻ +2OH ⁻ +	$H_2O_2 \rightarrow 2[Fe(CN)_6]^{4-} + 2H$	₂ 0+0-									
	(1) 17	(2) 212	(3) 16	(4) 6/8								
Q.51	In the formation of Pb(I	$NO_3)_2$ form PbO_2 -										
	(1) PbO ₂ is oxidised		(2) PbO_2 is reduced									
	(3) PbO_2 is both oxidis	ed and reduced.	(4) PbO_2 is neither oxid	(4) PbO_2 is neither oxidised nor reduced								
Q.52	The compound in whic	ch oxidation state of metal	l is zero -									
	(1) Fe ₂ (CO) ₉	(2) Ni(CO) ₄	(3) Fe ₃ (CO) ₉	(4) All of the above								
Q.53	The oxidation state of	phosphorus is + 3 in -										
	(1) Orthophosphorous	acid	(2) Orthophosphoric aci	id 🔨								
	(3) Pyrophosphoric aci	d	(4) Metaphosphoric aci	d								
Q.54	Which of the following	is a true statement -										
	(1) Oxidation state of o	oxygen in HOF is zero.	(2) Oxidation state of fl	uorine in HOF is – 1.								
	(3) Oxidation state of chlorine in HOCI is + 1. (4) All of the above.											
Q.55	The following reaction is used in the extraction of chromium from its ore											
	$2Fe_2O_3.Cr_2O_3 + 4Na_2CO_3 + 3O_2 \rightarrow 2Fe_2O_3 + 4Na_2CrO_4 + 4CO_2$											
	What is true about the oxidation states of the substance in the reaction -											
	(1) Chromium is oxidised from + 3 to + 6 oxidation state.											
	(2) Iron is reduced from + 3 to + 2 oxidation state.											
	(3) Carbon is oxidised from + 3 to + 4 oxidation state											
	(4) There is no change in the oxidation states of the substances.											
Q.56	Oxidation state of nitro	gen is incorrectly given fo	r									
	Compounds	Oxidation states	Compounds	Oxidation states								
	(1) [Co(NH ₃) ₅ Cl]Cl ₂	-3	(2) NH ₂ OH	- 1								
	$(3) (N_2 H_5)_2 SO_4$	+2	(4) $Mg_{3}N_{2}$	-3								
Q.57	Which of the following	is an example of reduction	n -									
	(1) $CuO \rightarrow Cu_2O$	020	(2) $[Fe(CN)_6]^{4-} \rightarrow [Fe(C)]^{4-}$	N) ₆] ³⁻								
	(3) KI \rightarrow I ₂	X	(4) $H_2^{}S \rightarrow S$									
Q.58	Out of the following ac	ids which has different oxi	dation state of phosphoru	us as compared to others -								
	(1) Phosphorous acid	(2) Orthophosphoric aci	d (3) Metaphosphoric aci	d (4) Pyrophosphoric acid								
Q.59	Reaction [Ag(NH ₃) ₂]* +	$-2H^+ \rightarrow Ag^+ + 2NH_4^+$ is an	example of -									
	(1) Oxidation		(2) Reduction									
	(3) Neither oxidation no	or reduction	(4) Oxidation and reduc	tion both								
Q.60	The brown ring comple	ex compound is formulated	d as $[Fe(H_2O)_5NO^+]SO_4$. T	he oxidation state of iron is -								
	(1) 1	(2) 2	(3) 3	(4) zero								
Q.61	Which of the following	reactions involves neither	oxidation nor reduction -									
	(1) $CrO_4^{2-} \rightarrow Cr_2O_7^{2-}$	(2) $Cr \rightarrow CrCl_3$	(3) $VO^{2+} \rightarrow V_2O_2$ (4) $2S_2O_3^{2-} \rightarrow S_4O_6^{2-}$									
Q.62	When KMnO ₄ is reduc	ed with oxalic acid in acid	ic solution, the oxidation	number of Mn changes from -								
	(1) 7 to 4	(2) 6 to 4	(3) 7 to 2	(4) 4 to 2								
Q.63	What would happen w	hen a small quantity of H_2	O_2 is added to a solution	of FeSO ₄ -								
	(1) Colour disappears		(2) H_2 is evolved									
	(3) An electron is adde	ed to Fe ⁺⁺	(4) An electron is lost b	(4) An electron is lost by Fe ⁺⁺								

Q.64 The oxidation number of each sulphur in Na₂S₂O₆ is - (1) 2.5 (2) 2 and 3 (two S have + 2 and the other two have + 3) (3) 2 and 4 (three S have + 2 and one S has + 4) (4) 5 and 0 (two S have + 2 and the other S have 0) **Q.65** In a redox reaction K₂Cr₂O₂ changes to Cr₄(SO₂)₅. If the molecular weight of K₂Cr₂O₇ is M and equivalent weight t E then - (1) M = 3E (2) M = 6E (3) E = 2M (4) E = 6M **Q.66** Fe₂O₄ is oxidised to Fe₂O₃, if the molecular weight of Fe₂O₄ is M and equivalent weight E then - (1) E = M (2) E =
$$\frac{M}{3}$$
 (3) E $-\frac{2}{3}$ M (4) E $-\frac{3}{2}$ M **Q.67** In a triatomic molecule the oxidation states of atoms A, B and C are + 6, + 1 and - 2 respectively. The molecular formula of the compound will be - (1) B₄AC₄ (2) B₃A,C₇ (3) Both of the above. (4) None of the above **Q.68** The reaction 2TiCl₃ → TiCl₄ × TiCl₄ example of - (1) dissociation (2) disproportation (3) reversible reaction (4) exothermic reaction **Q.69** The anodic reaction in the electrolysis of the aqueous solution of oxygen (3) reduction of chloride ion (2) Evolution of sodium ion. **Q.70** Which of the following statements is not correct - (1) Two mole of electrons are used in the reduction of MnO₃⁻¹ to MnO₃⁻¹ (2) Three electrons per chromium atom are used in the reduction of dichromate by Fe (II) (3) The oxidation number increases in the process of reduction. **Q.71** In the reaction - 2FeCl₃ + H₂S → 2FeCl₃ + 2HCl + S (1) FeCl₃ is used as an oxidant. (2) FeCl₃ and H₂S both are oxidised. (3) FeCl₃ is oxidised and H₃ is reduced (4) H₃S is used as an oxidant.

Qus.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Ans.	2	3	1	3	3	4	2	2	1	2	2	3	4	3	1	2	2	1	3	3
Qus.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
Ans.	2	2	1	3	2	2	3	4	3	2	1	3	4	2	2	3	2	3	1	1
Qus.	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
Ans.	4	2	4	4	2	3	2	3	3	1	2	4	1	4	1	3	1	1	3	1
Qus.	61	62	63	64	65	66	67	68	69	70	71									
Ans.	1	3	4	4	2	1	3	2	1	4	1									

Answer Key - 1