Q. 1 The number of significant figures in the electrical charge 96500 are -
[1] three
[2] four
[3] five
[4] can be any of these
Q. 2 The number of significant figures in Avogadro's number, $\mathrm{N}_{0}=6.022 \times 10^{23}$ are -
[1] three
[2] four
[3] five
[4] can be any of these
Q. 3 The correctly reported answer of the addition of $142.138,3.214$ and 17 will be -
[1] 162.352
[2] 162.35
[3] 162.4
[4] 162
Q. 4 On dividing 0.366 by 12.523 , the actual answer is 0.029236 . The correctly reported answer will be -
[1] 0.02
[2] 0.029
[3] 0.0292
[4] 0.02924
Q. 5 Two students X and Y report the weight of the same substance as 12.0 g and 12.00 g respectively. Which of the following statements is correct?
[1] Both are equally accurate
[2] X is more accurate than Y
[3] Y is more accurate than X
[4] Both are inaccurate scientifically
Q. 6 Which of the following is correct?
[1] $1 \mathrm{dm}^{3}=10^{3} \mathrm{~cm}^{3}$
[2] $1 \mathrm{~L}=10 \mathrm{dm}^{3}$
[3] $1 \mathrm{dm}^{3}=10 \mathrm{~L}$
$[4] 1 \mathrm{~L}=1 \mathrm{~m}^{3}$
Q. 7 Planck's constant has a numerical value of 6.627×10^{-34} and the dimensions of
[1] force
[2] work
[3] angular momentum [4] torque
Q. $8 \quad 100 \mathrm{~g}$ sample of methyl alcohol contains 0.002 g of water. The amount of pure methyl alcohol in terms of significant figures is reported as -
[1] 99.998
[2] 99.99 g
[3] 99 g
[4] 100 g
Q. 9 The atmospheric pressure of one torr is equal to
[1] 1 cm of Hg
[2] 1 atm pressure
[3] 1 mm of Hg
[4] 1 m of Hg
Q. 10 The number of significant figures in $\frac{h}{2 \pi}$ are-
[1] three
[2] infinite number
3] zero
[4] one
Q. $11 \mathrm{~kg} \mathrm{~m}^{-1} \mathrm{~s}^{-2}$ is the unit of
[1] Momentum
[2] Velocity
[3] Pressure
[4] Acceleration
Q. 12 Acceleration is the increase in velocity of a body per unit time. The correct unit for it are -
[1] $\mathrm{N} \mathrm{kg}^{-1}$
[2] $\mathrm{m}^{2} \mathrm{~s}^{-2}$
[3] Jm^{-1}
[4] $\mathrm{kg} \mathrm{m}^{-3}$
Q. 13 Which of the following is not a unit of length/distance?
[1] Pico meter
[2] Light-year
[3] Meter
[4] Radian
Q. 14 Which of the following is not an element?
[1] Diamond
[2] Plastic sulphur
[3] Silica
[4] Graphite
Q. 15 Which one of the following processes results in the formation of a new chemical compound ?
[1] Dissolving common salt in water
[2] Sublimation of $\mathrm{NH}_{4} \mathrm{Cl}$
[3] Heating platinum rod
[4] Heating iron rod
Q. 16 Which one of the following statements is false ?
[1] An element of a substance contains only one kind of atoms
[2] A compound can be decomposed into its constituents
[3] Milk is a homogeneous mixture
[4] All homogeneous mixtures are called solutions
Q. 17 Which one of the following is not a mixture ?
[1] lodized table salt
[2] Gasoline
[3] Sugar dissolved in water
[4] Distilled water
Q. 18 Which one of the following is not a compound ?
[1] Marble
[2] Quicklime
[3] Carborundum
[4] Ozone
Q. 19 Divide a piece of ice into half. Divide it further and keep on dividing it many times. The smallest piece of ice that you can get by this division is -
[1] An atom
[2] A particle
[3] A crystal
[4] A molecule
Q. 20 Which law of chemical combination is illustrated by the following data? 0.5 g of lime stone on heating gave 0.28 g of calcium oxide and 112 mL of CO_{2} at S.T.P. ?
[1] Law of definite proportions
[2] Gay Lussac's
[3] Law of conservation of mass
[4] Law of multiple proportions
Q. 21 Which of the following best explains the law of conservation of mass ?
[1] No change in mass is observed when 2.0 g of Mg is heated in vacuum
[2] 1.2 g of carbon when burnt in excess of oxygen consumes only 3.2 g of it to form 4.4 g of carbon dioxide
[3] 12 g of carbon when heated in a limited supply of air produces only 20 g of carbon monoxide
[4] A sample of air on heating does not shown any change in mass but volume increases.
Q. 22 Two samples of sodium chloride are produced when sodium combines separately with two isotopes of chlorine ${ }^{35} \mathrm{Cl}$ and ${ }^{37} \mathrm{Cl}$. Which law is illustrated by the above facts ?
[1] Law of multiple proportions
[2] Law of reciprocal proportions
[3] Law of constant volumes
[4] None of the above
Q. 23 The percentage of hydrogen in water and hydrogen peroxide is 11.1 and 5.9% respectively. These figures illustrate -
[1] Law of multiple proportions
[2] Law of conservation of mass
[3] Law of reciprocal proportions
[4] Law of combining volumes
Q. 24 The balancing of chemical equation is based upon-
[1] Law of combining volumes
[2] Law of multiple proportions
[3] Law of conservation of mass
[4] Law of definite proportion
Q. 25 A balanced chemical equation is in accordance with -
[1] Avogadro's law
[2] Law of constant proportions
[3] Law of conservation of mass
[4] Law of gaseous volumes
Q. 26 Two gaseous samples were analyzed. One contained 1.2 g of carbon and 3.2 g of oxygen. The other contained 27.3% carbon and 72.7% oxygen. The experimental data are in accordance with -
[1] Law of conservation of mass
[2] Law of definite proportions
[3] Law of reciprocal proportion
[4] Law of multiple proportion
Q. 27 Nitrogen forms five stable oxides with oxygen of the formula, $\mathrm{N}_{2} \mathrm{O}, \mathrm{NO}, \mathrm{N}_{2} \mathrm{O}_{3}, \mathrm{~N}_{2} \mathrm{O}_{4}, \mathrm{~N}_{2} \mathrm{O}_{5}$. The formation of these oxides explains fully the -
[1] Law of definite proportions
[2] Law of partial pressures
[3] Law of multiple proportions
[4] Law of reciprocal proportions
Q. 281 L of N_{2} combines with 3 L of H_{2} to form 2 L of NH_{3} under the same conditions. This illustrates the -
[1] Law of constant composition
[2] Law of multiple proportions
[3] Law of reciprocal proportions
[4] Gay Lussac's law of gaseous volumes
Q. 29 Which one of the following represents Avogadro's hypothesis?
[1] Gases react together in volumes which bear a simple ratio to one another
[2] Equal volumes of all gases under same conditions of temperature and pressure contain equal number of molecules
[3] Equal volumes of all gases under same conditions of temperature and pressure contain equal number of atoms
[4] The rates of diffusion of gases are inversely proportional to the square root of their densities
Q. 30 Different proportions of oxygen in the various oxides of nitrogen prove the law of.
[1] Equivalent proportion
[2] Multiple proportion
[3] Constant proportion
[4] Conservation of matter
Q. 31 Hydrogen and oxygen combine to form $\mathrm{H}_{2} \mathrm{O}_{2}$ and $\mathrm{H}_{2} \mathrm{O}$ containing 5.93% and 11.2% hydrogen respectively. The data illustrates -
[1] Law of conservation of mass
[2] Law of constant proportions
[3] Law of reciprocal proportions
[4] Law of multiple proportions
Q. 32 If water samples are taken from sea, rivers, clouds, lake or snow, they were be found to contain H and O in the approximate ratio of $1: 8$. This indicates the law of -
[1] Multiple proportion
[3] Reciprocal proportion
[2] Definite proportion
[4] None of these
Q. 33 The law of multiple proportions is illustrated by -
[1] Carbon monoxide and carbon dioxide
[3] Water and heavy water
[2] Potassium bromide and potassium chloride
[4] Calcium hydroxide and barium hydroxide
Q. 34 Percentage of copper and oxygen in sample of CuO obtained by different methods were found to be same. This proves the law of-
[1] Constant proportion
[2] Multiple proportion
[3] Reciprocal proportion [4] None of these
Q. 35 The number of moles of KI required to produce 0.4 moles of $\mathrm{K}_{2} \mathrm{Hgl}_{4}$ by reaction with HgCl_{2} is -
[1] 0.4
[2] 0.8
[3] 3.2
[4] 1.6
Q. 36 The mass of nitrogen in 1 kg of ammonium nitrate is -
[1] 700 g
[2] $3.5 \times 10^{-1} \mathrm{~kg}$
[3] 350 g
[4] 35 g
Q. 37 Which of the following will not have a mass of 10 g -
[1] 0.1 mol of CaCO_{3}
[2] $1.51 \times 10^{23} \mathrm{Ca}^{2+}$ ions
[3] 0.016 mole of $\mathrm{CO}_{3}{ }^{2-}$
[4] 7.525×10^{23} atom of $\mathrm{Br}-$
Q. 38 If atomic mass of oxygen is taken as 100 , the molecular mass of water would be approximately -
[1] 6.25
[2] 112.5
[3] 102
[4] 106.25
Q. 39 Atomic mass of an element is -
[1] The actual mass of one atom of the element [2] The relative mass of an atom of the element
[3] The average relative mass of different atoms of the element
[4] much different from the mass number of the element
Q. 40 Which of the following statements is incorrect?
[1] One gram atom of nitrogen contains Avogadro's number of atoms
[2] One mole of ozone gas contains Avogadro's number of molecules
[3] One mole of ozone contains Avogadro's number of atoms
[4] One mole of electrons stands for 6.02×10^{23} electrons
Q. 41 One mole of nitrogen gas is the volume of -
[1] 1 litre of nitrogen at S.T.P. [2] 32 litres of nitrogen at S.T.P
[3] 22.4 litres of nitrogen atom S.T.P.
[4] 6.02×10^{23} molecules of oxygen at any temperature and pressure
Q. 42 Which of the following pairs contains equal number of atoms -
[1] 11.2 cc of nitrogen and 0.015 g of nitric oxide
[2] 22.4 litres of nitrous oxide and 22.4 litres of nitric oxide
[3] 1 millimole of HCl and 0.5 millimole of $\mathrm{H}_{2} \mathrm{~S}$
[4] 1 mole of $\mathrm{H}_{2} \mathrm{O}_{2}$ and 1 mole of $\mathrm{N}_{2} \mathrm{O}_{4}$
Q. 43 Which of the following has maximum mass ?
[1] 0.1 g atom of nitrogen
[2] 0.1 mol of ammonia
[3] 6.02×10^{23} molecules of helium gas
[4] 1120 cc of carbon dioxide
Q. 44 The mass of one amu is approximately -
[1] 1 g
[2] 0.5 g
[3] $1.66 \times 10^{-24} \mathrm{~g}$
[4] $3.2 \times 10^{-24} \mathrm{~g}$
Q. 45 Three flasks of equal volumes contain $\mathrm{CH}_{4}, \mathrm{CO}_{2}$ and Cl_{2} gases respectively. They will contain equal number of molecules if -
[1] the mass of all the gases is same
[2] the moles of all the gas is same but temperature is different
[3] temperature and pressure of all the flasks are same
[4] temperature, pressure, and masses are same in the flasks
Q. 46 Equal volumes of different gases at any definite temperature and pressure have -
[1] Equal atoms
[2] Equal masses
[3] Equal densities
[4] Equal molecules
Q. 47 Which one of the following statements is incorrect -
[1] Atoms of the same element may have different atomic weights
[2] Atoms can be created or destroyed
[3] Half of an atom can also take part in a reaction
[4] Elements can exist as atoms or molecules but compounds exist only as molecules
Q. 48 What is not correct regarding 22 g of CO_{2} ?
[1] It occupies always 11.2 L of volume at STP
[2] It corresponds to 1 g molecule of carbon dioxide
[3] It contains one g-atom of oxygen
[4] It contains 0.5 g -atom of carbon
Q. 49 Two flasks of equal capacity contain argon and chlorine gases respectively at room temperature. What is true about them ?
[1] Both contain same number of atoms
[2] Cl atoms are half of the Ar atoms
[3] Cl atoms are double the number of Ar atoms
[4] Chlorine molecules are double the number of argon molecules
Q. 50 Which of the following does not occupy a volume of 4.48 L at S.T.P.?
[1] 0.2 mol of H_{2}
[2] 12.8 g of SO_{2}
[3] 3.2 g of O_{2}
[4] 800 mg of He
Q. 51 The Milli-equivalents of $1.0 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ in 100 mL solution is -
[1] 10
[2] 100
[3] 1000
[4] 200
Q. 52 The number of molecules in one cm^{3} of oxygen gas at S.T.P. is found to be 2.6875×10^{19}. It is known as -
[1] Berzelius number
[2] Avogadro number
[3] Gay Lussac's number
[4] Loschmidt number
Q. 53 The product of atomic weight and specific heat of any element is constant which is approximately 6.4. This is known as -
[1] Newton's law
[2] Avogadro's law
[3] Dalton's law
[4] Dulong Petit's law
Q. 5420 litres of H_{2} gas at S.T.P. weigh about.
[1] 12.2g
[2] 448 g
[3] 1.8 g
[4] 20 g
Q. 55 Which of the following represents the formula of a substance which contains about 26% nitrogen and 74% oxygen.
[1] $\mathrm{N}_{2} \mathrm{O}$
[2] NO
[3] NO_{2}
[4] $\mathrm{N}_{2} \mathrm{O}_{5}$
Q. 56 The empirical formula of an organic compound containing carbon and hydrogen is CH_{2}. The mass of one litre of this organic gas is exactly equal to that of one litre of N_{2}. Therefore, the molecular formula of the organic gas is-
[1] $\mathrm{C}_{2} \mathrm{H}_{4}$
[2] $\mathrm{C}_{3} \mathrm{H}_{6}$
[3] $\mathrm{C}_{6} \mathrm{H}_{12}$
[4] $\mathrm{C}_{4} \mathrm{H}_{8}$
Q. 57 How many g of $\mathrm{H}_{2} \mathrm{SO}_{4}$ are present in 0.25 mole of $\mathrm{H}_{2} \mathrm{SO}_{4}$.
[1] 2.45
[2] 24.5
[3] 0.245
[4] 0.25
Q. 58 How many gram atoms of S are present in 80.25 g of S .
[1] 2.5
[2] 32
[3] 5
[4] 80.25×32
Q. 59 A sample of ammonium phosphate, $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}$, contains 3.18 mol of hydrogen atoms. The number of moles of oxygen atoms in the sample is -
[1] 0.265
[2] 0.795
[3] 1.06
[4] 3.18
Q. 60 The number of moles of BaCO_{3} which contains 1.5 moles of oxygen atoms is -
[1] 0.5
[2] 1
[3] 3
[4] 6.02×10^{23}
Q. 61 How many moles of potassium chlorate is to be heated to produce 11.2 litre oxygen.
[1] $\frac{1}{2} \mathrm{~mol}$
[2] $\frac{1}{3} \mathrm{~mol}$
[3] $\frac{1}{4} \mathrm{~mol}$
[4] $\frac{2}{3} \mathrm{~mol}$
Q. 62 For the reaction $A+2 B \rightarrow C, 5$ mole of A and 8 mole of B will produce -
[1] 5 mole of C
[2] 4 mole of C
[3] 8 mole of C
[4] 13 mole of C
Q. 63 Which one is a false statement
[1] 11.2 litre of a gas at NTP weight equal to vapour density
[2] 22.4 litre of water vapour at NTP when condensed gives 18 ml of liquid water
[3] 1 mole of H_{2} at NTP occupies 11.2 litres of volume
[4] 5.6 litre of oxygen at NTP is equivalent to 0.25 moles
Q. 64 Volume strength of $\mathrm{H}_{2} \mathrm{O}_{2}$ solution is equal to -
[1] Molarity $\times 5.6$
[2] Molarity $\times 11.2$
[3] Molarity $\times 2.8$
[4] Molarity $\times 8.4$
Q. 65 Equal weight of NaCl and KCl are dissolved separately in equal volumes of solutions. Molarity of the two solutions will be -
[1] Equal
[2] That of NaCl will be less than that of KCl
[3] That of NaCl will be more than that of KCl solution
[4] That of NaCl will be half of than that of KCl solution
Q. 66 How much water should be added to 200 cc of seminormal solution of NaOH to make it exactly decinormal -
[1] 1000 cc
[2] 400 cc
[3] 800 cc
[4] 600 cc
Q. 67 Molarity of 720 g of pure water -
[1] 40M
[2] 4 M
[3] 55.5 M
[4] Unpredictable
Q. 68 The number of moles of oxygen in one litre of air containing 21% oxygen by volume in standard condition is -
[1] 0.186 mole
[2] 0.21 Mole
[3] 2.10 mole
[4] 0.0093 mole
Q. 69 An elements X reacts with oxygen to form a compound $X_{2} O_{3}$. If the atomic mass of X is 91.5 , the equivalent mass of X is -
[1] 30.5
[2] 45.75
[3] 61.0
[4] 91.5
Q. 70 In m_{1} grams of a metal A displaces m_{2} gram of another metal B from its salt solution and if the equivalent weights are E_{1} and E_{2} respectively then the equivalent weight of A can be expressed by -
$[1] E_{1}=\frac{m_{1}}{m_{2}} \times E_{2}$
[2] $E_{1}=\frac{m_{2}}{m_{1}} \times E_{2}$
[3] $E_{1}=\frac{m_{1}}{E_{2}} \times m_{2}$
[4] $E_{1}=\sqrt{\frac{m_{1}}{m_{2}} \times E_{2}}$
Q. 71 The weight of two elements which combine with one another are in the ratio of their -
[1] atomic weight
[2] molecular weight
[3] gram mole
[4] equivalent weight
Q. 72 If law of conservation of mass was to hold true, then 20.8 g of BaCl_{2} on reaction with 9.8 g of $\mathrm{H}_{2} \mathrm{SO}_{4}$ will produce 7.3 g of HCl and BaSO_{4} equal to -
[2] 11.65 g
[2] 23.3 g
[3] 25.5 g
[4] 30.6 g
Q. 73 If a mixture containing 3 moles of hydrogen and 1 mole of nitrogen is converted completely into ammonia, the ratio of initial and final volumes under the same temperature and pressure would be-
[1] 3 : 1
[2] $1: 3$
[3] 2 : 1
[4] $1: 2$
Q. 7440 ml of $\mathrm{H}_{2} \mathrm{~S}$ and 40 ml of Cl_{2} are mixed together. The volume of the resulting gas at the same temperature and pressure will be -
[1] 40 ml
[2] 80 ml
[3] 120 ml
[4] 160ml
Q. 75 Calculate the weight of lime (CaO) obtained by heating 200 kg of 95% pure lime stone $\left(\mathrm{CaCO}_{3}\right)$
[1] 104.4 kg
[2] 105.4 kg
[3] 212.8 kg
[4] 106.4 kg

Answer Key

Qus.	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$	$\mathbf{1 5}$	$\mathbf{1 6}$	$\mathbf{1 7}$	$\mathbf{1 8}$	$\mathbf{1 9}$	$\mathbf{2 0}$
Ans.	4	2	4	3	3	1	3	3	3	2	2	1	4	3	4	3	4	4	4	3
Qus.	$\mathbf{2 1}$	$\mathbf{2 2}$	$\mathbf{2 3}$	$\mathbf{2 4}$	$\mathbf{2 5}$	$\mathbf{2 6}$	$\mathbf{2 7}$	$\mathbf{2 8}$	$\mathbf{2 9}$	$\mathbf{3 0}$	$\mathbf{3 1}$	$\mathbf{3 2}$	$\mathbf{3 3}$	$\mathbf{3 4}$	$\mathbf{3 5}$	$\mathbf{3 6}$	$\mathbf{3 7}$	$\mathbf{3 8}$	$\mathbf{3 9}$	$\mathbf{4 0}$
Ans.	2	4	1	3	3	2	3	4	2	2	4	1	1	1	4	3	4	2	3	3
Qus.	$\mathbf{4 1}$	$\mathbf{4 2}$	$\mathbf{4 3}$	$\mathbf{4 4}$	$\mathbf{4 5}$	$\mathbf{4 6}$	$\mathbf{4 7}$	$\mathbf{4 8}$	$\mathbf{4 9}$	$\mathbf{5 0}$	$\mathbf{5 1}$	$\mathbf{5 2}$	$\mathbf{5 3}$	$\mathbf{5 4}$	$\mathbf{5 5}$	$\mathbf{5 6}$	$\mathbf{5 7}$	$\mathbf{5 8}$	$\mathbf{5 9}$	$\mathbf{6 0}$
Ans.	3	1	4	3	3	4	3	2	3	3	4	4	4	3	4	1	2	1	3	1
Qus.	$\mathbf{6 1}$	$\mathbf{6 2}$	$\mathbf{6 3}$	$\mathbf{6 4}$	$\mathbf{6 5}$	$\mathbf{6 6}$	$\mathbf{6 7}$	$\mathbf{6 8}$	$\mathbf{6 9}$	$\mathbf{7 0}$	$\mathbf{7 1}$	$\mathbf{7 2}$	$\mathbf{7 3}$	$\mathbf{7 4}$	$\mathbf{7 5}$					
Ans.	2	2	3	2	3	3	3	4	1	1	4	2	3	2	4					

Q. 1 The molecular weight of the compounds (a) $\mathrm{Na}_{2} \mathrm{SO}_{4}$ (b) $\mathrm{Na}_{3} \mathrm{PO}_{4} .12 \mathrm{H}_{2} \mathrm{O}$ and (c) $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ respectively are X, Y , and Z. The correct set of their equivalent weights will be -
[1] (a) $\frac{X}{2}$
(b) $\frac{Y}{3}$
(c) $\frac{Z}{6}$
[2] (a) X (b) $\frac{Y}{3}$
(c) $\frac{Z}{3}$
[3] (a) $\frac{X}{2}$
(b) $Y(c) \frac{Z}{3}$
[4] (a) $X(b) Y$
(c) Z
Q. 2 Haemoglobin contains 0.25% iron by weight. The molecular weight of haemoglobin is 89600 . Calculate the number of iron atoms per molecule of haemoglobin.
[1] 2 atom
[2] 3 atom
[3] 4 atom
[4] 6 atom
Q. 3 What is the normality of a solution of ammonia, whose density is 0.885 . It has 23% ammonia be weight
[1] 1.35
[2] 12.0
[3] 19.1
[4] 26.0
Q. 450 ml of $0.1 \mathrm{~N} \mathrm{KMnO}_{4}$ solution is required to completely oxides 0.225 g of anhydrous oxalic acid. Find out the equivalent weight of oxalic acid.
[1] 90
[2] 45
[3] 126
[4] 63
Q. 5 A 500 g tooth paste sample has 0.2 g fluoride concentration. What is the concentration of F in terms of ppm level-
[1] 250
[2] 200
[3] 400
[4] 1000
Q. 6 Element X reacts with oxygen to produce a pure sample of $\mathrm{X}_{2} \mathrm{O}_{3}$. In an experiment it is found that 1.000 g of X produces $1.1596 \mathrm{~g}^{2}$ of $\mathrm{X}_{2} \mathrm{O}_{3}$. Using the known atomic weight of oxygen $15.9994 \mathrm{~g} \mathrm{~mol}^{-1}$ calculate the atomic weight of X -
[1] 20.70
[2] 66.85
[3] 100.2
[4] 150.4
Q. 7 Two element $X($ at. wt. $=75$) and $Y($ at. wt. $=16$) combines to give a compound having 75.8% of X. The formula of the compound is -
[1] XY
[2] $X_{2} Y$
[3] $X_{2} Y_{2}$
$[4] X_{2} Y_{3}$
Q. 8 Four containers of 2L capacity contains dinitrogen as described below. Which one contains maximum number of molecules under similar conditions -
[1] 2.5 g -molecules of N_{2}
[2] 4 g -atom of nitrogen
[3] $3.01 \times 10^{24} \mathrm{~N}$ atoms
[4] 82 g of dinitrogen
Q. $9 \quad 6 \mathrm{~g}$ of carbon combines with 32 g of sulphur to form $\mathrm{CS}_{2} .12 \mathrm{~g}$ of C also combine with 32 g of oxygen to form carbon di oxide. 10 g of sulphur combines with 10 g of oxygen to form sulphur dioxide. Which law is illustrated by the above example -
[1] Law of multiple proportions
[2] Law of constant composition
[3] Law of reciprocal proportions
[4] Gay Lussac's law
Q. 104.4 g of CO_{2} and 2.24 L of H_{2} at STP are mixed in a container. The total number of molecules present in the container will be -
[1] 6.022×10^{23}
[2] 1.2044×10^{23}
[3] 2 moles
[4] 6.023×10^{24}
Q. 11 Which of the following illustrates the law of conservation of mass ?
[1] Mixing of 10 g of sulphur and 2 g of sand does not show a changes in mass
[2] The mass of platinum wire before and after heating remains constant
[3] 2.2 g of propane and 8 g of oxygen produces 10.2 g of gaseous mixture
[4] 3.8 g of CO and 1.6 g of oxygen gave only $2.24 \mathrm{~L}^{2}$ of CO_{2} at S.T.P.
Q. 12 The molecular formula of certain compound is $\mathrm{M}_{4} \mathrm{O}_{6}$. If 18.88 g of the compound contains 10 g of M , the atomic mass of M is approximately -
[1] 40 g
[2] 54 g
[3] 27 g
[4] 12 g
Q. 13 C-12 and C-14 isotopes are found as 98% and 2% respectively in any sample. Then, the number $\mathrm{C}-14$ atoms in 12 g of the sample will be -
[1] 1.5 moles atoms
[2] 1.032×10^{22} atoms
[3] 2.06×10^{21} atoms
[4] 2 g atom
Q. 14 The mole fraction of solute in 1 molal aqueous solutions is -
[1] 0.0176
[2] 1.8
[3] 0.05
[4] 0.98
Q. 15510 mg of a liquid on vaporization in victor Mayer's apparatus displaces 67.2 ml of dry air (at NTP). The molecular weight of liquid is -
[1] 130
[2] 17
[3] 1700
[4] 170
Q. 16 What will be present in the solution when 50 ml . of $0.1(\mathrm{M}) \mathrm{HCl}$ is mixed with 50 ml . of $0.1(\mathrm{M}) \mathrm{NaOH}$.
[1] 4.5 mol of H^{+}
[2] $0.05 \mathrm{~mol}^{2} \mathrm{OH}^{-}$
[3] 0.05M. NaCl
[4] $6 \mathrm{M} \mathrm{H}^{+}$
Q. 170.2 mole of HCl and 0.1 mole of barium chloride were dissolved in water to produce a 500 mL solution. The molarity of the Cl^{-}ions is -
[1] 0.06M
[2] 0.09M
[3] 0.12M
[4] 0.80M
Q. 188 litre of H_{2} and 6 litre of Cl_{2} are allowed to react to maximum possible extent. Find out the final volume of reaction mixture. Suppose P and T remains constant throughout the course of reaction.
[1] 7 litre
[2] 14 litre
[3] 2 litre
[4] None
Q. $19 \quad 0.59 \mathrm{~g}$ of a dibasic acid is completely neutralized by $100 \mathrm{c} . \operatorname{cof} \frac{\mathrm{N}}{10} \mathrm{NaOH}$ solution. What is the molecular weight of the acid -
[1] 59
[2] 118
[3] 29.5
[4] 11.8
Q. $20 \quad 0.84 \mathrm{~g}$ of metal carbonate reacts completely with 40 ml of $\frac{\mathrm{N}}{2} \mathrm{H}_{2} \mathrm{SO}_{4}$. What is the equivalent weight of the metal carbonate is -
[1] 20
[2] 12
[3] 42
[3] 30
Q. 2110 Moles SO_{2} and 15 moles O_{2} were allowed to react over a suitable catalyst. 8 moles of SO_{3} were formed. The remaining moles of SO_{2} and O_{2} respectively are -
[1] 2 mole, 11 mole
[2] 2 mole, 8 mole
[3] 4 mole, 5 mole
[4] 8 mole, 2 mole
Q. 22 A metal oxide is reduced by passing H_{2} gas. 3.15 g of oxide on complete reduction gives 1.05 g metal. We concluded that -
[1] atomic weight of metal is 4
[2] equivalent weight of metal is 8
[3] equivalent weight of metal is 4
[4] atomic weight of metal is 8
Q. 23 A sample of calcium carbonate is 80% pure. 25 g of this sample is treated with excess of HCl . How much volume of CO_{2} will be obtained at NTP.
[1] 4.48 litre
[2] 5.6 litre
[3] 11.2 litre
[4] 2.24 litre
Q. 24 In the electrolysis of $\mathrm{H}_{2} \mathrm{O}, 11.2$ litre of H_{2} was liberated at cathode at NTP. How much O_{2} will be liberated at anode under the same condition.
[1] 11.2 litre
[2] 22.4 litre
[3] 32 g
[4] 5.6 litre
Q. 25 A silver coin weighing 11.34 g was dissolved in nitric acid. When sodium chloride was added to the solution all the silver (present as AgNO_{3}) was precipitated as silver chloride. The weight of the precipitated silver chloride was 14.35 g . Calculate the percentage of silver in the coin,
[1] 4.8\%
[2] 95.2\%
[3] 90\%
[4] 80\%
Q. 26 Cyclohexanol is dehydrated to cyclohexene on heating with conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$. If the yield of this reaction is 75% how much cyclohexene will be obtained from 100 g of cyclohexanol.
[1] 61.5g
[2] 16.5 g
[3] 6.15 g
[4] 615 g
Q. 271 g metal carbonate requires 200 ml of 0.1 N HCl for complete neutralization. What is the equivalent weight of metal carbonate -
[1] 50
[2] 40
[3] 20
[4] 100
Q. 28 When excess of CaCO_{3} is treated with 100 ml of HCl solution, the CO_{2} gas obtained was found to be 1.12 liter (at N.T.P) what is normality of HCl -
[1] 0.2N
[2] 1 N
[3] 0.1 N
[4] 2N
Q. 29 3.92g ferrous ammonium sulphate (FAS) consumes 50 ml of $\frac{\mathrm{N}}{10} \mathrm{KMnO}_{4}$. What is the percentage purity of the sample of FAS-
[1] 50\%
[2] 78.4\%
[3] 80\%
[4] 39.2\%
Q. $30 \quad 1.7 \mathrm{~g}$ of ammonium salt was treated with excess of NaOH . The ammonia released in the process neutralizes 100 c.c. solution of $\frac{\mathrm{N}}{5} \mathrm{H}_{2} \mathrm{SO}_{4}$. What is the percentage of ammonia in the salt -
[1] 17\%
[2] 20%
[3] 25%
[4] 34\%
Q. 31 What will be the molecular weight of the gas whose density is $0.55 \mathrm{~g} /$ litre at $27^{\circ} \mathrm{C}$ and 600 mm pressure
[1] $0.27 \mathrm{~g} \mathrm{~mole}^{-1}$
[2] $17.16 \mathrm{~g} \mathrm{~mole}^{-1}$
[3] $27.0 \mathrm{~g} \mathrm{~mole}^{-1}$
[4] $32.32 \mathrm{~g} \mathrm{~mole}^{-1}$
Q. 32 The mass of oxygen that would be required to produce enough CO which completely reduces $1.6 \mathrm{~kg} \mathrm{Fe} \mathrm{F}_{2} \mathrm{O}_{3}$ (at mass of $\mathrm{Fe}=56$) is -
[1] 240 g
[2] 480 g
[3] 720g
[4] 960g
Q. 33 In an experiment 10 ml of $\mathrm{AgNO}_{3}(0.1 \mathrm{~N})$ solution is added to 20 ml of decinormal HCl . After the precipitation of AgCl , excess of HCl is titrated with decinormal NaOH solution. What is the volume of NaOH used in the titration-
[1] 10ml
[2] 20 ml
[3] 5 ml
[4] 30ml
Q. 34 A bottle of commercial sulphuric acid (density $1.787 \mathrm{~g} / \mathrm{ml}$.) is labelled as 86% by weight. What is the molarity of the acid -
[1] $1.717 \times 86 \times 1000 / 100$
[2] $1.787 \times 86 \times 1000 / 100 \times 49$
[3] $1.787 \times 86 \times 1000 / 100 \times 98$
[4] None
Q. 35250 ml of the solution contains 7.35 g of dibasic acid 25 ml of this solution requires 15 ml of $\mathrm{N}-\mathrm{NaOH}$ solution for complete neutralization Equivalent and molecular weight of acid would be respectively -
[1] 49, 98
[2] 63, 126
[3] 32, 64
[4] 50, 100
Q. 36 Review the following reactions -
(i) $\mathrm{CaC}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CaO}+\mathrm{C}_{2} \mathrm{H}_{2}$;
(ii) $\mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{H}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4}$;
(iii) $\mathrm{nC}_{2} \mathrm{H}_{4} \rightarrow\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{n}$

What is the weight of polyethene obtained from $10 \mathrm{~kg} \mathrm{CaC}_{2}-$
[1] 4.375 kg
[2] 10 kg
[3] 15kg
[4] 20kg
Q. $37 \quad 1000 \mathrm{~g}$ aqueous solution of CaCO_{3} contains 10 g of calcium carbonate. Concentration of the solution is-
[1] 10 ppm
[2] 100 ppm
[3] 1000 ppm
[4] 10,000 ppm
Q. 38 Which of the following should be done in order to prepare 0.40 M NaCl starting with 100 ml of 0.30 M NaCl (mol. wt. of $\mathrm{NaCl}=58.5$) -
[1] Add 5.85 g NaCl
[2] Add 20ml water
[3] Add 0.10 ml NaCl
[4] Evaporate 10ml water
Q. 39 A certain aqueous solution of FeCl_{3} (formula mass $=162$) has a density of $1.1 \mathrm{~g} / \mathrm{ml}$ and contains $20.0 \% \mathrm{FeCl}_{3}$ Molar concentration of this solution is -
[1] 0.028
[2] 0.163
[3] 1.35
[4] 1.47
Q. 40 An ore contains 1.34% of the mineral argentite, $\mathrm{Ag}_{2} \mathrm{~S}$, by weight. How many grams of this ore would have to be processed in order to obtain 1.00 g of pure silver. (Ag) -
[1] 74.6g
[2] 85.7 g
[3] 107.9 g
[4] 134.0 g
Q.41 The density of liquid ethanol is $0.7893 \mathrm{~g} \mathrm{~mL}^{-1}$ at $20^{\circ} \mathrm{C}$. If 1.2 mol of ethanol are needed for a particular experiment, what volume of ethanol should be measured out
[1] 55 ml
[2] 58 ml
[3] 70 ml
[4] 79 ml
Q. 42 An isotope of the element polonium, of atomic mass 210 , is strongly radioactive and each day one two hundredth part of it changes into an inactive isotope of lead. Approximately, how many atoms of lead are formed in one day from one milligram of ${ }^{210} \mathrm{Po}$ -
[1] 1.5×10^{16}
[2] 3×10^{18}
[3] 1.23×10^{19}
[4] 1.2×10^{22}
Q. 43 If human blood contains $195 \mathrm{mg} / \mathrm{ml}^{\text {of }} \mathrm{K}^{+}$ion; the molarity of the solution is -
[1] $\frac{195 \times 1000}{39}$
[2] $\frac{195 \times 10^{-3} \times 10^{3}}{39}$
[3] $\frac{195 \times 10^{-3} \times 10^{3}}{38}$
[4] $\frac{195 \times 1000}{38}$
Q. 44 The most abundant element dissolved in sea water is Cl at a conc. of $19 \mathrm{~g} / \mathrm{kg}$ of sea water. The volume of earth's ocean is $1.4 \times 10^{21} \mathrm{~L}$. How many g atoms of Cl are potentially available from the oceans. (density of sea water is $1 \mathrm{gm} / \mathrm{cc}$)
[1] 7.6×10^{20}
[2] 27×10^{21}
[3] 27×10^{24}
[4] 96×10^{23}
Q. 45100 ml of 0.3 N HCl solution is mixed with 200 ml of $0.6 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution. What is the normality of $\mathrm{H}_{2} \mathrm{SO}_{4}$ in the final solution -
[1] 0.9
[2] 0.6
[3] 0.5
[4] 0.4
Q. 46 If LPG cylinder contains mixture of butane and isobutane, then the amount of oxygen that would be required for combustion of 1 kg of it will be -
[1] 1.8 kg
[2] 2.7 kg
[3] 4.5 kg
[4] 3.58 kg
Q. $47 \quad 4.0 \mathrm{~g}$ of caustic soda (molecular mass $=40$) contains same number of sodium ions as are present in -
[1] 10.6 g of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ (molecular mass $=106$)
[2] 58.5 g of NaCl (formula mass 58.5)
[3] 100 ml of $0.5 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{4}$ (Formula mass 142)
[4] 1 gm-equivalent of NaNO_{3} (equivalent mass 85)
Q. $48 \quad W_{1} g$ of an element combines with oxygen forming $W_{2} g$ of its oxide. The equivalent weight of the element is
[1] $\left[\frac{W_{1}}{W_{2}}\right] \times 8$
[2] $\left[\frac{W_{1}}{W_{2}-W_{1}}\right] \times 8$
[3] $\left[\frac{W_{2}-W_{1}}{W_{1}}\right] \times 8$
[4] $\left[\frac{W_{1}}{W_{1}-W_{2}}\right] \times 8$
Q. 4920 g of an acid furnishes 0.5 moles of $\mathrm{H}_{3} \mathrm{O}^{+}$ions in its aqueous solution. The value of 1 g equivalent of the acid will be-
[1] 40g
[2] 20 g
[3] 10 g
[4] 100 g
Q. 50 One mole of chlorine combines with certain weight of a metal giving 111 g of its chloride. The same amount of metal can displace 2 g of hydrogen from an acid. The atomic weight of the metal is -
[1] 40
[2] 20
[3] 80
[4] none
Q. 51 Out of 1.0 g dioxygen, 1.0 (atomic) oxygen and 1.0 g of ozone, the maximum number of oxygen atoms are contained in -
[1] 1.0 g of atomic oxygen
[2] 1.0 g of ozone
[3] 1.0g of oxygen gas
[4] All contains same number of atoms
Q. 5240 g of calcium carbonate was treated with 48 g of HCl. If the acid used was only of 30% strength. The amount of CaCO_{3} unreacted is
[1] 30 g
[2] 20 g
[3] 32 g
[4] 17 g
Q. 53 Haemoglobin contains 0.33% of iron by weigth. The molecular weight of haemoglobin is approximately 67200 The number of iron atoms (atomic weight of Fe is 56 amu) present in one molecule of haemoglobin is
[1] 2
[2] 5
[3] 4
[4] 3
Q. 54 The impure 7 g of NaCl is dissolved in water and then treated with excess of silver nitrate solution. The weight of precipitate of silver chloride is found to be 14 g . The \% purity of NaCl solution would be-
[1] 81.5 \%
[2] 83%
[4] 93 \%
[4] 77 \%
Q. $55 \mathrm{KMnO}_{4}$ reacts with oxalic acid according to the reaction

$$
2 \mathrm{KMnO}_{4}^{-}+5 \mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}+16 \mathrm{H}^{+} \rightarrow 2 \mathrm{Mn}^{2+}+10 \mathrm{CO}_{2} \uparrow+8 \mathrm{H}_{2} \mathrm{O}
$$

Then, 20 ml of $0.1 \mathrm{M} \mathrm{KMnO}_{4}$ is equivalent to
[1] 30 ml of $0.5 \mathrm{M} \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{4}$ (Oxalic acid)
[2] 50 ml of $0.1 \mathrm{M} \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{4}$ (Oxalic acid)
[3] 20 ml of $0.5 \mathrm{M} \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{4}$ (Oxalic acid)
[4] 10 ml of $0.1 \mathrm{M} \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{4}$ (Oxalic acid)
Q. 56 The percentage of Se in peroxidase anhydrous enzyme is 0.5% by weight (atomic weight of $\mathrm{Se}=78.4 \mathrm{amu}$). Then, the minimum molecular weight of peroxidase anhydrous enzyme which containing not more than one atom of Se is
[1] 1.568×10^{4}
[2] 1.568×10^{7}
[3] 1.568×10^{3}
[4] 1.568×10^{6}
Q. 57 In the following reaction $\quad 4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{NO}(\mathrm{g})+6 \mathrm{H}_{2} \mathrm{O}$ (I)
when 1 mole of ammonia and 1 mole of O_{2} are mixed. Then
[1] 0.2 mole of $\mathrm{H}_{2} \mathrm{O}$ is produced
[2] 0.1 mole of NO is produced
[3] all the oxygen will be consumed
[4] all the ammonia will be consumed in order to form 1 mole NO
Q. $58 \quad 1.12 \mathrm{~mL}$ of a gas is produced at STP by the action of 4.12 mg of alcohol (ROH) with Grignard's reagent $\mathrm{CH}_{3} \mathrm{MgI}$. The molecular mass of alcohol (in amu) is
[1] 16.0
[2] 41.2
[3] 82.4
[4] 156.0
Q. 59 The equivalent weight of an element is 4 amu. What is the valency of the element, if the vapour density of its chloride is 59.50 ?
[1] 5
[2] 2
[3] 3
[4] 4
Q. 60 When a mixture consisting of 10 moles of SO_{2} and 16 moles of O_{2} were passed over a catalyst, 8 moles of SO_{3} were formed at equilibrium. The number of moles of SO_{2} and O_{2} which did not enter into the reaction were.
[1] 2, 12
[2] 12,2
[3] 3, 10
[4] 10, 3
Q. 61 When $3.92 \mathrm{gLL}^{-1}$ of a sample of Mohr's salt reacts completely with 50 ml . $\frac{\mathrm{N}}{10} \mathrm{KMnO}_{4}$ solution. The \% purity of the sample of Mohr's salt is
[1] 50
[2] 70
[3] 37
[4] 40
Q. 62 The number of equivalents of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ required for the volumetric estimation of one equivalent of $\mathrm{Cu}^{2}+$ is
[1] $\frac{1}{3}$
[2] 2
[3] $\frac{3}{2}$
[4] $\frac{2}{3}$
Q. 63 An aqueous solution of 6.3 g of oxalic acid dihydrate is made upto 250 ml . The volume of 0.1 N NaOH required to completely neutralise 10 ml of this solution is
[1] 40 ml
[2] 20 ml
[3] 100 ml
[4] 400 ml
Q. 64 What is the molecular formula of compound (gaseous) of boron with hydrogen if mass of 1 L of this compound (gas) is equal to the mass of 1 L of N_{2} and the boron content in the compound is 78.2% ?
[1] BH_{3}
[2] $\mathrm{B}_{2} \mathrm{H}_{6}$
[3] $\mathrm{B}_{3} \mathrm{H}_{8}$
[4] $\mathrm{B}_{4} \mathrm{H}_{10}$
Q. 65 A gaseous mixture of propane and butane of volume 3 L on complete combustion produces 10 L of CO_{2} under standard conditions of temperature and pressure. The ratio of volume of propane to butane is
[1] 1:2
[2] $2: 1$
[3] 3:2
[4] 3:1
Q. 66 The molecular mass of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ is 294 amu . It acts as an oxidising agent in acidic medium. Its equivalent weigth in acidic medium would be
[1] $N=\frac{M}{3}$
[2] $\mathrm{N}=\mathrm{M}$
[3] $N=\frac{M}{6}$
[4] $N=\frac{M}{5}$
Q. 67 For preparing 1 M solution of a compound from its impure sample, the weight of the substance required will be
[1] more than the theoretical weight
[2] less than the theroretical weight
[3] equal to the theoretical weight
[4] less or equal to the theoretical weight
Q. 68 A solution of 10 mL of $\frac{\mathrm{M}}{10} \mathrm{FeSO}_{4}$ was titrated with KMnO_{4} solution in acidic medium, the amount of KMnO_{4} used will be
[1] 10 mL of 0.5 M
[2] 10 mL of 0.1 M
[3] 5 mL of 0.1 M
[4] 10 mL of 0.02 M
Q. 69 When potassium permanganate is titrated against ferrous ammonium sulphate in acidic medium, the equivalent weight of potassium permanganate is
[1]
$\xrightarrow{\text { molecular weight }}$
[2] $\frac{\text { molecular weight }}{5}$
[3] $\frac{\text { molecular weight }}{2}$
[4] $\frac{\text { molecular weight }}{10}$
Q. 70 Chlorine gas can be produced by reacting sulphuric acid with a mixture of MnO_{2} and NaCl . The reaction follows the equation $\quad 2 \mathrm{NaCl}+\mathrm{MnO}_{2}+3 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 2 \mathrm{NaHSO}_{4}+\mathrm{MnSO}_{4}+\mathrm{Cl}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
What volume of chlorine can be produced from 1 g of sodium chloride under standard conditions of temperature and pressure?
[1] 1.915 L
[2] 19.15 L
[3] 20.22 L
[4] 0.191 L

Answer Key

Qus.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Ans.	1	3	2	2	3	4	4	4	3	2	3	3	2	1	4	3	4	2	2	3
Qus.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
Ans.	1	3	1	4	2	1	3	2	1	2	2	2	1	3	1	1	4	1	3	2
Qus.	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
Ans.	3	1	2	1	4	4	3	3	1	1	4	2	3	1	2	1	3	3	3	1
Qus.	61	62	63	64	65	66	67	68	69	70										
Ans.	1	2	1	2	2	3	1	4	2	4										

Q. 1 Avogadro numbers is -
[1] Number of atoms in one gram of the element
[2] Number of milliliters which one mole of a gaseous substance occupies at N.T.P.
[3] Number of molecules present in one gram molecular mass of a substance
[4] All are correct
(IIT - 90)
Q. 2 The number of oxygen atoms in 4.4 g of CO_{2} is approximately -
[1] 1.2×10^{23}
[2] 6×10^{22}
[3] 6×10^{23}
[4] 12×10^{23}
(CPMT-90)
Q. 3 What is the volume strength of $1.5 \mathrm{~N} \mathrm{H}_{2} \mathrm{O}_{2}$ -
(I.I.T. 1991)
[1] 4.8
[2] 8.4
[3] 3.0
[4] 8.0
Q. 4 What would be the concentration and volume of KMnO_{4} required for the complete reaction with 10 mL of 0.1 M sodium oxalate -
(P.E.T. 1991)
[1] 0.05M of 8 mL
[2] 0.10 M of 20 mL
[3] 0.05 M of 10 mL
[4] 0.05 M of 20 mL
Q. $5 \quad$ The volume of 1.0 g of Hydrogen in liters at N.T.P. is -
[1] 2.24
[2] 22.4
[3] 1.12
[4] 11.2
(CPMT -91)
Q. $6 \quad 0.84 \mathrm{~g}$ of metal carbonate was completely neutralized by 40 mL of $\mathrm{N} / 2 \mathrm{H}_{2} \mathrm{SO}_{4}$. The equivalent weight of metal will be -
(P.E.T. 1992)
[1] 84
[2] 42
[3] 12
[4] 30
Q. 7 The total number of protons in 10 g of calcium carbonate is $\left(\mathrm{N}_{\mathrm{A}}=6.023 \times 10^{23}\right)$
(CPMT- 92)
[1] 1.5057×10^{24}
[2] 2.0478×10^{24}
[3] 3.0115×10^{24}
[4] 4.0956×10^{24}
Q. $8 \quad 360 \mathrm{~g}$ of water is present in a one L mixture of ethanol and water. Molarity of water in the mixture is -
[1] 20.0
[2] 36.0
[3] 18.0
[4] None of these
(C.P.M.T. 1993)
Q. 9 The number of moles of oxygen in 1 L of air containing 21% oxygen by volume, in standard conditions, is-
[1] 0.186 mol
[2] 0.21 mol
[3] 2.10 mol
[4] 0.0093 mol
(CPMT-95)
Q. 10 What volume of $0.1 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ is needed to completely neutralize 40 mL of 0.2 M NaOH solution -
[1] 10 mL
[2] 40 mL
[3] 20 mL
[4] 80 mL
(C.P.M.T. 1995)
Q. 11 What is the molarity of $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution that has a density $1.84 \mathrm{~g} / \mathrm{cc}$ at $35^{\circ} \mathrm{C}$ and contains 98% by weight-
[1] 4.18 M
[2] 8.14 M
[3] 18.4 M
[4] 18M
(C.B.S.E. 1996)
Q. 1210 volume $\mathrm{H}_{2} \mathrm{O}_{2}$ means
(C.P.M.T. 1996)
[1] 3\%
[2] 5\%
[3] 7\%
[4] 9\%
Q. 13 The amount of zinc required to produce 224 mL of H_{2} at STP on treatment with dilute $\mathrm{H}_{2} \mathrm{SO}_{4}$ will be -
[1] 0.65 g
[2] 6.5 g
[3] 65 g
[4] 0.065 g
(C.B.S.E. 1996)
Q. 14 Number of electrons present in 1.6 g methane would be-
(P.M.T. 1996)
[1] $1.6 \mathrm{~N}_{\mathrm{A}}$
[2] $0.1 \mathrm{~N}_{\mathrm{A}}$
[3] $1 \mathrm{~N}_{\mathrm{A}}$
[4] $16 \mathrm{~N}_{\mathrm{A}}$
Q. 15 Density of methane at $25^{\circ} \mathrm{C}$ and 6 atmospheric pressure would be ($R=0.082 \mathrm{~L}$ atm) -
(C.P.M.T. 1997)
[1] 4g/L
[2] 8g/L
[3] $12 \mathrm{~g} / \mathrm{L}$
[4] 16g/L
Q. 16 For the complete neutralization of 100 mL . of 0.2 N NaOH , what weight of hydrated oxalic acid would be required-
[1] 0.45 g
[2] 0.90 g
[3] 1.08g
[4] 1.26g
(MP P.M.T. 1997)
Q. $17250 \mathrm{~mL}\left(6 \mathrm{M} \mathrm{HNO}_{3}\right)$ and $350 \mathrm{~mL}\left(8 \mathrm{M} \mathrm{HNO}_{3}\right)$ are mixed to make the strength of the resulting solution 3 N , what is the volume of water required to be added -
(P.E.T. 1998)
[1] 833.3 mL
[2] 933.3 mL
[3] 1000 mL
[4] 500 mL
Q. 18200 mL of a solution contains 5.85 g dissolved sodium chloride. The concentration of solution would be -
[1] 1 Molar
[2] 2 Molar
[3] 0.5 Molar
[4] 0.25 Molar
(MP P.M.T. 1998)
Q. $1950 \mathrm{~mL} 10 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}, 25 \mathrm{~mL} 12 \mathrm{~N} \mathrm{HCl}$ and $40 \mathrm{~mL} 5 \mathrm{~N} \mathrm{HNO}_{3}$ were mixed together and the volume of the mixture was made 1000 mL by adding water. The normality of the resultant solution will be -
(MP P.M.T. 1998)
[1] 1 N
[2] 2 N
[3] 3 N
[4] 4 N
Q. 20 The number of molecules in 16 g methane is -
(MP P.M.T. 1998)
[1] 3.0×10^{23}
[2] 6.02×10^{23}
[3] $\frac{16}{6.02} \times 10^{23}$
[4] $\frac{16}{3.0} \times 10^{23}$
Q. 21 What is the mole fraction of acetone for a solution containing 2.8 mole acetone and 8.2 mole chloroform -
[1] 0.20
[2] 0.350
[3] 0.255
[4] 0.10
(P.E.T. 1998)
Q. 22 The number of moles of $500 \mathrm{~cm}^{3}$ of hydrogen gas at 760 mm pressure and 300 K temperature are -
[1] 20.3×10^{-2}
[2] 2.03×10^{-2}
[3] 203×10^{-2}
[4] None
(P.E.T. 1998)
Q. 23 If 1 kg of common salt costs Rs. 7 and 1 kg of sugar costs Rs. 14. What would be the cost of 1 mole of salt and sugar -
(P.E.T. 1998)
[1] Both will have the same cost
[2] The cost of sugar will be half the cost of salt
[3] The cost of sugar will be more than that of the salt
[4] The cost of sugar will be twice the cost of salt
Q. 24 0.5 Faraday of electricity was passed through NaCl solution. The quantity of chlorine liberated would be -
[1] 71 g
[2] 35.5 g
[3] 17.75 g
[4] 53.0g
(P.E.T. 1999)
Q. 25 Pressure in a mixture of 4 g of O_{2} and 2 g of H_{2} confined in a bulb of 1 L at $0^{\circ} \mathrm{C}$ is -
(A.I.I.M.S. 1999)
[1] 15.210 atm
[2] 25.215 atm
[3] 31.205 atm
[4] 45.215 atm
Q. 26 The weight of a molecule of the compound $\mathrm{C}_{60} \mathrm{H}_{22}$ is -
(A.I.I.M.S. 1999)
[1] $1.09 \times 10^{-21} \mathrm{~g}$
[2] $1.24 \times 10^{-21} \mathrm{~g}$
[3] $5.025 \times 10^{23} \mathrm{~g}$
[4] $16.023 \times 10^{23} \mathrm{~g}$
Q. 27 Haemoglobin of a blood corpuscle contains 0.33% iron. The molecular weight of haemoglobin was found to be 67000. What is the number of iron atoms present in each molecule of haemoglobin -
(MP P.E.T. 2000)
[1] 2
[2] 3
[3] 4
[4] 5
Q. 2812 g of alkaline earth metal gives 14.8 g of its nitride. Atomic weight of metal is -
(A.I.I.M.S. 2000)
[1] 12
[2] 20
[3] 40
[4] 14.8
Q. 29 Volume of CO_{2} obtained by the complete decomposition of $9.85 \mathrm{~g} \mathrm{BaCO}_{3}$ is-
[1] 2.24 L
[2] 1.12 L
[3] 0.84L
[4] 0.56L
(CPMT-2000)
Q. 30 The number of ions per mole of a complex $\left(\mathrm{CoCl}_{2} .5 \mathrm{NH}_{3}\right)$ in aqueous solution will be-
[1] Nine
[2] Four
[3] Three
[4] Two
(MP PET-2000)
Q.31 An aqueous solution of 6.3 g oxalic acid dihydrate is made up to 250 mL . The volume of 0.1 N NaOH required to solution is-
(I.I.T Scr. 2001)
[1] 40 mL
[2] 20 mL
[3] 10 mL
[4] 4 mL
Q. 32 Specific volume of cylindrical virus particle is $6.02 \times 10^{-2} \mathrm{cc} / \mathrm{g}$. whose radius and length are $7 \AA$ \& $10 \AA 8$ respectively. If $\mathrm{N}_{\mathrm{A}}=6.02 \times 10^{23}$. Then find molecular mass of virus -
(C.B.S.E. 2001)
[1] $15.4 \mathrm{~kg} / \mathrm{mol}$
[2] $1.54 \times 10^{4} \mathrm{~kg} / \mathrm{mol}$
[3] $3.08 \times 10^{4} \mathrm{~kg} / \mathrm{mol}$
[4] $3.08 \times 10^{3} \mathrm{~kg} / \mathrm{mol}$
Q.33 2.5 L NaOH of 1 M solution is mixed with 3 L NaOH of 0.5 M solution. What is the molarity of the resulting solution-
(C.B.S.E. 2002)
[1] 0.80 M
[2] 1.0 M
[3] 0.73 M
[4] 0.50 M
Q. 34 How many moles of electrons weigh one kilogram :
(IIT Scr. 2002)
[1] 6.02×10^{23}
[2] $\frac{1}{9.108} \times 10^{31}$
[3] $\frac{6.023}{9.108} \times 10^{54}$
[4] $\frac{1}{9.108} \times \frac{10^{8}}{6.02}$
Q. $35 \mathrm{MnO}_{4}^{-2}(1 \mathrm{~mole})$ in neutral aqueous medium disproportionate to :
(AIIMS 2003)
[1] $2 / 3$ mole of MnO_{4}^{-1} and $1 / 3$ mole of MnO_{2}
[2] $1 / 3$ mole of MnO_{4}^{-1} and $2 / 3$ mole of MnO_{2}
[3] $1 / 3$ mole of $\mathrm{Mn}_{2} \mathrm{O}_{7}$ and $2 / 3$ mole of MnO_{2}
[4] $2 / 3$ mole of $\mathrm{Mn}_{2} \mathrm{O}_{7}$ and $1 / 3$ mole of MnO_{2}
Q. 3625 mL of a solution of $\mathrm{Ba}(\mathrm{OH})_{2}$ on titration with a 0.1 M solution of HCl gave a titre value of 35 mL . The molarity of barium hydroxide solution was :
(AIEEE 2003)
[1] 0.07
[2] 0.14
[3] 0.28
[4] 0.35
Q. 37 To neutralize completely 20 mL of 0.1 M aqueous solution of phosphorus acid $\left(\mathrm{H}_{3} \mathrm{PO}_{3}\right)$, the volume of 0.1 M aqueous KOH solution required is :
(AIEEE 2004)
[1] 60 mL
[2] 20 mL
[3] 40 mL
[4] 10 mL
Q. 38 The vapour pressure of two liquids P and Q are 80 and 60 torr respectively. The total vapour pressure of solution obtained by mixing 3 mole of P and 2 mole of Q would be-
(CPMT 2005)
[1] 72 torr
[2] 140 torr
[3] 68 torr
[4] 20 torr
Q. 39 The mole fraction of the solute in one molal aqueous solution is-
(CPMT 2005)
[1] 0.009
[2] 0.018
[3] 0.027
[4] 0.036
Q. 40 Two solutions of a substance (non electrolyte) are mixed in the following manner. 480 ml of 1.5 M first solution +520 ml of 1.2 M second solution. What is the molarity of the final mixture?
(AIEEE 2005)
[1] 1.20 M
[2] 1.50 M
[3] 1.344 M
[4] 2.70M
Q. 41 If we consider that $1 / 6$, in place of $1 / 2$, mass of carbon atom is taken to be the relative atomic mass unit, the mass of one mole of a substance will-
(AIEEE 2005)
[1] decrease twice
[2] increase two fold
[3] remain unchanged
[4] be a function of the molecular mass of the substance
Q. 42 How many moles of magnesium phosphate, $\mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ will contain 0.25 mole of oxygen atoms-
(AIEEE 2006)
[1] 1.25×10^{-2}
[2] 2.5×10^{-2}
[3] 0.02
[4] 3.125×10^{-2}
Q. 43 Density of a 2.05 M solution of acetic acid in water is $1.02 \mathrm{~g} / \mathrm{mL}$. The molality of the solution is-
(AIEEE 2006)
[1] $2.28 \mathrm{~mol} \mathrm{~kg}^{-1}$
[2] $0.44 \mathrm{~mol} \mathrm{~kg}^{-1}$
[3] $1.14 \mathrm{~mol} \mathrm{~kg}^{-1}$
[4] $3.28 \mathrm{~mol} \mathrm{~kg}^{-1}$

Answer Key

Qus.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Ans.	3	1	2	1	4	3	3	1	4	2	3	1	1	3	1	2	1	3	1	2
Qus.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
Ans.	3	2	3	3	2	2	3	3	2	4	1	1	3	2	1	1	3	1	2	3
Qus.	41	42	43																	
Ans.	1	1	2																	

