		Ex	ercise # 1	[MOLE CONCEPT]
Q.1	The number of signifi	icant figures in the electric	cal charge 96500 are -	
	[1] three	[2] four	[3] five	[4] can be any of these
Q.2	The number of signif	icant figures in Avogadro'	's number, N _a = 6.022 :	× 10 ²³ are -
	[1] three	[2] four	[3] five	[4] can be any of these
Q.3	The correctly reporte	ed answer of the addition of	of 142.138, 3.214 and	17 will be -
	[1] 162.352	[2] 162.35	[3] 162.4	[4] 162
Q.4	On dividing 0.366 by	12.523, the actual answe	er is 0.029236. The co	rrectly reported answer will be -
	[1] 0.02	[2] 0.029	[3] 0.0292	[4] 0.02924
Q.5	Two students X and N following statements	<pre>/ report the weight of the s is correct ?</pre>	same substance as 12.	0 g and 12.00 g respectively. Which of the
	[1] Both are equally a	accurate	[2] X is more accu	rate than Y
	[3] Y is more accurat	e than X	[4] Both are inacc	urate scientifically
Q.6	Which of the followin	g is correct ?		\mathbf{C}
	[1] $1 dm^3 = 10^3 cm^3$	[2] 1L = 10 dm ³	[3] 1dm ³ = 10 L	[4] $1L = 1m^3$
Q.7	Planck's constant ha	is a numerical value of 6.0	627 × 10 ⁻³⁴ and the dir	mensions of
	[1] force	[2] work	[3] angular momer	ntum [4] torque
Q.8	100 g sample of me significant figures is i	thyl alcohol contains 0.0 reported as -	02 g of water. The a	mount of pure methyl alcohol in terms of
	[1] 99.998	[2] 99.99 g	[3] 99 g	[4] 100 g
Q.9	The atmospheric pre	essure of one torr is equal	to -	
	[1] 1 cm of Hg	[2] 1 atm pressure	[3] 1 mm of Hg	[4] 1 m of Hg
Q.10	The number of signif	icant figures in $\frac{h}{2\pi}$ are -		
	[1] three	[2] infinite number	[3] zero	[4] one
Q.11	kg m ⁻¹ s ⁻² is the unit	of -		
	[1] Momentum	[2] Velocity	[3] Pressure	[4] Acceleration
Q.12	Acceleration is the in	crease in velocity of a bo	ody per unit time. The	correct unit for it are -
	[1] N kg ⁻¹	[2] m ² s ⁻²	[3] Jm ⁻¹	[4] kg m ⁻³
Q.13	Which of the followin	g is not a unit of length/d	istance?	
	[1] Pico meter	[2] Light-year	[3] Meter	[4] Radian
Q.14	Which of the followin	g is not an element?		
	[1] Diamond	[2] Plastic sulphur	[3] Silica	[4] Graphite
Q.15	Which one of the follo	owing processes results i	in the formation of a ne	ew chemical compound ?
	[1] Dissolving commo	on salt in water	[2] Sublimation of	NH₄CI
	[3] Heating platinum	rod	[4] Heating iron ro	d
Q.16	Which one of the foll	owing statements is false	?	
	[1] An element of a s	ubstance contains only c	one kind of atoms	
	[2] A compound can	be decomposed into its o	constituents	
	[3] Milk is a homoger	neous mixture		
	[4] All homogeneous	mixtures are called solut	tions	

Q.17	Which one of the follow	ving is not a mixture ?		
	[1] lodized table salt		[2] Gasoline	
	[3] Sugar dissolved in v	vater	[4] Distilled water	
Q.18	Which one of the follow	ving is not a compound 3	?	
	[1] Marble	[2] Quicklime	[3] Carborundum	[4] Ozone
Q.19	Divide a piece of ice int you can get by this div	o half. Divide it further ar ision is -	nd keep on dividing it many	times. The smallest piece of ice that
	[1] An atom	[2] A particle	[3] A crystal	[4] A molecule
Q.20	Which law of chemical 0.28 g of calcium oxide	combination is illustrate and 112 mL of CO_2 at S	ed by the following data ? S.T.P. ?	0.5 g of lime stone on heating gave
	[1] Law of definite prope	ortions	[2] Gay Lussac's	
	[3] Law of conservation	of mass	[4] Law of multiple prop	ortions
Q.21	Which of the following	best explains the law of	conservation of mass ?	
	[1] No change in mass	is observed when 2.0 g	of Mg is heated in vacuum	
	[2] 1.2 g of carbon whe	n burnt in excess of oxy	gen consumes only 3.2 g	of it to form 4.4 g of carbon dioxide
	[3] 12 g of carbon wher	n heated in a limited sup	ply of air produces only 20	g of carbon monoxide
	[4] A sample of air on h	eating does not shown	any change in mass but vo	blume increases.
Q.22	Two samples of sodium ³⁵ Cl and ³⁷ Cl. Which lay	n chloride are produced w w is illustrated by the abo	when sodium combines se ove facts ?	parately with two isotopes of chlorine
	[1] Law of multiple prop	ortions	[2] Law of reciprocal pro	oportions
	[3] Law of constant volu	umes	[4] None of the above	
Q.23	The percentage of hyd illustrate -	drogen in water and hyc	lrogen peroxide is 11.1 ar	nd 5.9% respectively. These figures
	[1] Law of multiple prop	ortions	[2] Law of conservation	of mass
	[3] Law of reciprocal pro	oportions	[4] Law of combining vo	lumes
Q.24	The balancing of chem	ical equation is based up	oon -	
	[1] Law of combining vo	olumes	[2] Law of multiple prop	ortions
	[3] Law of conservation	ofmass	[4] Law of definite propo	ortion
Q.25	A balanced chemical e	quation is in accordance	e with -	
	[1] Avogadro's law		[2] Law of constant prop	portions
	[3] Law of conservation	of mass	[4] Law of gaseous volu	imes
Q.26	Two gaseous samples 27.3% carbon and 72.7	were analyzed. One con 7% oxygen. The experin	tained 1.2 g of carbon and nental data are in accorda	3.2 g of oxygen. The other contained nce with -
	[1] Law of conservation	of mass	[2] Law of definite propo	ortions
	[3] Law of reciprocal pro	oportion	[4] Law of multiple prop	ortion
Q.27	Nitrogen forms five stat oxides explains fully th	ble oxides with oxygen of e -	the formula, N_2O , NO, N_2C	D_3 , N_2O_4 , N_2O_5 . The formation of these
	[1] Law of definite prope	ortions	[2] Law of partial press	ures
	[3] Law of multiple prop	ortions	[4] Law of reciprocal pro	oportions
Q.28	1L of N ₂ combines with	3L of H_2 to form 2L of N	H ₃ under the same condition	ons. This illustrates the -
	[1] Law of constant cor	nposition	[2] Law of multiple prop	ortions
	[3] Law of reciprocal pro	oportions	[4] Gay Lussac's law of	gaseous volumes

Q.29	Which one of the following represents Avogadro's hypothesis?						
	[1] Gases react together in volumes which bear a simple ratio to one another						
	[2] Equal volumes of all gases under same conditions of temperature and pressure contain equal num molecules						
	[3] Equal volumes of all gases under same conc atoms	litions of temperature and	pressure contain equal number of				
	[4] The rates of diffusion of gases are inversely p	roportional to the square r	oot of their densities				
Q.30	Different proportions of oxygen in the various oxid	des of nitrogen prove the la	aw of.				
	[1] Equivalent proportion	[2] Multiple proportion					
	[3] Constant proportion	[4] Conservation of matte	er				
Q.31	Hydrogen and oxygen combine to form $\rm H_2O_2$ and data illustrates -	H_2O containing 5.93% an	d 11.2% hydrogen respectively. The				
	[1] Law of conservation of mass	[2] Law of constant prop	ortions				
	[3] Law of reciprocal proportions	[4] Law of multiple prope	ortions				
Q.32	If water samples are taken from sea, rivers, cloud approximate ratio of 1 : 8. This indicates the law	ds, lake or snow, they were of -	e be found to contain H and O in the				
	[1] Multiple proportion	[2] Definite proportion	N				
	[3] Reciprocal proportion	[4] None of these					
Q.33	The law of multiple proportions is illustrated by -						
	[1] Carbon monoxide and carbon dioxide	[2] Potassium bromide a	and potassium chloride				
	[3] Water and heavy water	[4] Calcium hydroxide ar	nd barium hydroxide				
Q.34	Percentage of copper and oxygen in sample of Cu proves the law of-	uO obtained by different m	ethods were found to be same. This				
	[1] Constant proportion [2] Multiple proportion	[3] Reciprocal proportion	n [4] None of these				
Q.35	The number of moles of KI required to produce 0	.4 moles of $K_2^{}$ Hgl ₄ by rea	ction with HgCl ₂ is -				
	[1] 0.4 [2] 0.8	[3] 3.2	[4] 1.6				
Q.36	The mass of nitrogen in 1 kg of ammonium nitrat	te is -					
	[1] 700 g [2] 3.5×10^{-1} kg	[3] 350 g	[4] 35 g				
Q.37	Which of the following will not have a mass of 10	g -					
	[1] 0.1 mol of $CaCO_3$	[2] 1.51 × 10 ²³ Ca ²⁺ ions					
	[3] 0.016 mole of CO_3^{2-}	[4] 7.525 × 10 ²³ atom of	Br-				
Q.38	If atomic mass of oxygen is taken as 100, the mo	plecular mass of water wo	uld be approximately -				
	[1] 6.25 [2] 112.5	[3] 102	[4] 106.25				
Q.39	Atomic mass of an element is -						
	[1] The actual mass of one atom of the element	[2] The relative mass of	an atom of the element				
	[3] The average relative mass of different atoms of	of the element					
	[4] much different from the mass number of the e	lement					
Q.40	Which of the following statements is incorrect ?						
	[1] One gram atom of nitrogen contains Avogadro	o's number of atoms					
	[2] One mole of ozone gas contains Avogadro's r	number of molecules					
	[3] One mole of ozone contains Avogadro's numb	per of atoms					
	[4] One mole of electrons stands for 6.02×10^{23} e	electrons					

Q.41	One mole of nitrogen gas is the volume of -	
	[1] 1 litre of nitrogen at S.T.P.	[2] 32 litres of nitrogen at S.T.P
	[3] 22.4 litres of nitrogen atom S.T.P.	
	[4] 6.02 × 10^{23} molecules of oxygen at any temp	erature and pressure
Q.42	Which of the following pairs contains equal num	ber of atoms -
	[1] 11.2 cc of nitrogen and 0.015 g of nitric oxide	
	[2] 22.4 litres of nitrous oxide and 22.4 litres of r	itric oxide
	[3] 1 millimole of HCl and 0.5 millimole of H_2S	
	[4] 1 mole of H_2O_2 and 1 mole of N_2O_4	
Q.43	Which of the following has maximum mass?	
	[1] 0.1 g atom of nitrogen	[2] 0.1 mol of ammonia
	[3] 6.02 × 10 ²³ molecules of helium gas	[4] 1120 cc of carbon dioxide
Q.44	The mass of one amu is approximately -	
	[1] 1 g [2] 0.5 g	[3] 1.66×10^{-24} g [4] 3.2×10^{-24} g
Q.45	Three flasks of equal volumes contain CH_4 , CO_2 molecules if -	and Cl_2 gases respectively. They will contain equal number of
	[1] the mass of all the gases is same	
	[2] the moles of all the gas is same but temperate	ture is different
	[3] temperature and pressure of all the flasks are	esame
	[4] temperature, pressure, and masses are sam	e in the flasks
Q.46	Equal volumes of different gases at any definite t	emperature and pressure have -
	[1] Equal atoms [2] Equal masses	[3] Equal densities [4] Equal molecules
Q.47	Which one of the following statements is incorre	ct -
	[1] Atoms of the same element may have differe	nt atomic weights
	[2] Atoms can be created or destroyed	
	[3] Half of an atom can also take part in a reaction	on
	[4] Elements can exist as atoms or molecules b	ut compounds exist only as molecules
Q.48	What is not correct regarding 22 g of CO_2 ?	
	[1] It occupies always 11.2 L of volume at STP	[2] It corresponds to 1 g molecule of carbon dioxide
	[3] It contains one g-atom of oxygen	[4] It contains 0.5 g-atom of carbon
Q.49	Two flasks of equal capacity contain argon and c about them ?	chlorine gases respectively at room temperature. What is true
	[1] Both contain same number of atoms	[2] CI atoms are half of the Ar atoms
	[3] CI atoms are double the number of Ar atoms	
	[4] Chlorine molecules are double the number of	argon molecules
Q.50	Which of the following does not occupy a volum	e of 4.48 L at S.T.P. ?
	[1] 0.2 mol of H_2 [2] 12.8 g of SO_2	[3] 3.2 g of O ₂ [4] 800 mg of He
Q.51	The Milli-equivalents of 1.0 M H_2SO_4 in 100 mL s	solution is -
	[1] 10 [2] 100	[3] 1000 [4] 200
Q.52	The number of molecules in one cm ³ of oxygen	gas at S.T.P. is found to be 2.6875 \times 10 ¹⁹ . It is known as -
	[1] Berzelius number	[2] Avogadro number
	[3] Gay Lussac's number	[4] Loschmidt number

Q.53	The product of atomic w known as -	weight and specific heat o	of any element is constan	t which is approximately 6.4. This is
	[1] Newton's law	[2] Avogadro's law	[3] Dalton's law	[4] Dulong Petit's law
Q.54	20 litres of H_2 gas at S.	T.P. weigh about.		
	[1] 12.2g	[2] 448g	[3] 1.8g	[4] 20g
Q.55	Which of the following oxygen.	represents the formula of	of a substance which cor	ntains about 26% nitrogen and 74%
	[1] N ₂ O	[2] NO	[3] NO ₂	[4] N ₂ O ₅
Q.56	The empirical formula o this organic gas is exac	f an organic compound co tly equal to that of one litr	ontaining carbon and hydr e of N_{2} . Therefore, the mo	rogen is CH_2 . The mass of one litre of lecular formula of the organic gas is-
	$[1] C_2 H_4$	[2] C ₃ H ₆	[3] C ₆ H ₁₂	$[4] C_4 H_8$
Q.57	How many g of H_2SO_4 a	are present in 0.25 mole o	of H_2SO_4 .	
	[1] 2.45	[2] 24.5	[3] 0.245	[4] 0.25
Q.58	How many gram atoms	of S are present in 80.25	5g of S.	20
	[1] 2.5	[2] 32	[3] 5	[4] 80.25×32
Q.59	A sample of ammonium oxygen atoms in the sa	h phosphate, $(NH_4)_3PO_4$, cample is -	contains 3.18 mol of hydro	ogen atoms. The number of moles of
	[1] 0.265	[2] 0.795	[3] 1.06	[4] 3.18
Q.60	The number of moles o	f BaCO ₃ which contains γ	1.5 moles of oxygen atom	is is -
	[1] 0.5	[2] 1	[3] 3	$[4] 6.02 \times 10^{23}$
Q.61	How many moles of po	tassium chlorate is to be	heated to produce 11.2 li	tre oxygen.
	[1] $\frac{1}{2}$ mol	[2] $\frac{1}{3}$ mol	$[3] \frac{1}{4} mol$	[4] $\frac{2}{3}$ mol
Q.62	For the reaction A + 2E	$B \rightarrow C$, 5 mole of A and 8	3 mole of B will produce -	
	[1] 5 mole of C	[2] 4 mole of C	[3] 8 mole of C	[4] 13 mole of C
Q.63	Which one is a false sta	atement -		
	[1] 11.2 litre of a gas at	NTP weight equal to vap	our density	
	[2] 22.4 litre of water va	pour at NTP when conde	nsed gives 18ml of liquid	water
	[3] 1 mole of H ₂ at NTP	occupies 11.2 litres of vo	lume	
	[4] 5.6 litre of oxygen at	NTP is equivalent to 0.2	5 moles	
Q.64	Volume strength of H ₂ C	D_2 solution is equal to -		
	[1] Molarity \times 5.6	[2] Molarity × 11.2	[3] Molarity × 2.8	[4] Molarity × 8.4
Q.65	Equal weight of NaCl a solutions will be -	and KCI are dissolved s	eparately in equal volum	es of solutions. Molarity of the two
	[1] Equal			
	[2] That of NaCl will be	less than that of KCI		
	[3] That of NaCl will be	more than that of KCI sol	ution	
	[4] That of NaCl will be	half of than that of KCI so	lution	
Q.66	How much water shoul	d be added to 200cc of se	eminormal solution of Na	OH to make it exactly decinormal -
	[1] 1000 cc	[2] 400 cc	[3] 800 cc	[4] 600 cc
Q.67	Molarity of 720g of pure	e water -		
	[1] 40M	[2] 4M	[3] 55.5M	[4] Unpredictable

) I U U					y							
Qus.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Ans.	4	2	4	3	3	1	3	3	3	2	2	1	4	3	4	3	4	4	4	3
Qus.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
Ans.	2	4	1	3	3	2	3	4	2	2	4	1	1	1	4	3	4	2	3	3
Qus.	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
Ans.	3	1	4	3	3	4	3	2	3	3	4	4	4	3	4	1	2	1	3	1
Qus.	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75					
Ans.	2	2	3	2	3	3	3	4	1	1	4	2	3	2	4					

Answer Key

		T		MOLE CONCEPT
		Lixer	rcise # 2	
Q.1	The molecular weight of and Z. The correct set c	f the compounds (a) Na_2 of their equivalent weight	SO_4 (b) Na_3PO_4 . 12H ₂ O an s will be -	d (c) $Ca_3(PO_4)_2$ respectively are X, Y,
	[1] (a) $\frac{X}{2}$ (b) $\frac{Y}{3}$ (c) $\frac{Z}{6}$	[2] (a) X (b) $\frac{Y}{3}$ (c) $\frac{Z}{3}$	[3] (a) $\frac{X}{2}$ (b) Y (c) $\frac{Z}{3}$	[4] (a) X (b) Y (c) Z
Q.2	Haemoglobin contains number of iron atoms pe	0.25% iron by weight. T er molecule of haemoglol	he molecular weight of ha	aemoglobin is 89600. Calculate the
	[1] 2 atom	[2] 3 atom	[3] 4 atom	[4] 6 atom
Q.3	What is the normality of	f a solution of ammonia,	whose density is 0.885. It	has 23% ammonia be weight
	[1] 1.35	[2] 12.0	[3] 19.1	[4] 26.0
Q.4	50ml of 0.1N KMnO ₄ so equivalent weight of oxa	olution is required to con alic acid.	npletely oxides 0.225g of	anhydrous oxalic acid. Find out the
	[1] 90	[2] 45	[3] 126	[4] 63
Q.5	A 500g tooth paste sam	ple has 0.2g fluoride con	centration. What is the con	centration of F in terms of ppm level-
	[1] 250	[2] 200	[3] 400	[4] 1000
Q.6	Element X reacts with of produces 1.1596g of X_2 of X -	bxygen to produce a pure O_3 . Using the known atom	e sample of X_2O_3 . In an exnic weight of oxygen 15.99	periment it is found that 1.000g of X 94g mol ⁻¹ calculate the atomic weight
	[1] 20.70	[2] 66.85	[3] 100.2	[4] 150.4
Q.7	Two element X (at. wt.= the compound is -	75) and Y (at. wt.=16) co	mbines to give a compour	nd having 75.8% of X. The formula of
	[1] XY	[2] X ₂ Y	[3] X ₂ Y ₂	[4] X ₂ Y ₃
Q.8	Four containers of 2L ca of molecules under sim	apacity contains dinitroge ilar conditions -	en as described below. Wi	nich one contains maximum number
	[1] 2.5 g-molecules of N	J ₂	[2] 4 g-atom of nitrogen	
	[3] 3.01 x 10 ²⁴ N atoms	0	[4] 82 g of dinitrogen	
Q.9	6g of carbon combines y di oxide. 10g of sulphui above example -	with 32g of sulphur to forn r combines with 10g of o	n CS ₂ . 12g of C also combi xygen to form sulphur dic	ne with 32g of oxygen to form carbon oxide. Which law is illustrated by the
	[1] Law of multiple prop	ortions	[2] Law of constant com	position
	[3] Law of reciprocal pro	oportions	[4] Gay Lussac's law	
Q.10	4.4g of CO_2 and 2.24L container will be -	of H_2 at STP are mixed	in a container. The total r	number of molecules present in the
	[1] 6.022 x 10 ²³	[2] 1.2044 x 10 ²³	[3] 2 moles	[4] 6.023 x 10 ²⁴
Q.11	Which of the following il	llustrates the law of cons	ervation of mass ?	
	[1] Mixing of 10 g of sul	phur and 2 g of sand doe	es not show a changes in	mass
	[2] The mass of platinur	m wire before and after he	eating remains constant	
	[3] 2.2 g of propane and	d 8 g of oxygen produces	10.2 g of gaseous mixtur	е
	[4] 3.8 g of CO and 1.6	g of oxygen gave only 2.	.24 L of CO ₂ at S.T.P.	
Q.12	The molecular formula of mass of M is approximation of M is approx	of certain compound is M ately -	I_4O_6 . If 18.88g of the comp	bound contains 10 g of M, the atomic
	[1] 40 g	[2] 54 g	[3] 27 g	[4] 12 g

Q.13	C-12 and C-14 isotope in 12 g of the sample w	es are found as 98% and 2 rill be -	2% respectively in any san	nple. Then, the number C–14 atoms
	[1] 1.5 moles atoms	[2] 1.032 × 10 ²² atoms	[3] 2.06 × 10 ²¹ atoms	[4] 2g atom
Q.14	The mole fraction of so	lute in 1 molal aqueous s	olutions is -	
	[1] 0.0176	[2] 1.8	[3] 0.05	[4] 0.98
Q.15	510mg of a liquid on vap weight of liquid is -	porization in victor Mayer's	apparatus displaces 67.2	2ml of dry air (at NTP). The molecular
	[1] 130	[2] 17	[3] 1700	[4] 170
Q.16	What will be present in	the solution when 50ml.	of 0.1(M) HCl is mixed wit	h 50ml. of 0.1(M) NaOH.
	[1] 4.5 mol of H ⁺	[2] 0.05 mol of OH-	[3] 0.05M. NaCl	[4] 6M H ⁺
Q.17	0.2 mole of HCl and 0. molarity of the Cl ⁻ ions	1 mole of barium chloride s is -	e were dissolved in water	to produce a 500 mL solution. The
	[1] 0.06M	[2] 0.09M	[3] 0.12M	[4] 0.80M
Q.18	8 litre of H_2 and 6 litre of mixture. Suppose P and	Cl ₂ are allowed to react to d T remains constant thro	maximum possible extent oughout the course of read	. Find out the final volume of reaction ction.
	[1] 7 litre	[2] 14 litre	[3] 2 litre	[4] None
Q.19	0.59g of a dibasic acid i	s completely neutralized b	by 100 c.c of $\frac{N}{10}$ NaOH so	plution. What is the molecular weight
	of the acid -			
	[1] 59	[2] 118	[3] 29.5	[4] 11.8
Q.20	0.84g of metal carbona	te reacts completely with	40ml of $\frac{N}{2}H_2SO_4$. What	is the equivalent weight of the metal
	carbonate is -			
	[1] 20	[2] 12	[3] 42	[3] 30
Q.21	10 Moles SO_2 and 15 m remaining moles of SO_2	holes O_2 were allowed to reprint a constraints of O_2 and O_2 respectively are O_2 .	eact over a suitable cataly -	st. 8 moles of SO_3 were formed. The
	[1] 2 mole, 11 mole	[2] 2 mole, 8 mole	[3] 4 mole, 5 mole	[4] 8 mole, 2 mole
Q.22	A metal oxide is reduct concluded that -	ed by passing H_2 gas. 3	.15g of oxide on complet	te reduction gives 1.05g metal. We
	[1] atomic weight of me	etal is 4	[2] equivalent weight of	metal is 8
	[3] equivalent weight of	metal is 4	[4] atomic weight of me	tal is 8
Q.23	A sample of calcium can of CO_2 will be obtained	rbonate is 80% pure. 25g o at NTP.	of this sample is treated w	ith excess of HCI. How much volume
	[1] 4.48 litre	[2] 5.6 litre	[3] 11.2 litre	[4] 2.24 litre
Q.24	In the electrolysis of H ₂ C under the same condition	D, 11.2 litre of H ₂ was libera on.	ated at cathode at NTP. Ho	bw much O_2 will be liberated at anode
	[1] 11.2 litre	[2] 22.4 litre	[3] 32g	[4] 5.6 litre
Q.25	A silver coin weighing 1 the silver (present as A was 14.35g. Calculate	1.34g was dissolved in n gNO ₃) was precipitated a the percentage of silver ir	itric acid. When sodium c s silver chloride. The weig n the coin,	hloride was added to the solution all ght of the precipitated silver chloride
	[1] 4.8%	[2] 95.2%	[3] 90%	[4] 80%
Q.26	Cyclohexanol is dehydr much cyclohexene will	ated to cyclohexene on he be obtained from 100g of	eating with conc. H_2SO_4 . If cyclohexanol.	f the yield of this reaction is 75% how
	[1] 61.5g	[2] 16.5g	[3] 6.15g	[4] 615g

Q.27	1g metal carbonate req metal carbonate -	uires 200ml of 0.1 N HCl	for complete neutralizati	on. What is the equivalent weight of
	[1] 50	[2] 40	[3] 20	[4] 100
Q.28	When excess of CaCO (at N.T.P) what is norm	₃ is treated with 100 ml of ality of HCl -	HCl solution, the CO_2 ga	s obtained was found to be 1.12 liter
	[1] 0.2N	[2] 1N	[3] 0.1N	[4] 2N
Q.29	3.92g ferrous ammoniu	m sulphate (FAS) consur	mes 50 ml of $\frac{N}{10}$ KMnO ₄ .	What is the percentage purity of the
	sample of FAS-			
	[1] 50%	[2] 78.4%	[3] 80%	[4] 39.2%
Q.30	1.7g of ammonium salt	was treated with excess o	f NaOH. The ammonia rel	eased in the process neutralizes 100
	c.c. solution of $\frac{N}{5}H_2SC$	$\mathbf{D}_{_{\! 4}}$. What is the percentage	e of ammonia in the salt -	
	[1] 17%	[2] 20%	[3] 25%	[4] 34%
Q.31	What will be the molecu	ular weight of the gas who	ose density is 0.55 g/litre	at 27ºC and 600 mm pressure
	[1] 0.27g mole ⁻¹	[2] 17.16g mole ⁻¹	[3] 27.0g mole ⁻¹	[4] 32.32g mole ⁻¹
Q.32	The mass of oxygen that	at would be required to pr	oduce enough CO which	completely reduces 1.6kg Fe_2O_3 (at
	mass of Fe=56) is -			
	[1] 240g	[2] 480g	[3] 720g	[4] 960g
Q.33	In an experiment 10ml AgCl, excess of HCl is ti	of AgNO ₃ (0.1N) solution trated with decinormal Na	is added to 20ml of decir aOH solution. What is the	normal HCI. After the precipitation of volume of NaOH used in the titration-
	[1] 10ml	[2] 20ml	[3] 5ml	[4] 30ml
Q.34	A bottle of commercial s the acid -	sulphuric acid (density 1.7	787g/ml.) is labelled as 86	5% by weight. What is the molarity of
	[1] 1.717 × 86 × 1000/1	00	[2] 1.787 × 86 × 1000/1	00 × 49
	[3] 1.787 × 86 × 1000/1	00 × 98	[4] None	
Q.35	250ml of the solution co complete neutralization	ontains 7.35g of dibasic ac Equivalent and molecula	cid 25ml of this solution re ar weight of acid would be	quires 15ml of N- NaOH solution for respectively -
	[1] 49, 98	[2] 63, 126	[3] 32, 64	[4] 50, 100
Q.36	Review the following rea	actions -		
	(i) $CaC_2 + H_2O \rightarrow CaO_2$	$O + C_2H_2; \qquad ($	ii) $C_2H_2 + H_2 \rightarrow C_2H_4$;	(iii) $nC_2H_4 \rightarrow (C_2H_4)_n$
	What is the weight of po	blyethene obtained from 1	10kg CaC ₂ -	
	[1] 4.375kg	[2] 10kg	[3] 15kg	[4] 20kg
Q.37	1000g aqueous solution	n of CaCO ₃ contains 10g	of calcium carbonate. Co	ncentration of the solution is-
	[1] 10 ppm	[2] 100 ppm	[3] 1000 ppm	[4] 10,000 ppm
Q.38	Which of the following (mol. wt. of NaCI=58.5)	should be done in order -	to prepare 0.40 M NaCl	starting with 100ml of 0.30 M NaCl
	[1] Add 5.85g NaCl	[2] Add 20ml water	[3] Add 0.10ml NaCl	[4] Evaporate 10ml water
Q.39	A certain aqueous solu Molar concentration of	tion of FeCl ₃ (formula ma this solution is -	ss =162) has a density o	f 1.1g/ml and contains 20.0% FeCl. $_3$
	[1] 0.028	[2] 0.163	[3] 1.35	[4] 1.47

Q.40	An ore contains 1.34% processed in order to o	of the mineral argentite, A btain 1.00g of pure silver.	Ag ₂ S, by weight. How mai (Ag) -	ny grams of this ore would have to be
	[1] 74.6g	[2] 85.7g	[3] 107.9g	[4] 134.0g
Q.41	The density of liquid eth what volume of ethanol	anol is 0.7893g mL ⁻¹ at 20 should be measured out	°C. If 1.2 mol of ethanol a	re needed for a particular experiment,
	[1] 55 ml	[2] 58 ml	[3] 70 ml	[4] 79 ml
Q.42	An isotope of the elem dredth part of it change one day from one millig	ent polonium, of atomic r s into an inactive isotope (ram of ²¹⁰ Po -	nass 210, is strongly rad of lead. Approximately, he	lioactive and each day one two hun- ow many atoms of lead are formed in
	[1] 1.5×10^{16}	[2] 3 × 10 ¹⁸	$[3] 1.23 \times 10^{19}$	[4] 1.2 × 10 ²²
Q.43	If human blood contain	s 195 mg/ml of K+ ion; the	e molarity of the solution	is -
	[1] $\frac{195 \times 1000}{39}$	$[2] \frac{195 \times 10^{-3} \times 10^{3}}{39}$	$[3] \frac{195 \times 10^{-3} \times 10^{3}}{38}$	[4] $\frac{195 \times 1000}{38}$
Q.44	The most abundant elemocean is 1.4×10^{21} L. Ho 1gm/cc)	ment dissolved in sea wate ow many g atoms of CI are	er is Cl at a conc. of 19 g/k potentially available fror	kg of sea water. The volume of earth's n the oceans. (density of sea water is
	$[1] 7.6 \times 10^{20}$	[2] 27 × 10 ²¹	[3] 27 × 10 ²⁴	[4] 96 × 10 ²³
Q.45	100ml of 0.3N HCl solu final solution -	ition is mixed with 200ml	of 0.6N H_2SO_4 solution.	What is the normality of H_2SO_4 in the
	[1] 0.9	[2] 0.6	[3] 0.5	[4] 0.4
Q.46	If LPG cylinder contains combustion of 1kg of it	s mixture of butane and iso will be -	obutane, then the amoun	t of oxygen that would be required for
	[1] 1.8 kg	[2] 2.7 kg	[3] 4.5 kg	[4] 3.58 kg
Q.47	4.0 g of caustic soda (n	nolecular mass = 40) con	tains same number of so	odium ions as are present in -
	[1] 10.6g of Na_2CO_3 (m	nolecular mass = 106)	[2] 58.5 g of Na	aCl (formula mass 58.5)
	[3] 100 ml of 0.5 M Na ₂	SO_4 (Formula mass 142)	[4] 1gm-equiva	lent of NaNO ₃ (equivalent mass 85)
Q.48	W ₁ g of an element com	bines with oxygen formin	$g W_2 g$ of its oxide. The equation $g W_2 g$ of its oxide.	quivalent weight of the element is
	$[1] \left[\frac{W_1}{W_2} \right] \times 8$	$[2] \left[\frac{W_1}{W_2 - W_1} \right] \times 8$	$[3]\left[\frac{W_2 - W_1}{W_1}\right] x 8$	$[4] \left[\frac{W_1}{W_1 - W_2} \right] \times 8$
Q.49	20g of an acid furnishes	0.5 moles of $H_{3}O^{+}$ ions in	its aqueous solution. The	e value of 1g equivalent of the acid will
	be-			
	[1] 40g	[2] 20 g	[3] 10 g	[4] 100 g
Q.50	One mole of chlorine co metal can displace 2g o	ombines with certain weig of hydrogen from an acid.	ght of a metal giving 111g The atomic weight of the	g of its chloride. The same amount of e metal is -
	[1] 40	[2] 20	[3] 80	[4] none
Q.51	Out of 1.0g dioxygen, contained in -	1.0 (atomic) oxygen and	1.0g of ozone, the max	imum number of oxygen atoms are
	[1] 1.0 g of atomic oxyg	gen	[2] 1.0g of ozone	
	[3] 1.0g of oxygen gas		[4] All contains same n	umber of atoms
Q.52	40 g of calcium carbon amount of $CaCO_3$ unread	ate was treated with 48 g acted is	of HCI. If the acid used w	vas only of 30% strength. The
	[1] 30 g	[2] 20 g	[3] 32 g	[4] 17 g

Q.53	Haemoglobin contains The number of iron atom	0.33 % of iron by weigth. ms (atomic weight of Fe i	The molecular weight of h s 56 amu) present in one r	aemoglobin is approximately 67200 molecule of haemoglobin is
	[1] 2	[2] 5	[3] 4	[4] 3
Q.54	The impure 7 g of NaCl of precipitate of silver c	is dissolved in water and hloride is found to be14 g	l then treated with excess 9. The % purity of NaCl sol	of silver nitrate solution. The weight ution would be-
	[1] 81.5 %	[2] 83 %	[4] 93 %	[4] 77 %
Q.55	KMnO ₄ reacts with oxa	lic acid according to the	reaction	
	2KMnO₄ ⁻ + 5C	$_{2}O_{4}^{2-}$ + 16H ⁺ \rightarrow 2Mn ²⁺ +	- 10CO ₂ ↑ + 8H ₂ O	
	Then, 20 ml of 0.1 M Kl	MnO ₄ is equivalent to		
	[1] 30 ml of 0.5 M C ₂ H ₂	O ₄ (Oxalic acid)	[2] 50 ml of 0.1 M C ₂ H ₂ C	D_4 (Oxalic acid)
	[3] 20 ml of 0.5 M C ₂ H ₂	O ₄ (Oxalic acid)	[4] 10 ml of 0.1 M C ₂ H ₂ C	D_4 (Oxalic acid)
Q.56	The percentage of Se in Then, the minimum mo atom of Se is	n peroxidase anhydrous lecular weight of peroxida	enzyme is 0.5 % by weigh ase anhydrous enzyme wł	t (atomic weight of Se=78.4 amu). hich containing not more than one
	[1] 1.568 x 10⁴	[2] 1.568 x 10 ⁷	[3] 1.568 x 10 ³	[4] 1.568 x 10 ⁶
Q.57	In the following reaction	$4NH_{3}(g) + 5O_{2}$	$(g) \rightarrow 4NO(g) + 6H_2O(l)$	•
	when 1 mole of ammon	hia and 1 mole of O_2 are m	nixed. Then	ク
	[1] 0.2 mole of H_2O is p	roduced	[2] 0.1 mole of NO is pro	oduced
	[3] all the oxygen will be	e consumed		
	[4] all the ammonia will	be consumed in order to	form 1 mole NO	
Q.58	1.12 mL of a gas is prod CH_3MgI . The molecular	duced at STP by the action r mass of alcohol (in amu	on of 4.12 mg of alcohol (F) is	ROH) with Grignard's reagent
	[1] 16.0	[2] 41.2	[3] 82.4	[4] 156.0
Q.59	The equivalent weight chloride is 59.50?	of an element is 4 amu. V	Vhat is the valency of the e	element, if the vapour density of its
	[1] 5	[2] 2	[3] 3	[4] 4
Q.60	When a mixture consis SO_3 were formed at equivere.	ting of 10 moles of SO_2 a uilibrium. The number of	and 16 moles of O_2 were p moles of SO ₂ and O_2 whic	assed over a catalyst, 8 moles of h did not enter into the reaction
	[1] 2, 12	[2] 12,2	[3] 3, 10	[4] 10, 3
Q.61	When 3.92 gL ⁻¹ of a sa	mple of Mohr's salt react	s completely with 50 ml. 🖯	$\frac{N}{10}$ KMnO ₄ solution. The % purity of
	the sample of Mohr's s	alt is		
	[1] 50	[2] 70	[3] 37	[4] 40
Q.62	The number of equivale	ents of $Na_2S_2O_3$ required f	or the volumetric estimatio	on of one equivalent of Cu ²⁺ is
	[1] $\frac{1}{3}$	[2] 2	[3] $\frac{3}{2}$	$[4] \frac{2}{3}$
Q.63	An aqueous solution of required to completely	6.3 g of oxalic acid dihyc neutralise 10 ml of this s	drate is made upto 250 ml. olution is	The volume of 0.1 N NaOH
	[1] 40 ml	[2] 20 ml	[3] 100 ml	[4] 400 ml
Q.64	What is the molecular f	ormula of compound (ga	seous) of boron with hydro	ogen if mass of 1 L of this
	compound (gas) is equ	al to the mass of 1 L of N	I_2 and the boron content in	the compound is 78.2%?
	[1] BH ₃	$[2] B_{2}H_{6}$	[3] B ₃ H ₈	[4] B ₄ H ₁₀

will

Q.65 A gaseous mixture of propane and butane of volume 3 L on complete combustion produces 10 L of CO₂ under standard conditions of temperature and pressure. The ratio of volume of propane to butane is

[1] 1:2	[2] 2:1	[3] 3:2	[4] 3:1

Q.66 The molecular mass of K₂Cr₂O₇ is 294 amu. It acts as an oxidising agent in acidic medium. Its equivalent weigth in acidic medium would be

[1]
$$N = \frac{M}{3}$$
 [2] $N = M$ [3] $N = \frac{M}{6}$ [4] $N = \frac{M}{5}$
Q.67 For preparing 1 M solution of a compound from its impure sample, the weight of the substance required will be
[1] more than the theoretical weight [2] less than the theoretical weight
[3] equal to the theoretical weight [4] less or equal to the theoretical weight
[4] less or equal to the theoretical weight
Q.68 A solution of 10 mL of $\frac{M}{10}$ FeSO₄ was titrated with KMnO₄ solution in acidic medium, the amount of KMnO₄
used will be
[1] 10 mL of 0.5 M [2] 10 mL of 0.1 M [3] 5 mL of 0.1 M [4] 10 mL of 0.02 M
Q.69 When potassium permanganate is titrated against ferrous ammonium sulphate in acidic medium, the
equivalent weight of potassium permanganate is
[1] $\frac{\text{molecular weight}}{3}$ [2] $\frac{\text{molecular weight}}{5}$ [3] $\frac{\text{molecular weight}}{2}$ [4] $\frac{\text{molecular weight}}{10}$
Q.70 Chlorine gas can be produced by reacting sulphuric acid with a mixture of MnO₂ and NaCl. The reaction
follows the equation $2NaCl + MnO + 3H SO \rightarrow 2NaHSO + MnSO + Cl + 2H O$

 $O_4 \rightarrow 2NaHSO_4 + MnSO_4 + Cl_2 + 2H_2O_4$ follows the equation NO2 + 3H2⊃ What volume of chlorine can be produced from 1 g of sodium chloride under standard conditions of temperature and pressure ?

[2] 19.15 L [3] 20.22 L [1] 1.915 L [4] 0.191 L MMM. Heel

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
1	3	2	2	3	4	4	4	3	2	3	3	2	1	4	3	4	2	2	3
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
1	3	1	4	2	1	3	2	1	2	2	2	1	3	1	1	4	1	3	2
41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
3	1	2	1	4	4	3	3	1	1	4	2	3	1	2	1	3	3	3	1
61	62	63	64	65	66	67	68	69	70							-			
1	2	1	2	2	3	1	4	2	4										
	1 21 1 41 3 61	1 2 1 3 21 22 1 3 41 42 3 1 61 62 1 2	1 2 3 1 3 2 21 22 23 1 3 1 41 42 43 3 1 2 61 62 63 1 2 1	1 2 3 4 1 3 2 2 21 22 23 24 1 3 1 4 41 42 43 44 3 1 2 1 61 62 63 64 1 2 1 2	1 2 3 4 5 1 3 2 2 3 21 22 23 24 25 1 3 1 4 2 1 3 1 4 2 41 42 43 44 45 3 1 2 1 4 61 62 63 64 65 1 2 1 2 2	1 2 3 4 5 6 1 3 2 2 3 4 21 22 23 24 25 26 1 3 1 4 2 1 41 42 43 44 45 46 3 1 2 1 4 4 61 62 63 64 65 66 1 2 1 2 3 3	1 2 3 4 5 6 7 1 3 2 2 3 4 4 21 22 23 24 25 26 27 1 3 1 4 2 1 3 41 42 43 44 45 46 47 3 1 2 1 4 3 61 62 63 64 65 66 67 1 2 1 2 3 1 3 3 61 62 63 64 65 66 67 1 2 1 2 3 1 3	1 2 3 4 5 6 7 8 1 3 2 2 3 4 4 4 21 22 23 24 25 26 27 28 1 3 1 4 2 1 3 2 41 42 43 44 45 46 47 48 3 1 2 1 4 3 3 61 62 63 64 65 66 67 68 1 2 1 2 3 1 4 4 3 3	1 2 3 4 5 6 7 8 9 1 3 2 2 3 4 4 4 3 21 22 23 24 25 26 27 28 29 1 3 1 4 2 1 3 2 1 41 42 43 44 45 46 47 48 49 3 1 2 1 4 4 3 3 1 61 62 63 64 65 66 67 68 69 1 2 1 2 3 1 4 2 3 3 1	1 2 3 4 5 6 7 8 9 10 1 3 2 2 3 4 4 4 3 2 21 22 23 24 25 26 27 28 29 30 1 3 1 4 2 1 3 2 1 2 21 22 23 24 25 26 27 28 29 30 1 3 1 4 2 1 3 2 1 2 41 42 43 44 45 46 47 48 49 50 3 1 2 1 4 4 3 3 1 1 61 62 63 64 65 66 67 68 69 70 1 2 1 2 2 3 1 4 2 4	1 2 3 4 5 6 7 8 9 10 11 1 3 2 2 3 4 4 4 3 2 3 21 22 23 24 25 26 27 28 29 30 31 1 3 1 4 2 1 3 2 2 3 1 3 1 4 2 1 3 2 1 2 2 41 42 43 44 45 46 47 48 49 50 51 3 1 2 1 4 3 3 1 1 4 61 62 63 64 65 66 67 68 69 70 1 2 1 2 3 1 4 2 4	1 2 3 4 5 6 7 8 9 10 11 12 1 3 2 2 3 4 4 4 3 2 3 3 1 3 2 2 3 4 4 4 3 2 3 3 21 22 23 24 25 26 27 28 29 30 31 32 1 3 1 4 2 1 3 2 1 32 2 2 2 2 1 3 1 4 2 1 3 2 1 2 2 2 2 41 42 43 44 45 46 47 48 49 50 51 52 3 1 2 1 4 4 3 3 1 1 4 2 61 62 63 64 65 66 67 68 69	1 2 3 4 5 6 7 8 9 10 11 12 13 1 3 2 2 3 4 4 4 3 2 3 3 2 21 22 23 24 25 26 27 28 29 30 31 32 33 1 3 1 4 2 1 3 2 1 33 2 1 33 2 33 3 2 1 3 1 4 2 1 3 2 1 2 29 30 31 32 33 1 3 1 4 2 1 3 2 1 2 2 2 1 41 42 43 44 4 3 3 1 1 4 2 3 3 1 2 1 4 4 3 3 1 1 4 2 3	1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 3 2 2 3 4 4 4 3 2 3 3 2 1 1 3 2 2 3 4 4 4 3 2 3 3 2 1 21 22 23 24 25 26 27 28 29 30 31 32 33 34 1 3 1 4 2 1 3 2 1 2 2 2 1 3 1 3 1 4 2 1 3 2 1 2 2 2 1 3 41 42 43 44 45 46 47 48 49 50 51 52 53 54 3 1 2 1 4 4 3 3 1 1 4	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 3 2 2 3 4 4 4 3 2 3 3 2 1 4 1 3 2 2 3 4 4 4 3 2 3 3 2 1 4 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 1 3 1 4 2 1 3 2 1 3 3 1 4 3 3 1 2 2 2 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 1 3 1 3 1 3 1 3 1 <	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 3 2 2 3 4 4 4 3 2 3 3 2 1 4 3 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 1 3 1 4 2 1 3 2 1 33 34 35 36 1 3 1 4 2 1 3 2 1 2 2 1 33 34 35 36 1 3 1 4 2 1 3 2 1 2 2 1 3 31 1 1 41 42 43 46 47 48 49 50 51 52 53 54 55 56 3	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 1 3 2 2 3 4 4 4 3 2 3 3 2 1 4 3 4 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 1 3 1 4 2 1 3 2 1 32 33 34 35 36 37 1 3 1 4 2 1 3 2 1 32 33 34 35 36 37 1 3 1 4 4 3 2 1 2 55 56 57 3 1 2 1 4 4 3 3 1 1 4 2 3 1 2 1 3	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1 3 2 2 3 4 4 4 3 2 3 3 2 1 4 3 4 2 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 1 3 1 4 2 1 3 2 1 3 34 35 36 37 38 1 3 1 4 2 1 3 2 1 3 34 35 36 37 38 1 3 1 4 2 1 3 2 1 3 31 1 4 1 41 42 43 46 47 48 49 50 51 52 53 <td< td=""><td>1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 1 3 2 2 3 4 4 4 3 2 3 3 2 1 4 15 16 17 18 19 1 3 2 2 3 3 2 3 3 2 1 4 3 4 2 2 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 1 3 1 4 2 1 3 2 1 2 2 2 1 33 34 35 36 37 38 39 1 3 1 4 2 1 2 2 1 33 1 1 2 2 3 1 2</td></td<>	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 1 3 2 2 3 4 4 4 3 2 3 3 2 1 4 15 16 17 18 19 1 3 2 2 3 3 2 3 3 2 1 4 3 4 2 2 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 1 3 1 4 2 1 3 2 1 2 2 2 1 33 34 35 36 37 38 39 1 3 1 4 2 1 2 2 1 33 1 1 2 2 3 1 2

Answer Key

Q.1	Avogadro numbers is	S -									
	[1] Number of atoms	in one gram of the eleme	ent								
	[2] Number of millilite	ers which one mole of a g	paseous substance occup	ies at N.T.P.							
	[3] Number of molec	ules present in one gram	molecular mass of a subs	stance							
	[4] All are correct				(IIT - 90)						
Q.2	The number of oxyge	en atoms in 4.4g of CO_2 is	s approximately -								
	[1] 1.2 x 10 ²³	[2] 6 x 10 ²²	[3] 6 x 10 ²³	[4] 12 x 10 ²³	(CPMT-90)						
Q.3	What is the volume s	strength of 1.5 N H_2O_2 -			(I.I.T. 1991)						
	[1] 4.8	[2] 8.4	[3] 3.0	[4] 8.0							
Q.4	What would be the c sodium oxalate -	oncentration and volume	e of KMnO ₄ required for the	e complete reactio	n with 10mL of 0.1M (P.E.T. 1991)						
	[1] 0.05M of 8mL	[2] 0.10M of 20mL	[3] 0.05M of 10mL	[4] 0.05M of 20	DmL						
Q.5	The volume of 1.0 g	of Hydrogen in liters at N	.T.P. is -	\mathbf{C}							
	[1] 2.24	[2] 22.4	[3] 1.12	[4] 11.2	(CPMT -91)						
Q.6	0.84g of metal carbon be -	nate was completely neut	tralized by 40mL of N/2 H $_2$	SO_4 . The equivaler	nt weight of metal will (P.E.T. 1992)						
	[1] 84	[2] 42	[3] 12	[4] 30							
Q.7	The total number of p	protons in 10g of calcium	carbonate is (N _A =6.023 x	1023)	(CPMT-92)						
	[1] 1.5057 x 10 ²⁴	[2] 2.0478 x 10 ²⁴	[3] 3.0115 x 10 ²⁴	[4] 4.0956 x 10)24						
Q.8	360g of water is present in a one L mixture of ethanol and water. Molarity of water in the mixture is -										
	[1] 20.0	[2] 36.0	[3] 18.0	[4] None of the	ese (C.P.M.T. 1993)						
Q.9	The number of mole	s of oxygen in 1L of air co	ontaining 21% oxygen by v	olume, in standard	d conditions, is-						
	[1] 0.186 mol	[2] 0.21 mol	[3] 2.10 mol	[4] 0.0093 mol	(CPMT-95)						
Q.10	What volume of 0.1M	$I H_2 SO_4$ is needed to con	npletely neutralize 40mL o	f 0.2M NaOH solu	tion -						
	[1] 10mL	[2] 40mL	[3] 20mL	[4] 80 mL	(C.P.M.T. 1995)						
Q.11	What is the molarity	of H ₂ SO ₄ solution that ha	as a density 1.84 g/cc at 3	5°C and contains	98% by weight-						
	[1] 4.18M	[2] 8.14M	[3] 18.4M	[4] 18M	(C.B.S.E. 1996)						
Q.12	10 volume H_2O_2 mea	ins -			(C.P.M.T. 1996)						
	[1] 3%	[2] 5%	[3] 7%	[4] 9%							
Q.13	The amount of zinc r	equired to produce 224m	nL of H ₂ at STP on treatme	ent with dilute H ₂ SC	D_4 will be -						
	[1] 0.65g	[2] 6.5g	[3] 65g	[4] 0.065g	(C.B.S.E. 1996)						
Q.14	Number of electrons	present in 1.6g methane	would be-		(P.M.T. 1996)						
	[1] 1.6 N _A	[2] 0.1 N _A	[3] 1 N _A	[4] 16 N _A							
Q.15	Density of methane a	at 25°C and 6 atmospher	ic pressure would be (R =	0.082 L atm) -	(C.P.M.T. 1997)						
	[1] 4g/L	[2] 8g/L	[3] 12g/L	[4] 16g/L							
Q.16	For the complete neu [1] 0.45g	utralization of 100mL. of 0. [2] 0.90g	2N NaOH, what weight of [3] 1.08g	hydrated oxalic aci [4] 1.26g	d would be required- (MP P.M.T. 1997)						
Q.17	250mL (6M HNO ₃) a the volume of water r	nd 350mL (8M HNO $_3$) are required to be added -	e mixed to make the streng	gth of the resulting	solution 3N, what is (P.E.T. 1998)						
	[1] 833.3mL	[2] 933.3mL	[3] 1000mL	[4] 500mL							
Q.18	200mL of a solution of	contains 5.85g dissolved	sodium chloride. The con	centration of soluti	on would be -						
	[1] 1 Molar	[2] 2 Molar	[3] 0.5 Molar	[4] 0.25 Molar	(MP P.M.T. 1998)						

Exercise # 3

Q.19	$50 \text{mL } 10 \text{N H}_2 \text{SO}_4$, 25 mL 12 N HCl and 40 mL 5 N HNO ₃ were mixed together and the volume of the mixture was made 1000 mL by adding water. The normality of the resultant solution will be - (MP P.M.T. 1998)											
	[1] 1N	[2] 2N	[3] 3N	[4] 4N								
Q.20	The number of molecu	lles in 16g methane is -			(MP P.M.T. 1998)							
	[1] 3.0 x 10 ²³	[2] 6.02 x 10 ²³	$[3] \frac{16}{6.02} \times 10^{23}$	$[4] \ \frac{16}{3.0} \times 10^{23}$								
Q.21	What is the mole fraction	on of acetone for a solution	on containing 2.8 mole ac	etone and 8.2 mc	ble chloroform -							
	[1] 0.20	[2] 0.350	[3] 0.255	[4] 0.10	(P.E.T. 1998)							
Q.22	The number of moles	of 500 cm³ of hydrogen ga	as at 760 mm pressure an	d 300 K temperat	ture are -							
	[1] 20.3 x 10 ⁻²	[2] 2.03 x 10 ⁻²	[3] 203 x 10 ⁻²	[4] None	(P.E.T. 1998)							
Q.23	If 1kg of common salt sugar -	costs Rs. 7 and 1 kg of su	gar costs Rs. 14. What w	ould be the cost c	of 1 mole of salt and (P.E.T. 1998)							
	[1] Both will have the s	same cost										
	[2] The cost of sugar v	vill be half the cost of salt										
	[3] The cost of sugar v	vill be more than that of th	ne salt									
	[4] The cost of sugar will be twice the cost of salt 0.5 Faraday of electricity was passed through NaCl solution. The quantity of chlorine liberated would be											
Q.24	0.5 Faraday of electric	ity was passed through N	aCl solution. The quantity	of chlorine libera	ated would be -							
	[1] 71g	[2] 35.5g	[3] 17.75g	[4] 53.0g	(P.E.T. 1999)							
Q.25	Pressure in a mixture	of 4g of O_2 and 2g of H_2 co	onfined in a bulb of 1L at ()°C is -	(A.I.I.M.S. 1999)							
	[1] 15.210 atm [2] 25.215 atm		[3] 31.205 atm	[4] 45.215 atm								
Q.26	The weight of a molec	ule of the compound $C_{_{60}}H$	₂₂ is -		(A.I.I.M.S. 1999)							
	[1] 1.09 × 10 ⁻²¹ g	[2] 1.24 × 10 ⁻²¹ g	[3] 5.025 × 10 ²³ g	[4] 16.023 × 10	²³ g							
Q.27	Haemoglobin of a bloc 67000. What is the nu	d corpuscle contains 0.33 mber of iron atoms preser	3% iron. The molecular we nt in each molecule of hae	eight of haemoglo emoglobin -	bin was found to be (MP P.E.T. 2000)							
	[1] 2	[2] 3	[3] 4	[4] 5								
Q.28	12g of alkaline earth n	netal gives 14.8g of its nit	ride. Atomic weight of me	tal is -	(A.I.I.M.S. 2000)							
	[1] 12	[2] 20	[3] 40	[4] 14.8								
Q.29	Volume of CO ₂ obtained	ed by the complete decom	position of 9.85 g $BaCO_3$	is-								
	[1] 2.24L	[2] 1.12L	[3] 0.84L	[4] 0.56L	(CPMT-2000)							
Q.30	The number of ions pe	r mole of a complex (CoC	$I_2.5NH_3$) in aqueous soluti	on will be-								
	[1] NIne	[2] Four	[3] Three	[4] Two	(MP PET-2000)							
Q.31	An aqueous solution o solution is-	f 6.3g oxalic acid dihydrat	e is made up to 250mL. T	he volume of 0.11	N NaOH required to (I.I.T Scr. 2001)							
	[1] 40mL	[2] 20mL	[3] 10mL	[4] 4mL								
Q.32	Specific volume of cyl tively. If $N_A = 6.02 \times 10^{-10}$	indrical virus particle is 6.0 ²³ . Then find molecular ma	02 x 10 ⁻² cc/g. whose rad ass of virus -	ius and length are	e 7Å & 10Å respec- (C.B.S.E. 2001)							
	[1] 15.4 kg/mol		[2] 1.54 × 10⁴ kg/mol									
	[3] 3.08 × 10 ⁴ kg/mol		[4] 3.08 × 10 ³ kg/mol									
Q.33	2.5L NaOH of 1M sol solution-	ution is mixed with 3L N	aOH of 0.5 M solution. V	What is the mola	rity of the resulting (C.B.S.E. 2002)							
		101 4 0 14										

(IIT Scr. 2002)

Q.34 How many moles of electrons weigh one kilogram :

	[1] 6.02 × 10 ²³	$[2] \frac{1}{9.108} \times 10^{31}$	$[3] \ \frac{6.023}{9.108} \times 10^{54}$	$[4] \ \frac{1}{9.108} \ \times \ \frac{10}{6.00}$) ⁸ 02					
Q.35	MnO_4^{-2} (1 mole) in neutr	al aqueous medium dispi	oportionate to :		(AIIMS 2003)					
	[1] 2/3 mole of MnO_4^{-1} a	nd 1/3 mole of MnO ₂	[2] 1/3 mole of MnO_4^{-1} a	nd 2/3 mole of Mr	nO ₂					
	[3] 1/3 mole of Mn_2O_7 ar	nd 2/3 mole of MnO_2	[4] 2/3 mole of Mn_2O_7 ar							
Q.36	25 mL of a solution of Ba of barium hydroxide solu	a(OH) ₂ on titration with a (ution was :	0.1 M solution of HCl gave	e a titre value of 3	5 mL. The molarity (AIEEE 2003)					
	[1] 0.07	[2] 0.14	[3] 0.28	[4] 0.35						
Q.37	To neutralize completely aqueous KOH solution r	y 20 mL of 0.1 M aqueou equired is :	is solution of phosphorus	acid (H ₃ PO ₃), th	e volume of 0.1 M (AIEEE 2004)					
	[1] 60 mL	[2] 20 mL	[3] 40 mL	[4] 10 mL						
Q.38	The vapour pressure of t obtained by mixing 3 mc	wo liquids P and Q are 80 ble of P and 2 mole of Q v	and 60 torr respectively. ⁻ vould be—	The total vapour p	ressure of solution (CPMT 2005)					
	[1] 72 torr [2] 140 torr		[3] 68 torr	[4] 20 torr						
Q.39	The mole fraction of the	solute in one molal aque	ous solution is–		(CPMT 2005)					
	[1] 0.009	[2] 0.018	[3] 0.027	[4] 0.036						
Q.40	Two solutions of a subst	ance (non electrolyte) are	e mixed in the following m	anner.480 ml of 2	1.5M first solution					
	+ 520 ml of 1.2 M secor	nd solution. What is the m	nolarity of the final mixture	e?	(AIEEE 2005)					
	[1] 1.20M	[2] 1.50M	[3] 1.344M	[4] 2.70M						
Q.41	If we consider that 1/6, mass of one mole of a s	in place of 1/2, mass of c ubstance will–	arbon atom is taken to b	e the relative ato	mic mass unit, the (AIEEE 2005)					
	[1] decrease twice		[2] increase two fold							
	[3] remain unchanged		[4] be a function of the molecular mass of the substance							
Q.42	How many moles of mag	ole of oxygen ato	ms–							
					(AIEEE 2006)					
	[1] 1.25 x 10 ⁻²	[2] 2.5 x 10 ⁻²	[3] 0.02	[4] 3.125 x 10 ⁻²						
Q.43	Density of a 2.05M solu	tion of acetic acid in wate	er is 1.02g/mL. The molal	ity of the solution	is–					
					(AIEEE 2006)					
	[1] 2.28 mol kg ⁻¹	[2] 0.44 mol kg ⁻¹	[3] 1.14 mol kg ⁻¹	[4] 3.28 mol kg [_]	1					

	Answer Key																			
Qus.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Ans.	3	1	2	1	4	3	3	1	4	2	3	1	1	3	1	2	1	3	1	2
Qus.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
Ans.	3	2	3	3	2	2	3	3	2	4	1	1	3	2	1	1	3	1	2	3
Qus.	41	42	43																	
Ans.	1	1	2		,			-					-	,	-					