Solved Example

Ex.1 For A + B \rightarrow C + D; Δ H = 20 kJ mol⁻¹; the activation energy of the forward reaction is 85 kJ/mol. Calculate activation energy of the reverse reaction.

= 85 - 20

Sol.

 ΔH of forward reaction = 20 kJ mol⁻¹.

Energy of activation for forward reaction (E₂) = 85 kJ mol⁻¹

Energy of activation for backward reaction = $E_a - \Delta H$ *:*..

Ex.2
$$N_2O_5$$
 decomposes according to equation, $N_2O_5 \rightarrow 2NO_2 + \frac{1}{2}O_2$
(a) What does $\frac{-d[N_2O_5]}{dt}$ denote ?
(b) What does $\frac{d[O_2]}{dt}$ denote ?

(a) What does
$$\frac{-d[N_2O_5]}{dt}$$
 denote ?

(b) What does $\frac{d[O_2]}{dt}$ denote ?

(c) What is the units of rate of this reaction ?

Sol. (a) Rate of decomposition of N_2O_5 .

(b) Rate of formation of O₂.

- (c) Unit of rate = mol litre⁻¹ time⁻¹.
- Ex.3 In a reaction, $2A \rightarrow$ Products, the concentration of A decreases from 0.5 mol litre⁻¹ to 0.4 mol litre⁻¹ in 10 minute. Calculate rate during this interval.
- Rate of reaction = $\frac{1}{2}$ × rate of disappearance of A Sol. $= \frac{1}{2} \left(-\frac{d[A]}{dt} \right) = \frac{1}{2} \left[\frac{0.5 - 0.4}{10} \right] = 0.005 \text{ mol litre}^{-1} \text{ minute}^{-1}$
- Ex.4 For a reaction 3A \rightarrow Products, it is found that the rate of reaction doubles if concentration of A is increased of A is increased four times, calculate order of reaction.
- Rate = K [Reactant]ⁿ Sol. if [Reactant] = a; rate = r_1 r, = K[a]ⁿ if [Reactant] = 4a; rate = $2r_1$ 2r₁ = K[4a]ⁿ \therefore $\frac{1}{2} = \left[\frac{1}{4}\right]^n$ \therefore $n = \frac{1}{2}$

Ex.5 In a reaction, the decreases in reactant's concentration is 20% in 20 minute and 40% in 40 minute. Calculate order of reaction and rate constant.

Sol.For zero order reaction :
$$t = \frac{x}{K}$$
 or $K = \frac{x}{t}$ if $t = t_{zov} = 20$ minute, $x = 20$ Then $K = \frac{20}{20} = 1$ mol litre⁻¹ time⁻¹If $t = t_{zov} = 40$ minute, $x = 40$ Then $K = \frac{40}{40} = 1$ mol litre⁻¹ time⁻¹ ; Thus, reaction is of zero order.**Ex.6**Calculate the order of reaction for which rate becomes half if volume of container having same amount of reactant is doubled. (Assume gaseous phase reaction)Sol.Rate = K[a]^nFor Case I : Let a mole of reactant in vessel of V litre \therefore $r_1 = K \left[\frac{a}{V} \right]^n$(1)For Case II : The volume is doubled, rate becomes half \therefore $\frac{r}{2} = K \left[\frac{a}{2v} \right]^n$(2) \therefore By Eqs. (1) and (2), or $2 = (2)^n$ \therefore $n = 1$

Ex.7 In the decomposition of N_2O_5 , the plot between the reciprocal of concentration of the reactant and the time was found to be linear as shown in figure. Determine the order of reaction.

Sol. The reaction is of second order, because for II order,

$$\mathsf{K} = \frac{1}{\mathsf{t}} \cdot \frac{\mathsf{x}}{\mathsf{a}(\mathsf{a} - \mathsf{x})} \qquad \text{ or } \qquad \mathsf{t} = \frac{1}{\mathsf{K}} \cdot \frac{\mathsf{x}}{\mathsf{a}(\mathsf{a} - \mathsf{x})}$$

time (t) vs.
$$\frac{1}{\text{conc.}}$$
 graph is linear

or

Ex.8 A first order reaction takes 69.3 minute for 50% completion. How much time will be needed for 80% completion?

Sol.
$$\therefore$$
 $K = \frac{0.693}{t_{1/2}} = \frac{0.693}{69.3}$ minute⁻¹ ($\because t_{1/2} = 69.3$ min)

Now
$$K = \frac{2.303}{t} \log_{10} \frac{100}{20}$$
; $K = \frac{2.303}{t} \log \frac{100}{100 - x}$ [if a = 100, x = 80 and a - x = 20]

$$\frac{0.693}{69.3} = \frac{2.303}{t} \log_{10} 5 \qquad ; \qquad t = 160.97 \text{ minute}$$

Ex.9 Show that for a first order reaction, time required for 99% completion is twice for the time required for the completion of 90% of the reaction.

Sol.

$$t_{99\%} = \frac{2.303}{K} \log_{10} \frac{100}{100 - 99} \qquad \dots (1)$$

$$(\because a = 100; x = 99)$$

$$t_{90\%} = \frac{2.303}{K} \log_{10} \frac{100}{100 - 90} \qquad \dots (2)$$

$$(\because a = 100; x = 90)$$

$$\therefore \quad \text{By Eqs. (1) and (2),}$$

$$\frac{t_{99\%}}{t_{90\%}} = \frac{\log_{10} 100}{\log_{10} 10} = 2$$

Ex.10 For the non-equilibrium process, A + B → Products, the rate is first order with respect to A and second order with respect to B. If 1.0 mol each of A and B are introduced into a 1 litre vessel, and the initial rate were 1.0 × 10⁻² mol/litre-sec, calculate the rate when half of the reactants have been used.

 \therefore 10⁻² = K [1] [1]²

or
$$K = 10^{-2} \text{ litre}^2 \text{ mol}^{-2} \text{ sec}^{-2}$$

Now Rate₁₁ =
$$10^{-2} \times 0.5 \times (0.5)$$

[2] t_{3/4}

 $t_{99\%} = 2 \times t_{90\%}$

or

[1] t_{1/2}

...

New rate = 1.2 × 10⁻³ mol/litre-sec

Ex.11 The accompanying figure depicts the change in concentration of species A and B for the reaction $A \rightarrow B$, as a function of time the point of inter section of the two curves represents.

[4] data insufficient to predict

Sol. The intersection point indicates that half life of the reactant A is converted into B. Hence the answer is [1].

Sol. As the reaction occurs in the presence of a catalyst and hydrogen gas absorbs on the surface of Nickel, therefore it is a zero order reaction. Hence the answer is [1].

- **Ex.16** For a reaction A $\xrightarrow{k_1}$ B $\xrightarrow{k_2}$ C. If the reactions are of 1st order then $\frac{d[B]}{dt}$ is equal to
 - [1] $k_2[B]$ [2] + k [A] [3] $k_1[A] k_2[B]$ [4] $k_1[A] + k_2[B]$
- **Sol.** Rate of increase in $[B] = k_1[A]$

Similarly rate of decrease in $[B] = k_2[B]$

Thus, $\frac{d[B]}{dt} = k_1[A] - k_2[B]$

Hence the answer is [3]

Ex.17 Following is the graph between log T_{1/2} and log a(a–initial concentration) for a given reaction at 27°C. Hence order is

- Sol. See various plot given in important formulae. Hence the answer is [3].
- $\label{eq:Ex.19} \begin{array}{l} \mbox{Find the activation energy [kJ/mol] for the reaction, A(g) + B(g) \rightarrow C(g) + D(g).} \\ \mbox{From the plot given below :} \end{array}$

Hence the answer is [2].

Sol.

Q.1 Under a given set of experimental conditions, with increase in the concentration of the reactants the rate of a chemical reaction-

	[1] Decreases	[2] Increases							
	[3] Remains unaltered	[4] First decreases and then increases.							
Q.2	The rate at which a substance reacts depends o	n its-							
	[1] Atomic weight [2] Equivalent weight	[3] Molecular weight [4] Active Mass							
Q.3	In a reaction involving the synthesis of ammonia	by Haber's process,							
	$N_2 + 3H_2 \rightleftharpoons 2NH_3$, the rate of reaction was meas H_2 will be	ured as = 2.5×10^{-4} mol L ⁻¹ s ⁻¹ . The rate of change of conc. of							
	[1] 1.25 × 10 ⁻⁴ mol L ⁻¹ S ⁻¹	[2] 2.50 × 10 ⁻⁴ mol L ⁻¹ S ⁻¹							
	[3] 7.5 × 10 ⁻⁴ mol L ⁻¹ S ⁻¹	[4] 5.0 × 10 ⁻⁴ mol L ⁻¹ S ⁻¹							
Q.4	In the formation of sulphur trioxide by contact pro	cess, $2SO_2 + O_2 \rightleftharpoons 2SO_3$, the rate of reaction was measured							
	as $\frac{-\mathbf{d}[\mathbf{O}_2]}{\mathbf{d}t} = 2.5 \times 10^{-4} \text{ mol lit}^{-1} \text{ sec}^{-1}$. the rate of r	eaction expressed in terms of SO ₃ will be-							
	[1] -1.25 × 10 ⁻⁴ mol L ⁻² sec ⁻¹	[2] $50 \times 10^{-4} \text{ mol } \text{L}^{-1} \text{ sec}^{-1}$							
	[3] -3.75 × 10 ⁻⁴ mol L ⁻¹ sec ⁻¹	[4] 5.00 × 10 ⁻⁴ mol L ⁻¹ sec ⁻¹							
Q.5	The rate constant of a reaction is equal to rate of	reaction-							
	[1] When concentrations of reactants do not cha	nge with time							
	[2] When concentrations of all reactants and pro-	ducts are equal							
	[3] At time, t = 0								
	[4] When concentrations of all reactants are unit	У							
Q.6	Which of the following is an unimolecular reactio	n ?							
	[1] $2HI \rightarrow H_2 + I_2$ [2] $N_2O_5 \rightarrow N_2O_4 + \frac{1}{2}O_2$	$[3] H_2 + Cl_2 \rightarrow 2HCl \qquad [4] PCl_3 + Cl_2 \rightarrow PCl_5$							
Q.7	If the surface area of the reactant is increased th	en the order of reaction :							
	[1] Increases	[2] Decreases							
	[3] Remains unaffected	[4] Sometimes increases and sometimes decreases							
Q.8	Which of the following is a first order reaction-								
	$[1] \mathrm{NH}_4 \mathrm{NO}_2 \rightarrow \mathrm{N}_2 + 2\mathrm{H}_2\mathrm{O}$	[2] $2HI = H_2 + I_2$							
	$[3] 2NO_2 \rightarrow 2NO + O_2$	$[4] 2NO + O_2 \rightarrow 2NO_2$							
Q.9	The hydrolysis of ethyl acetate is a reaction of - 0	$CH_3COOEt + H_2O \longrightarrow CH_3COOH + EtOH$							
	[1] First order [2] Third order	[3] Second order [4] Zero order							
Q.10	For a chemical reaction $2X + Y \rightarrow Z$, the rate disappearance of X will be :	e of appearance of Z is 0.05 mol L^{-1} per min. The rate of							
	[1] 0.05 mol L ^{-1} per hour [2] 0.05 mol L ^{-1} per min	[3] 0.1 mol L ⁻¹ min ⁻¹ [4] 0.25 mol L ⁻¹ per min							

Q.11	For the reaction $N_2 + 3$	$H_2 \rightleftharpoons 2NH_3$		
	the rate of change of c ammonia is :	oncentration for hydroge	n is – 0.3 × 10 ^{−4} Ms ^{−1} . Th	ne rate of change of concentration of
	$[1] - 0.2 \times 10^{-4}$	[2] 0.2 × 10 ⁻⁴	[3] 0.1 × 10 ⁻⁴	[4] 0.3 × 10 ⁻⁴
Q.12	The unit of rate constant	nt for a zero order reactio	n is-	
	[1] Litre sec ⁻¹	[2] Lit mole ⁻¹ sec ⁻¹	[3] Mol lit ⁻¹ sec ⁻¹	[4] Mol sec ⁻¹
Q.13	A zero order reaction is	s one whose rate is indep	endent of-	
	[1] The temperature of [3] Proasence of cataly	the reaction vst	[2] The concentration o [4] None of these	f the reactants
Q.14	A reaction is represent	ed by-		
	$A \xrightarrow{\kappa_1} B$ (slow) and	A + B $\underline{\kappa_2} \to C$ (fast) wh	ere K_1 and K_2 and the rate	e constants of the mechanistic steps.
	The rate of production	of C will be given by-		\sim
	[1] K ₁ [A] [B]	[2] K ₁ [A]	[3] K ₁ K ₂ [A]	[4] K ₂ [A] [B]
		·		
Q.15	The rate law for the rea	action : 2 C + D \rightarrow A + E	$\exists \text{ is } -\frac{d[D]}{dt} = k[C]^2[D]$	
	If C is present in large	excess, the order of the r	eaction will be-	
	[1] Zero	[2] First	[3] Second	[4] Third
Q.16	The rate of reaction be folds. The order of read	tween A and B increase to the state to the state to the state of the s	by a factor of 100, when th	ne concentration of A is increased 10
	[1] 10	[2] 1	[3] 4	[4] 2
Q.17	The half-life of a first or	der reaction $\left[K = \frac{2.303}{t} \right]$	$\log \left(\frac{a}{a-x}\right)] \text{ is-}$	
	[1] Directly proportiona	l to 'a'	[2] Inversely proportion	al to 'a'
	[3] Independent of 'a'		[4] Proportional to (a-x)	
Q.18	Which of the following	statement is not correct f	or the reaction- 4A + B =	→ 2C + 2D
	[1] The rate of disappea	arance of B is one forth ra	te of disappearance of A	
	[2] The rate of appeara	nce of C is one half the ra	te of disappearance of B	
	[3] The rate of formatio	n of D is one half the rate	of consumption of A	
	[4] The rates of formation	on of C and D are equal.		
Q.19	The temperature coeffi	cient of most of the reacti	ons lies between-	
	[1] 1 and 3	[2] 2 and 3	[3] 2 and 4	[4] 1 and 4
Q.20	True statement is-			
	[1] Positive catalyst inc	reases the rate of a reac	tion	
	[2] During the course o	f the reaction, specific rea	action rate remains const	ant.
	[3] Rate constant alway	/s increases with rise in te	emperature whether the re	eaction is endothermic or exothermic
	[4] All are correct			

Q.21 The effect of temperature on the rate constant of a reaction is given by-

[1] Arrehenius Equation [2] Nernst Equation

[3] vant's Hoff Equation [4] Gibb's Helmholtz Equation

Q.22 In a certain reaction 10% of the reactant decomposes in one hour,20% in two hours, 30% in three hours and so on. Dimension of the velocity constant (rate constant) are-

[1] Hour ⁻¹ [2] Mol litre⁻¹hour ⁻¹ [3] Litre mol⁻¹ sec⁻¹ [4] Mol sec⁻¹

Q.23 In a reaction, the threshold energy is equal to-

[2] Activation energy - normal energy of reactants

[3] Activation energy + normal energy of reactants [4] Normal energy of reactants

Q.24 The decomposition of H_2O_2 can be followed by titration with KMnO₄ and is found to be a first order reaction. The rate constant is 4.5×10^{-2} . In an experiment, the initial titre value was 25 ml. The titre value will be 5 ml after a lapse of-

[1] $4.5 \times 10^{-2} \times 5$ minutes [2] $\frac{\log_{e} 5}{4.5 \times 10^{-2}}$ minutes [3] $\frac{\log_{e} 5/4}{4.5 \times 10^{-2}}$ [4] None of the above

Q.25 The half-life of decomposition of N_2O_5 is a first order reaction represented by-

$$N_2O_5 \rightarrow N_2O_4 + 1/2O_2$$

[1] Activation energy

After 15 minutes the volume of O_2 produced is 9 ml and at the end of the reaction 35 ml. The rate constant is equal to-

[1]
$$\frac{1}{15}\log_{e}\frac{35}{26}$$
 [2] $\frac{1}{15}\log_{e}\frac{44}{26}$ [3] $\frac{1}{15}\log_{e}\frac{35}{36}$ [4] None of the foregoing

Q.26 The rate constant of a reaction is 1.5×10^{-3} at 25°C and 2.1×10⁻² at 60°C. The activation energy is-

[1]
$$\frac{35}{333} \operatorname{Rlog}_{e} \frac{2.1 \times 10^{-2}}{1.5 \times 10^{-2}}$$

[2] $\frac{298 \times 333}{35} \operatorname{Rlog}_{e} \frac{21}{1.5}$
[3] $\frac{298 \times 333}{35} \operatorname{Rlog}_{e} 2.1$
[4] $\frac{298 \times 333}{35} \operatorname{Rlog}_{e} \frac{2.1}{1.5}$

Q.27 The rate constant (k) for the reaction $2X + Y \rightarrow$ Products, was found to be 3.58×10^{-4} L mole⁻¹ s⁻¹ after 15 seconds, 3.6×10^{-4} L mole⁻¹ s⁻¹ after 30 seconds and 3.56×10^{-4} L mole⁻¹ s⁻¹ after 50 seconds. Hence the order of the reaction is-

Q.28 75% of a first order reaction was completed in 32 minutes. When was 50% of the reaction completed.

[1] 24 minutes [2] 8 minutes [3] 16 minutes [4] 4 minutes

Q.29 If the concentration of the reactants in the reaction $2A + B \rightarrow C + D$ is increased by three folds, the rate of the reaction will be increased by-

[1] 27 times [2] 9 times [3] 64 times [4] 01 times

Q.30 The incorrect statement is-

- [1] All the collisions between reactant molecules do not lead to a chemical change
- [2] A zero order reaction proceeds at a constant rate independent of concentration or time
- [3] Fast reactions have low activation energies
- [4] In a first order reaction, the reaction ideally takes finite time to be completed
- Q.31 According to Arrehenius equation, rate constant of a chemical reaction is equal to-

[1]
$$Ae^{-E_a/RT}$$
 [2] $Ae^{E_a/RT}$ [3] $A \times \frac{1}{e^{E_a/RT^2}}$ [4] $A^2 \times e^{-E_a^2/RT}$

- **Q.32** The activation energies for forward and backward reactions are E_f and E_b respectively. If the reaction is exothermic then :
 - [1] E_f > E_b

[3] $E_f = E_h$

- [2] $E_{f} < E_{b}$
- [4] There is no relation between E_f and E_b directly
- **Q.33** In a reaction A \rightarrow Product, the initial concentration of reactant is *a* mol L⁻¹. If the order of the reaction is *n* and the half life t_{1/2} then :

[1]
$$t_{1/2} \propto a^{n-1}$$
 [2] $t_{1/2} \propto a^n$ [3] $t_{1/2} \propto \frac{1}{a^n}$ [4] $t_{1/2} \propto \frac{1}{a^{n-1}}$

- **Q.34** The half life period of a first order reaction is 100 seconds. Its rate constant is :
- [1] 0.693 sec^{-1} [2] $6.93 \times 10^{-3} \text{ sec}^{-1}$ [3] $6.93 \times 10^{-2} \text{ sec}^{-1}$ [4] None of these Q.35 The specific reaction rate of a first order reaction depends on the : [1] Concentrations of reactants [2] Concentrations of products
 - [3] Time of reaction [4] Temperature of reactions
- **Q.36** For a second order reaction $\frac{dx}{dt} = k(a x)^2$. Its half life period is :
 - [1] $\frac{1}{a.k}$ [2] $\frac{0.693}{k}$ [3] $\frac{a}{k}$ [4] $\frac{0.693}{ak}$
- **Q.37** The activation energy of reactant molecules in a reaction depends upon :
 - [1] Temperature [2] Nature of the reactants
 - [3] Collision per unit time [4] Concentration of reactants

Q.38 The dissociation of nitrogen pentoxide is a first order reaction. In first 24 minutes 75% of nitrogen pentaoxide is dissociated. What amount of nitrogen pentaoxide will be left behind after one hour of start of the reaction ?
 [1] Approximately 1% [2] Approximately 2% [3] Approximately 3% [4] None

- **Q.39** Radioactive disintegration is a reaction of :
 - [1] First order[2] Second order[3] Zero order[4] Third order
- $\textbf{Q.40} \quad \text{ In a reaction A + B} \rightarrow \text{Products}$
 - (i) If the initial concentration of A is doubled and B is kept constant, the rate of the reaction is doubled

(ii) If the initial concentration both A and B are doubled the rate of reaction becomes eight times The rate law of the reaction is :

Q.41	The specific re	eaction rate of a	first order reacti	on is 0.347 × 10 ⁻³ sec ⁻¹ .	The half life period in seconds will be :
	[1] 0.347 × 10	-3 [2] 0	.694 × 10 ³	[3] 0.347 × 10 ³	[4] 2 × 10 ³
Q.42	For the reacti increased four	on A \rightarrow B it is r times. The ord	observed that th er of the reaction	e rate of the reaction do	oubles when the concentration of A is
	[1] Second	[2] F	irst	[3] Half	[4] Zero
Q.43	In Arrehenius	equation if a gra	aph is plotted bet	ween log k and $\frac{1}{T}$, the s	lope of the curve will be :
	$[1] - \frac{E_a}{R}$	[2] –	<u>E_a</u> 2.303R	[3] $\frac{E_a}{R}$	[4] $\frac{E_a}{2.303R}$
Q.44	The half life pe	eriod of a chemi	cal reaction is giv	ven by : $t_{1/2} \propto \frac{1}{a^{n-1}}$	
	The order of the	ne reaction is :			C O
	[1] n	[2] n	- 1	[3] n + 1	[4] None of these
Q.45	At 290K the ra	ate constant of a	a reaction is 3.2 >	< 10 ⁻³ . Its value at 310 K	will be :
	[1] 1.28× 10 ⁻²	[2] 3	.2 × 10 ⁻⁴	[3] 9.6 × 10 ⁻⁴	[4] 6.4 × 10 ⁻³
Q.46	For a reaction	$A + 2B \rightarrow C + I$	D, the following d	ata were obtained	
	Expt. Initial co	ncentration	Initial Rate of	formation of D	
	(miles litre ⁻¹)	(moles litr	re ⁻¹ min ⁻¹)	
	[A]	[B]		20	
	1. 0.1	0.1	6.0 >	< 10 ⁻³	
	2. 0.3	0.2	7.2 >	× 10 ^{−2}	
	3. 0.3	0.4	2.88	× 10 ⁻¹	
	4. 0.4	0.1	2.4 >	< 10 ^{−2}	
	The correct ra	te law expressi	on will be :		
	[1] Rate = k [/	A] [B] [2] R	ate = k [A] $[B]^2$	[3] Rate = k [A] ² [B] ²	[4] Rate = k [A] ² [B]
Q.47	For the reaction	on, 2A + B \rightarrow Pr	oducts, the follow	ving initial rates were obt	ained at various initial concentrations :
	[A]	[B]	Rate (mol ℓ ⁻¹	sec ⁻¹)	
	0.1 M	0.2 M	0.46		
	0.2 M	0.2 M	1.84		
	0.2 M	0.1 M	0.92		
	The rate law fo	or the reaction is	3:		
	[1] Rate = k [/	A]² [B]⁰ [2] R	ate = k [A] [B]	[3] Rate = k [A] ² [B]	[4] Rate = k [A] [B] ²
Q.48	Form the data	given below for	the reaction :	$A + B \rightarrow Products$	
	[A]	[B]	Rate		
	0.35 M	1.28 M	0.032 Ms ⁻¹		
	0.35 M	0.64 M	0.008 Ms ⁻¹		
	0.70 M	0.64 M	0.016 Ms ⁻¹		
	the expression	n for rate law is			
	[1] rate = k [A	.]⊻[B] [2] ra	ате = к [А] [В]	[3] rate = k [A] [∠] [B]	[4] rate = K [A] [B] ²

Q.49 Decomposition of H_2O_2 was studied by titration against KMnO₄ solution. It was found that 0.4 mole of H_2O_2 was reduced to 0.2 mole in 20 minutes and to 0.1 mole in 40 minutes and to 0.05 mole after one hour. The order of reaction must be :

] 0	[2] 1	[3] 2	[4] 3
Concentration Concentration Rate of reaction of A/(M) of B/(M) (M min ⁻¹) 0.50 0.02 1.15 × 10 ⁻⁴ 0.50 0.04 2.30 × 10 ⁻⁴ 0.01 1.00 2.30 × 10 ⁻⁶ 0.02 1.00 0.92 × 10 ⁻⁵ Then value of the rate constant for the above reaction is equal to : [1] 1.15 × 10 ⁻⁴ dm ³ /mol min [3] 2.30 × 10 ⁻² dm ⁶ /mol ² min [2] 2.30 × 10 ⁻² dm ³ /mol min [3] 2.30 × 10 ⁻² dm ⁶ /mol ² min [4] 1.15 × 10 ⁻² dm ³ /mol min	ne following kine	g kinetic data are provided fo	or a reaction between A a	and B :
of A/(M) of B/(M) (M min ⁻¹) 0.50 0.02 1.15×10^{-4} 0.50 0.04 2.30×10^{-6} 0.02 1.00 0.92×10^{-5} Then value of the rate constant for the above reaction is equal to : [1] $1.15 \times 10^{-4} \text{ dm}^3/\text{mol min}$ [2] $2.30 \times 10^{-4} \text{ dm}^6/\text{mol}^2$ min [3] $2.30 \times 10^{-2} \text{ dm}^6/\text{mol}^2$ min [4] $1.15 \times 10^{-2} \text{ dm}^3/\text{mol min}$	oncentration	on Concer	ntration Rate of	of reaction
0.50 0.02 1.15 × 10 ⁻⁴ 0.50 0.04 2.30 × 10 ⁻⁶ 0.01 1.00 2.30 × 10 ⁻⁶ 0.02 1.00 0.92 × 10 ⁻⁵ Then value of the rate constant for the above reaction is equal to : [1] 1.15 × 10 ⁻⁴ dm ³ /mol min [2] 2.30 × 10 ⁻⁴ dm ⁶ /mol ² min [3] 2.30 × 10 ⁻² dm ⁶ /mol ² min [4] 1.15 × 10 ⁻² dm ³ /mol min	A/(M)	of B/(M	l) (M mir	n ^{−1})
0.50 0.04 2.30 × 10 ⁻⁴ 0.01 1.00 2.30 × 10 ⁻⁶ 0.02 1.00 0.92 × 10 ⁻⁵ Then value of the rate constant for the above reaction is equal to : [1] 1.15 × 10 ⁻⁴ dm ³ /mol min [2] 2.30 × 10 ⁻² dm ⁶ /mol ² min [3] 2.30 × 10 ⁻² dm ⁶ /mol ² min [4] 1.15 × 10 ⁻² dm ³ /mol min	50	0.02	1.15 ×	< 10 ^{−4}
0.01 1.00 2.30 × 10 ⁻⁶ 0.02 1.00 0.92 × 10 ⁻⁵ Then value of the rate constant for the above reaction is equal to : [1] 1.15 × 10 ⁻⁴ dm ³ /mol min [3] 2.30 × 10 ⁻² dm ⁶ /mol ² min [4] 1.15 × 10 ⁻² dm ³ /mol min	50	0.04	2.30 ×	: 10 ⁻⁴
0.02 1.00 0.92 × 10 ⁻⁵ Then value of the rate constant for the above reaction is equal to : [1] 1.15 × 10 ⁻⁴ dm ³ /mol min [3] 2.30 × 10 ⁻² dm ⁶ /mol ² min [4] 1.15 × 10 ⁻² dm ³ /mol min (4] 1.15 × 10 ⁻² dm ³ /mol min	01	1.00	2.30 ×	< 10 ^{−6}
Then value of the rate constant for the above reaction is equal to : [1] $1.15 \times 10^{-4} \text{ dm}^3/\text{mol min}$ [2] $2.30 \times 10^{-4} \text{ dm}^6/\text{mol}^2 \text{ min}$ [3] $2.30 \times 10^{-2} \text{ dm}^6/\text{mol}^2 \text{ min}$ [4] $1.15 \times 10^{-2} \text{ dm}^3/\text{mol min}$	02	1.00	0.92 ×	< 10 ⁻⁵
[1] 1.15 × 10 ⁻⁴ dm ³ /mol min [3] 2.30 × 10 ⁻² dm ⁶ /mol ² min [4] 1.15 × 10 ⁻² dm ³ /mol min	nen value of the	of the rate constant for the at	pove reaction is equal to	:
[3] 2.30 × 10 ⁻² dm ⁶ /mol ² min [4] 1.15 × 10 ⁻² dm ³ /mol min] 1.15 × 10 ⁻⁴ dn) ^{–4} dm ³ /mol min	[2] 2.30 × 10 ⁻⁴	¹ dm ⁶ /mol ² min
eiit coachino.] 2.30 × 10 ⁻² dn) ⁻² dm ⁶ /mol ² min	[4] 1.15 × 10 ⁻²	² dm ³ /mol min
MA.		white of		

Qus.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Ans.	2	4	3	4	4	2	3	1	1	3	2	3	2	2	2	4	3	2	2	4
Qus.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
Ans.	1	2	3	2	1	4	1	3	1	4	1	2	4	2	4	1	2	3	1	3
Qus.	41	42	43	44	45	46	47	48	49	50										
Ans.	4	3	2	1	1	2	3	4	2	3										

Answer Key - 1

[1] On doubling the conc. of B and C the rate of the reaction remains unaffected

[2] Reducing the conc. of A to half, the rate becomes one-fourth

[3] Half life period of the reaction depends upon the conc. of B

[4] Half life period of the reaction is inversely proportional to the first power conc. of A

Q.6 In the sequence of reaction :

A $\xrightarrow{k_1}$ B $\xrightarrow{k_2}$ C $\xrightarrow{k_3}$ D, $k_3 > k_2 > k_1$ then the rate determining step of the reaction is

Q.7 Dinitrogen pentaoxide decomposes as $2N_2O_5 \rightarrow 4NO_2 + O_2$. the rate can be given in three ways

$$\frac{-d[N_2O_5]}{dt} = k_1 [N_2O_5], \ \frac{d[NO_2]}{dt} = k_2 [N_2O_5], \ \frac{d[O_2]}{dt} = k_3 [N_2O_5]$$

The relation between the rate constants k_1 , k_2 and k_3 is :

- [1] $k_2 = 2k_1$ and $k_3 = 1/2 k_1$ [2] $k_1 = 2k_2$ and $k_3 = 2k_1$ [3] $k_1 = k_2 = k_3$ [4] $k_1 = 2k_2 = 3k_3$
- **Q.8** Inversion of a sugar follows first order rate equation which can be followed by nothing the change in rotation of the plane of polarization of light in the polarimeter. If f_{∞} , r_t and r_0 are the rotations at $t = \infty$, t = t and t = 0, then, first order reaction can be written as

$$[1] k = \frac{1}{t} \log \frac{r_t - r_{\infty}}{r_0 - r_{\infty}} \qquad [2] k = \frac{1}{t} \ln \frac{r_0 - r_{\infty}}{r_t - r_{\infty}} \qquad [3] k = \frac{1}{t} \ln \frac{r_{\infty} - r_0}{r_{\infty} - r_t} \qquad [4] k = \frac{1}{t} \ln \frac{r_{\infty} - r_t}{r_{\infty} - r_0}$$

Q.9 The rate of a certain reaction increase by 2.3 times when the temperature is raised from 300 K to 310K. If K is the rate constant at 300K then the rate constant at 310 K will be

Q.10 For a certain decomposition, the rate is 0.30 M sec⁻¹ when the concentration of reactant is 0.20 M. If the reaction is second order, the rate (in M sec⁻¹) when concentration is increased 3- times is :

- Q.11 When ethyl acetate was hydrolysed in presence of 0.1 N HCl, the rate constant was found to be 5.40×10^{-5} sec⁻¹, but when 0.1 N H₂SO₄ was used for hydrolysis, the rate constant was found to be 6.20×10^{-5} sec⁻¹ Thus [1] H₂SO₄ is stronger than HCl [2] H₂SO₄ is weaker than HCl
 - [3] H_2SO_4 and HCl both have the same strength [4] None of these
- **Q.12** The slope of the line for the graph of log k versus $\frac{1}{T}$ for the reaction, $N_2O_5 \rightarrow 2NO_2 + \frac{1}{2}O_2$ is 5000. Calculate the energy of activation of the reaction (kJ K⁻¹ mol⁻¹) [1] 95.7 [2] 9.57 [3] 957 [4] None
- **Q.13** If a is the initial concentration of a substance which reacts according to zero order kinetics and k is rate constant, the time for the reaction to go to completion is :

- **Q.14** For a reaction $A \xrightarrow{\kappa_1} B \xrightarrow{\kappa_2} C$. If the reaction are of Ist order then $\frac{d[B]}{dt}$ is equal to :
 - [1] $-k_2[B]$ [2] +k[A] [3] $k_1[A] k_2[B]$ [4] $k_1[A] + k_2[B]$

[2] ΔH for the forward reaction is 20 kJ

[3] The forward reaction is endothermic

[4] The activation energy for the forward reaction is 50 kJ

Q.21	In the reaction A + B -	\rightarrow C + D, the conce	entratior	n of A an	d B are equal ar	d the rate of the reaction is –
	Rate = k[A] [B]. The in	tegrated rate equ	ation for	this read	ction is :	
	$[1] k = \frac{x}{t(a-x)}$	$[2] k = \frac{xa}{(a-x)}$		[3] k =	$\frac{1}{t} \cdot \frac{x}{a(a-x)}$	$[4] k = \frac{1}{t} \cdot \frac{x}{a(x-a)}$
Q.22	If a graph is plotted be reaction rate will be :	etween log (a – x)) and t, t	the slope	e of the straight	line is equal to - 0.03. The specific
	[1] 6.9 × 10 ⁻²	[2] 6.9		[3] 0.69	9	[4] 6.9 × 10 ⁻⁴
Q.23	In the Wilhelmey equat then	tion of a first order	r reaction	$nC_t = C_0$	e ^{-kt} if the initial co	pncentration C_0 is increased m times
	[1] The value of k will in	ocrease m times		[2] The	value of k will d	ecrease m times
	[3] The value of k will re	mains unchanged	b	[4] Nor	ne of these	
Q.24	The data for the dissoc	iation of ammoniu	um nitrat	e are as	under –	
	Volume of N_2^{1} in cm ³	6.25 9.0	11.42	13.65	35.05	\mathbf{G}
	Time in min.	10 15	20	25	∞	
	The reaction is of					5
	[1] Zero order	[2] First order		[3] Sec	ond order	[4] Third order
Q.25	The half life period of a	first order reactio	n is 15 n	ninute. ⊢	low much reaction	on will be completed in 30 min.
	[1] 75%	[2] 80%		[3] 95%		[4] 100%
Q.26	99% at a first order rea	ction was comple	eted in 32	2 min. W	hen will 99.9% c	f the reaction complete.
	[1] 48 min	[2] 46 min		[3] 50 r	min	[4] 45 min
Q.27	According to collision the	heory of reaction	rate, the	rate inci	reases with the i	ncrease in temperature because
	[1] The number of collis	sions increases		[2] The	velocity of react	ant molecules increases
	[3] More molecules obt	ain activation ene	rgy	[4] Nor	ne of these	
Q.28	In a second order reac dissociation is	tion 20% of a sub	stance i	s dissoci	iated in 40 minut	es. The time taken by the 80% of its
	[1] 160 minutes	[2] 640 minutes	5	[3] 200	minute	[4] 320 minute
Q.29	The rate constants at 2 What is the activation e	7°C and 67°C for energy for the dise	the diss	sociation to f N_2O_5	of N_2O_5 are 3.45 ?	5 × 10⁻⁵ and 6.90 × 10⁻³ respectively.
	[1] 112.5 kJ	[2] 225 kJ		[3] 448	kJ	[4] None of these
Q.30	The temperature coeffi	cient of a reaction	is:			
	[1] The ratio of the rate	constants of two	reaction	ns at 25º0	C	
	[2] The ratio of the rate	constants of a real	action at	t 25⁰C ar	nd 35⁰C	
	[3] The ratio of the rate	constants at any	two diffe	erent tem	perature	
	[4] None of the above					
Q.31	The half life period of a	second order rea	ction ca	n be exp	ressed as :	
	$[1] t_{1/2} = \frac{0.693}{k}$	$[2] t_{1/2} = \frac{3}{2k} \cdot \frac{1}{a^2}$		[3] t _{1/2} =	$=\frac{1}{k}\cdot\frac{1}{a}$	[4] None of these
Q.32	The rate constant for a	reaction is 10.8 >	• 10⁻⁵ mo	ol lit ^{_1} se	c ⁻¹ . The reaction	is -
	[1] Zero order	[2] Half order		[3] Firs	t order	[4] Second order

Q.33	The rate constant of a r	eaction is about	3.2 × 10	⁻⁴ at 280 K. Wh	nat will be	its rate constant at 300 K ?
	[1] 9.6 × 10 ⁻⁴	[2] 3.2 × 10 ⁻⁵		[3] 6.4 × 10 ⁻⁴		[4] 1.28 × 10 ^{−3}
Q.34	In acidic medium the	e rate of react	ion bet	ween (BrO ₃) [_]	and Br-	ion is given by the expression
	$\frac{d(BrO_3^-)}{dt} = k[BrO_3^-] [Br$	-] [H ⁺] ² it means				
	[1] Rate constant of ove	erall reaction is 4	Sec ⁻¹			
	[2] Rate of reaction is in	dependent of the	e conc. o	facid		
	[3] The change in pH of	the solution will	not affec	t the rate		
	[4] Doubling the conc. o	of H⁺ ions will inci	rease the	e reaction rate l	by 4 times	
Q.35	Using the data given below	ow the order and	rate con	stant for the rea	ction : CH ₃	$_{4}^{3}CHO(g) \rightarrow CH_{4}(g) + CO(g)$ would be
	Experiment no.		Initial c	onc.	Initial ra	ate
			[mol/ ℓ]		[mol/ℓ/	sec]
	а		0.10		0.020	\mathbf{C}
	b		0.20		0.080	
	С		0.30		0.180	N
	d		0.40	•	0.320	9
	Answer is					
	[1] 2, [k = 2.0 ℓ /mol sec	2]		[2] 0, [k = 2.0	mol/ℓ sec	5]
	[3] 2, [k = 1.5 ℓ /mol sec	2]		[4] 1, [k = 1.5	sec ⁻¹]	
Q.36	In the reaction : A + 2B + and that of A and C is k	$- C \rightarrow D + 2E. The ept constant. Where the two stants is the two stants are the two stants of the two stands are the two stands are two stan$	e rate of hat is the	formation of D r order with res	remains ur pect to B	nchanged if the conc. of B is doubled
	[1] 0	[2] 1/2	хC	[3] 1		[4] 3
Q.37	$t_{0.5}$ = constant, confirms	s the first order o	f the rea	ction as one a ²	$t_{0.5} = cons$	stant confirms that the reaction is of
	[1] Zero order	[2] First order		[3] Second or	der	[4] Third order
Q.38	In a certain gaseous rea	action between X	and Y			
	$X + 3Y \rightarrow XY_3$					
	The initial rates are repo	orted as follows		Data		
				Rate		
	0.2 M	0.1 M		0.002 Ms ⁻¹		
	0.3 M	0.2 M		0.008 Ms ⁻¹		
	0.4 M	0.3 M		0.018 Ms ⁻¹		
	The rate law is					
_	[1] $r = k [X] [Y]^3$	[2] $r = k [X]^0 [Y]$	2	[3] r = k [X] [Y	[]	[4] $r = k [X]^0 [Y]^3$
Q.39	The rate of reaction betw 10 fold, the order of rea	ween A and B inc ction with respec	reases b ct to A is	by a factor of 10 :	0, when th	e concentration of A is increased by
	[1] 10	[2] 1		[3] 4		[4] 2
Q.40	For a reaction, the rate	constant is expre	essed as	$k = A.e^{-40000/T}$.	The energ	gy of the activation is :
	[1] 40000 cal	[2] 88000 cal		[3] 80000 cal		[4] 8000 cal
Q.41	The half-life period for a respectively. The order of	a reaction at initian of the reaction is	al conce	ntration of 0.5 a	and 1.0 m	oles litre⁻¹ are 200 sec and 100 sec
	[1] 0	[2] 1		[3] 2		[4] 3

A reaction takes place in three steps. The rate constants are k_1 , k_2 and k_3 . The over all rate constant $k = \frac{k_1k_3}{k_2}$ Q.42 If (energy of activation) E₁, E₂ and E₃ are 60, 30 and 10 kJ. the overall energy of activation is : [1] 40 [2] 30 [3] 400 [4] 60 A reaction rate constant is given by : $k = 1.2 \times 10^{14} e^{\frac{2500}{RT}}$ sec⁻¹. It means Q.43 [1] Log k versus log T will give a straight line with a slope as 25000 [2] Log k versus log T will give a straight line with a slope as - 25000 [3] Log k versus T will give a straight line with a slope as - 25000 [4] Log k versus 1/T will give a straight line Dinitrogen pentaoxide decomposes as follows Q.44 $N_{2}O_{5} \rightarrow 2NO_{2} + \frac{1}{2}O_{2}. \quad \text{If } -\frac{d[N_{2}O_{5}]}{dt} = k'[N_{2}O_{5}] ; \frac{d[NO_{2}]}{dt} = k''[N_{2}O_{5}] ; \frac{d[O_{2}]}{dt} = k'''[N_{2}O_{5}].$ $[1] \frac{k'}{2} = \frac{k''}{3} = \frac{k''}{4} \qquad [2] (k')^2 = k'' = k''' \qquad [3] 2k' = k'' = 2k''' \qquad [4] k' = \frac{k''}{2} = 2k'''$ The rate of change in concentration of C in the reaction $2A + B \rightarrow 2C + 3D$ was reported as 1.0 mol litre⁻¹ Q.45 sec⁻¹. Calculate the reaction rate [2] 0.01 mol litre⁻¹ sec⁻¹ [1] 0.05 mole litre⁻¹ sec⁻¹ [4] None of these [3] 0.5 mol litre⁻¹ sec⁻¹ For the reaction $2NO(g) + H_2(g) \rightarrow N_2O(g) + H_2O(g)$, at 900 K following data are observed. Q.46 Initial pressure of H_a (atm) Initial pressure of NO (atm) Initial rate of pressure decrease $(atm min^{-1})$ 0.020 0.150 0.075 0.40 0.005 0.150 0.20 0.010 Find out the rate law and order of reaction $[1] \ k \Big[P_{NO_2} \Big]^2 \Big[P_{H_2} \Big]^1, 3 \quad [2] \ k \Big[P_{NO_2} \Big]^2 \Big[P_{H_2} \Big]^1, 2 \quad [3] \ k \Big[P_{NO_2} \Big]^2 \Big[P_{H_2} \Big]^1, 1 \quad [4] \ k \Big[P_{NO_2} \Big]^2 \Big[P_{H_2} \Big]^1, 0$ An exothermic reaction $A \rightarrow B$ has an activation energy of 17 kJ per mole of A. The heat of the reaction is 40 kJ. Q.47 Calculate the activation energy for the reverse reaction $B \rightarrow A$ [1] 60kJ 📢 [2] 57kJ [3] 75kJ [4] 90kJ $k_{_{34^\circ}}$: $k_{_{35^\circ}} < 1$, then Q.48 [1] Rate increases with the rise in temperature [2] Rate decreases with rise in temperature [3] Rate does not change with rise in temperature [4] None of the above

Qus.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Ans.	3	4	3	1	3	1	2	3	4	4	1	1	1	3	4	1	1	1	1	1
Qus.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
Ans.	3	1	3	2	1	1	3	2	1	2	3	1	4	4	1	1	4	2	4	3
Qus.	41	42	43	44	45	46	47	48												
Ans.	3	1	4	4	3	1	2	1												

Answer Key - 2

xercise#3 Q.1 Select the law that correspond to data for the reaction A + B \rightarrow products [CPMT 1994] Exp. [A] [B] Initial rate 1 0.012 0.035 0.1 2 0.024 0.070 0.8 3 0.024 0.035 0.1 0.012 4 0.070 0.8 [1] Rate = k $[B]^3$ [2] Rate = k [B]⁴ [3] Rate = k [A] $[B]^3$ [4] Rate = k $[A]^2 [B]^2$ Q.2 The unit of a first order rate constant is : [AFMC 1994] [1] Mol cm⁻³ s⁻¹ [4] Litre mol-1 s-[2] L⁻¹ mol⁻¹ s⁻¹ [3] s⁻¹ Q.3 A chemical reaction is catalysed by a catalyst X. Hence X [CPMT 1995] [2] Does not affect equilibrium constant of the reaction [1] Increases activation energy of the reaction [4] Reduces enthalpy of the reaction [3] Decreases the rate constant of the reaction The decomposition of $\rm N_2O_5\,$ is a first order reaction represented by : $\rm N_2O_5 \rightarrow N_2O_4$ + 1/2 $\rm O_2$ Q.4 After 15 minutes the volume of O₂ produced is 9 ml and at the end of the reaction 35 ml. The rate constant is [MPPET 1995] equal to [3] $\frac{1}{15}$ ln [4] $\frac{1}{15}$ ln $\frac{35}{26}$ [1] $\frac{1}{15}$ ln $\frac{35}{44}$ [2] $\frac{1}{15}$ ln $\frac{44}{26}$ Q.5 A catalyst only [AFMC 1995] [1] Decreases activation energy [2] Increases activation energy [3] Both of them [4] Comes to equilibrium The given reaction : $2\text{FeCl}_3 + \text{SnCl}_2 \rightarrow 2\text{FeCl}_2 + \text{SnCl}_4$ is an example of Q.6 [CPMT 1996] [1] First order reaction [2] Second order reaction

[3] Third order reaction [4] None of these Q.7 The free energy change due to a reaction is zero when [KCET 1996] [1] The reactants are initially mixed [2] A catalyst is added [3] The system is at equilibrium [4] The reactants are completely consumed Q.8 If the temperature is increased by 10°C the rate of the reaction becomes [RPET 1997] [1] Ten times more [2] Ten times less [3] Two times more [4] Two times less Q.9 For a first order reaction, the half-life period is independent of [CPMT 1997] [1] Initial concentration [2] Cube root of initial concentration [3] First power of final concentration [4] Square root of final concentration

Q.10 What is the value of decay constant of a compound having half life time as 2.95 days [AFMC 1997] [1] 2.9 × 10⁻⁵ s⁻¹ [2] 2.9 × 10⁶ s⁻¹ $[3] 2.9 \times 10^{-6} \text{ s}^{-1}$ [4] 3 ×10⁵ s⁻¹ Q.11 In a reaction $A \rightarrow B$, the rate of reaction increases two times on increasing the concentration of the reactant four times, then order of reaction is [AIIMS 1997] [1] 0 [2] 2 [3] 1/2 [4] 4 Q.12 Activation energy of a chemical reaction can be determined by [CPMT 1998] [1] Evaluating rate constant at standard temperature [2] Evaluating velocities of reaction at two different temperature [3] Evaluating rate constants at two different temperatures [4] Changing concentrations of reactants Q.13 If 75% of first order reaction is completed in 32 min, then 50% of the reaction would be completed in [1] 16 Min [2] 24 Min [3] 10 Min [4] 40 Min [MPPET 1998] The Arrhenius equation expressing the effect of temperature on the rate constant of reaction is [MPPET 1998] Q.14 [3] k = log_e $\frac{Ea}{RT}$ [1] k = $\frac{Ea}{PT}$ [2] $k = Ae^{-Ea/RT}$ [4] $k = e^{-Ea/RT}$ Q.15 For a reaction for the type A + B \rightarrow products, it is observed that doubling the concentration of A causes the reaction rate to be four times as great, but doubling the amount of B does not effect the rate. The rate equation [MPPET 1998] is [2] Rate = k [A] [3] Rate = k [A]² [4] Rate = $k [A]^2 [B]$ [1] Rate = k [A] [B]Q.16 Which of the following kinds of catalysis can be explained by the adsorption theory [MPPMT 1998] [1] Homogenous catalysis [2] Acid-base catalysis [3] Heterogeneous catalysis [4] Enzyme catalysis For the following first order reaction : N_2O_5 (in CCl₄ solvent) $\rightarrow 2NO_2$ (Solvent) + $\frac{1}{2}O_2$ (g) the velocity constant Q.17 is 6.2 × 10⁻⁴ s⁻¹. The rate of the reaction at $[N_2O_5] = 1.25$ moles/litre will be [AFMC 1998] [1] 7.75 × 10⁻⁴ Moles/1/s [2] 6.35 × 10⁻³ Moles/1/s [3] 5.15 × 10⁻⁵ Moles/1/s [4] 3.85 × 10⁻⁴ Moles/1/s The rate of a first order reaction was found to be 0.69×10^{-2} mole/litre/minute at the initial concentration Q.18 0.2 moles litre⁻¹. The half life period of the reaction will be [AIIMS 1998] [1] 400 s [2] 600 s [3] 800 s [4] 1200 s Q.19 For the first order reaction with rate constant k, which expression gives the half-life period? [MPPMT 1998] (Initial concentration = a)[1] In 2/k [2] 1/ka [3] 0.693/k [4] 3/2 ka²

CHEMICAL KINETICS

Q.20	For the reaction $H_2(g)$ +	$I_2(g) \Longrightarrow 2HI(g)$, the ra	te of reaction is expresse	d as [CPMT 1999]
	$[1] - \frac{\Delta [I_2]}{\Delta t} = -\frac{\Delta [H_2]}{\Delta t} = \frac{\Delta [H_2]}{\Delta t}$	$\frac{1}{2} \frac{\Delta[\text{HI}]}{\Delta t}$	$[2] \frac{\Delta[I_2]}{\Delta t} = \frac{\Delta[H_2]}{\Delta t} = \frac{\Delta[H_2]}{2t}$	Η <u>Ι]</u> Δt
	$[3] \frac{\Delta[H_2]}{\Delta t} = \frac{1}{2} \frac{\Delta[I_2]}{\Delta t} = -$	$-\frac{\Delta[\text{HI}]}{\Delta t}$	[4] None of these	
Q.21	The conversion of $A \to I$	B follows second order ki	netics. Doubling the conce	entration of A will increasing the rate
	of formation of B by a fa	ctor		[MPPET 1999]
	[1] 1/4	[2] 2	[3] 1/2	[4] 4
Q.22	For a reaction the active of rate constant at 310 l	ation energy E _a = 0 and t K	he rate constant $k = 3.2 \times$	10 ⁶ S ⁻¹ at 300 K. What is the value [MPPMT 1999]
	[1] 6.4 × 10 ⁶ S ⁻¹	[2] 6.4 × 10 ¹² S ⁻¹	[3] 3.2 × 10 ⁶ S ⁻¹	[4] 0
Q.23	Amongst the following c	chemical reactions, the ur	nimolecular reaction is	[MPPMT 1999]
	$[1] H_2 + Cl_2 \rightarrow 2HCl$	$[2] \operatorname{PCl}_3 + \operatorname{Cl}_2 \to \operatorname{PCl}_5$	$[3] N_2O_5 \to N_2O_4 + \frac{1}{2}O_2$	$[4] 2HI \rightarrow H_2 + I_2$
Q.24	The rate constant of a fi	rst order reaction is 3×1	0 ⁻⁶ per sec. If the initial co	ncentration is 0.10 M, the initial rate
	[1] 2 × 10-5 Mc-1	[2] 2 × 10-6 Mc-1	[2] 2 × 10-7 Mc-1	[/] 2 v 10-8 Mc-1
0.25	The unit of rote constant	t for zero order repetion		
Q.20	The unit of fate constant			
• • •	[1] Moles/Litre sec	[2] Litre/Moles sec	[3] Sec ⁻¹	[4] Moles ² /Litre ² sec
Q.26	A radioactive sample d	ecay to half of its initial	concentration in 6.93 mil	nutes. If further decays half in next
	[1] 0 10 min ⁻¹	$[210 \ 01 \ \text{min}^{-1}]$	[3] 1.0 min ⁻¹	[4] 0 001 min ⁻¹
0 27	In the reaction $2A + B$	$\rightarrow A$ B if the concentra	tion of A is doubled and	that of B is halved, then the rate of
Q.L.I	reaction will			[CPMT 2000]
	[1] Decrease 2 times	[2] Increase 2 times	[3] Increase 4 times	[4] Remain the same
Q.28	Inversion of sucrose is			[MPPET 2000]
	[1] First order reaction	[2] Zero order reaction	[3] Second order reaction	n[4] Third order reaction
Q.29	The rate constant for the	e forward and backward r	eactions of hydrolysis of e	ster are 1.1×10^{-2} and 1.5×10^{-3} per
	minute respectively. The	e equilibrium constant of t	he reaction	[AFMC 2000]
	[1] 6.33	[2] 7.33	[3] 7.75	[4] 8.33
Q.30	Activation energy of a re	eaction is determined by		[DPMT 2000]
	[1] Plotting substrate-tin	ne graph		
	[2] Plotting rate-time gra	aph		
	[3] Calculating rate cons	stant at two different temp	perature	
	[4] None of these			

Q.31	Rate constant depends	on			[AFMC 2000]
	[1] Temperature	[2] Time	[3] Initial concentration	[4] None	
Q.32	For a reaction 2NO(g) +	$Cl_2(g) \rightarrow 2NOCl(g)$, when	n concentration of Cl_2 is do	oubled, the rate of re	eaction becomes
	two times of the original	. When the concentration	of NO is doubled, rate be	ecomes four times. N	What is the order
	of reaction ?				[MPPMT 2000]
	[1] 1	[2] 2	[3] 3	[4] 4	
Q.33	For the reaction N_2 + 3H	$H_2 \rightarrow 2NH_3 \text{ if } \frac{\Delta[NH_3]}{\Delta t} = 2$	× 10 ⁻⁴ mol L ⁻¹ s ⁻¹ . The va	lue of $-\frac{\Delta[H_2]}{\Delta t}$ would	d be
					[MPPMT 2000]
	[1] 1 × 10 ⁻⁴ mol L ⁻¹ s ⁻¹	[2] 3 × 10 ⁻⁴ mol L ⁻¹ s ⁻¹	[3] 4 × 10 ⁻⁴ mol L ⁻¹ s ⁻¹	[4] 6 × 10 ⁻⁴ mol L ⁻	¹ S ⁻¹
Q.34	When H_2 and Cl_2 reacts	in presence of sunlight to	from HCI then the order of	of reaction is (Unit of	$k = mol \times lit/sec)$
	[1] 2	[2] 3	[3] 0	[4] 4	[RPET 2001]
Q.35	The order of a reaction	with rate equal to k. $C_A^{+3/2}$.C _B ^{-1/2} will be	O	[MPPET 2001]
	[1] 2	[2] 1	[3] -1/2	[4] 3/2	
Q.36	For the reaction $2N_2O_5$ -	\rightarrow 4 NO ₂ + O ₂ rate and rate	constant are 1.02×10^{-4}	and 3.4 × 10 ⁻⁵ sec ⁻¹ i	respectively then
	concentration of N_2O_5 a	t that time will be		[C	CBSE Med 2001]
	[1] 1.732	[2] 3	[3] 1.02 × 10 ⁻⁴	[4] 3.4 × 10⁵	
Q.37	When a biochemical rea	action is carried out in labo	ratory from outside of hun	nan body in absence	e of enzyme then
	the rate of reaction obta	ained is 10 ⁻⁶ times, then a	ctivation energy of reacti	on in presence of er	nzyme is :
	[1] 6/RT	.×C	[2] P is required		[CPMT 2001]
	[3] Different from E _a obta	ained in the laboratory	[4] Cannot say anything	J	
Q.38	For the reaction A + B –	\rightarrow C + D, doubling the cond	centration of both the read	ctants increases the	e reaction rate by
	8 times and doubling th	e concentration of only B	simply doubles the react	ion rate. The rate la	w is given as
	[1] r = k [A] ^{1/2} [B] ^{1/2}	[2] r = k [A] [B] ²	[3] r = k [A] ² [B]	[4] r = k [A] [B]	[AFMC 2001]
		•			
Q.39	$3A \rightarrow 2B$, rate of reaction	on + $\frac{d[B]}{dt}$ is equal to			[CPMT 2002]
	-3 d[A]	2 d[A]	-1 d[A]	d[A]	
	$\begin{bmatrix} 1 \end{bmatrix} \frac{1}{2} \frac{dt}{dt}$	$[2] - \frac{1}{3} \frac{1}{dt}$	$[3] \frac{1}{3} \frac{1}{dt}$	$[4] + 2 \frac{1}{dt}$	
0.40	A chemical reaction w	as carried out at 300 K	and 280 K. The rate cor	etants were found	to be k and k
Q.70	respectively Then			Istants were found	IKCET 20021
		[2] k - 2k	[2] k = 0.25 k	[4]k = 0.5 k	[
•	$[1] \kappa_2 = 4\kappa_1$	$\lfloor \boldsymbol{z} \rfloor \boldsymbol{\kappa}_2 = \boldsymbol{z} \boldsymbol{\kappa}_1$	$[0] \kappa_2 = 0.20 \kappa_1$	[+] κ ₂ = 0.3 Κ ₁	
Q.41	Collision theory is appli	cable to			[MPPET 2002]
	[1] First order reactions		[2] Zero order reactions		
	[3] Bimolecular reaction	IS	[4] Intermolecular reacti	on	

CHEMICAL KINETICS

Q.52	Consider the chemical of time derivative of co expressions.	reaction, $N_2(g) + 3H_2(g)$ – ncentration of $N_2(g)$, $H_2(g)$	\rightarrow 2NH ₃ (g). The rate of thi g) or NH ₃ (g). Identify the o	s reaction can be correct relationsh	expressed in terms ip amongst the rate
	[1] Rate = $- d[N_2]/dt =$	–1/3 d[H ₂]/dt = 1/2d[NH ₃]	/dt		[IIT Scr. 2002]
	[2] Rate = $-d[N_2]/dt =$	$-3 d[H_2]/dt = 2d[NH_3]/dt$			
	[3] Rate = $d[N_2]/dt = 1$	$/3 d[H_2]/dt = 1/2d[NH_3]/dt$:		
	[4] Rate = $-d[N_2]/dt =$	$- d[H_2]/dt = d[NH_3]/dt$			
Q.53	In a first order reaction The rate constant of re	the concentration of reac eaction in sec ⁻¹ is	tant decreases from 800	mol/dm³ to 50 mo	l/dm³ in 2 × 10⁴ sec. [IIT Scr. 2003]
	[1] 2 × 10 ⁴	[2] 3.45 × 10 ^{−5}	[3] 1.386 × 10 ⁻⁴	[4] 2 × 10 ⁻⁴	
Q.54	In a first order reaction, taken for the concentra	the concentration of the reation to change from 0.1 I	eactant, decreases from (M to 0.025 M is	0.8 M to 0.4 M in 1	5 minutes. The time [AIEEE 2004]
	[1] 60 minutes	[2] 15 minutes	[3] 7.5 minutes	[4] 30 minutes	
Q.55	The rate equation for to this reaction is that	he reaction 2A + B \rightarrow C is the	s found to be : rate = k[A]	[B]. The correct s	tatement in relation [AIEEE 2004]
	[1] value of k is indepe	ndent of the initial concer	ntrations of A and B[2] $t_{_{1/2}}$	is a constnat	
	[3] rate of formation of	C is twice the rate of disa	ppearance of A	[4] unit of k mu	st be s ⁻¹
Q.56	Which of these does n	ot influence the rate of rea	action	N	[KCET 2005]
	[1] Nature of the reacta	ants	[2] Concentration of the	e reactants	
	[3] Temperature of the	reaction	[4] Molecularity of the r	reaction	
Q.57	In the reaction $2N_2O_5$ - minutes the final press	$\rightarrow 4NO_2 + O_2$, initial pressure of N_2O_5 is	ure is 500 atm and rate co	onstant K is 3.38 ›	< 10 ⁻⁵ sec ⁻¹ . After 10 [Orissa JEE 2005]
	[1] 490 atm	[2] 250 atm	[3] 480 atm	[4] 420 atm	
Q.58	A reaction involving two	o different reactants -	\cap		[AIEEE 2005]
	[1] Can never be a sec	ond order reaction	[2] Can never be a unin	nolecular reaction	
	[3] Can never be a bim	olecular reaction	[4] Can never be a first	order reaction	
Q.59	For reaction a A \rightarrow xP, half, the rate changes	when [A] = 2.2 mM, the ra to 0.6 mM s ⁻¹ . The order	ite was found be 2.4 mM s of reaction with respect to	s⁻¹. On reducing c o A is -	oncentration of A to [AIIMS 2005]
	[1] 1.5	[2] 2.0	[3] 2.5	[4] 3.0	
Q.60	Which one of the follow	ving statement for order o	of reaction is not correct -		[IIT 2005]
	[1] Order can be deterr	nined experimentally			
	[2] Order of reaction is	equal to sum of the powe	ers of concentration terms	in differential rate	e law.
	[3] It is not affected wit	h the stoichiometric coeff	icient of the reactants		
	[4] Order cannot be fra	ctional			
Q.61	$t_{\frac{1}{4}}$ can be taken as the	e time taken for the conce	ntration of a reactant to d	rop to $\frac{3}{4}$ of its init	tial value. If the rate
	constant for a first orde	er reaction is K, the $\frac{t_1}{4}$ ca	an be written as -		[AIEEE 2005]
	[1] 0.10/K	[2] 0.29/K	[3] 0.69/K	[4] 0.75/K	
Q.62	For a first order reactio L ⁻¹ s ⁻¹ . The half life peri	n A \rightarrow B the reaction rate od of the reaction is -	at reactant concentration	of 0.01M is found	to be 2.0 × 10 ⁻⁵ mol [CBSE PMT 2005]
	[1] 220 s	[2] 30 s	[3] 300 s	[4] 347 s	
Q.63	The rate of reaction be is doubled. The order of	tween two reactants A and of this reaction with respe	d B decreases by a factor ect to reactant B is -	of 4 if the concen	tration of reactant B [CBSE PMT 2005]
	[1]-1	[2] -2	[၁] ၊	[4] 2	

Q.64 Consider an endothermic reaction $X \rightarrow Y$ with the activation energies E_{b} and E_{f} for the backward and forward reactions, respectively, in genral [AIEEE 2005]

[1] $E_b < E_f$ [2] $E_b > E_f$ [3] $E_b = E_f$ [4] There is no definite relation between E_b and E_f

Q.65 An endothermic reaction with high activation energy for the forward reaction is given by the diagram

[AIIMS 2005]

Q.66 A reaction was found to be second order, with respect to the concentration of carbon monoxide. If the concentration of carbon monoxide is doubled, with everything else kept the same, the rate of reaction will -

ΓA	IE	EE	2	00	61
L					

[1] Triple	[2] Increase by a factor of 4			
[3] Double	[4] Remain unchanged			
The following mechanism has been proposed for the reaction of NO with ${\rm Br_2}$ to form NOBr -				

NO(g) + Br₂(g) NOBr₂(g) [AIEEE 2006]

 $NOBr_2(g) + NO(g) \rightarrow 2 NOBr(g)$

If the second step is the rate determining step, the order of the reaction with respect to NO(g) is -

Q.68 Consider the reaction $2A + B \rightarrow$ Products

Q.67

When concentration of B alone was doubled, the half-life did not change. When the concentration of A alone was doubled, the rate increased by two times. The unit of rate constant for this reaction is [AIEEE 2007]

[1] mol
$$L^{-1}s^{-1}$$
 [2] s^{-1} [3] $L \mod^{-1}s^{-1}$ [4] No unit

Qus. Ans. Qus Ans Qus. Ans Qus. Ans.

Answer Key - 3