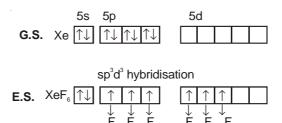

	Solved Example
Ex.1	The bond order of N_2^- anion is :
	[1] 1 [2] 2 [3] 2.5 [4] 3 Ans. [
Sol.	Out of 15e ⁻ in N_2^- , 10 are in bonding MO's and 5e ⁻ are in the anti bonding MO's Hence bond or
	$=\frac{1}{2}(10-5)=2.5$
Ex.2	Bond length of HCl is 1.275 Å (Charge = 4.8 × 10 ⁻¹⁰ e.s.u.) if μ = 1.02 D, then HCl is :
	[1] 100% ionic [2] 83% covalent [3] 50% covalent [4] 40% ionic Ans. [
Sol.	% ionic character = $\frac{\text{observed }\mu}{\text{exp erimental }\mu} \times 100$
	$= \frac{1.02}{1.275 \times 4.8} \times 100$
	= 17% ionic
	= 83% covalent
Ex.3	The dipole moment of the ammonia molecule is 1.48D. The length of the dipole is :
	[1] 3.08×10^{-11} m [2] 5×10^2 m [3] 308 m [4] None Ans.
Sol.	$M = 1.48 \times 3.33 \times 10^{-30} \text{ cm} = 4.93 \times 10^{-30} \text{ cm}$
	$q = 1.6 \times 10^{-19} C$
	$\ell = \frac{\mu}{q} = \frac{4.93 \times 10^{-30}}{1.6 \times 10^{-19}} = 3.08 \times 10^{-11} \text{ m} = 0.0308 \text{ nm}$
	The NH ₃ molecule can not have the shape of an equilateral triangle because in the case its dipermoment would equal zero. It is actually constructed in the form of a triangular pyramid with the nitrog atom at its vertex and the hydrogen atoms at the corners of its base.
Ex.4	Two elements X and Y have following electronic configuration :
	X 1s ² ; 2s ² , 2p ⁶ ; 3s ² , 3p ⁶ ; 4s ²
	Y $1s^2$; $2s^2 2p^6$; $3s^2$, $3p^5$
	The expected compound formed by combination of X and Y will be expressed as : $\frac{1}{2}$
	[1] XY_2 [2] X_5Y_2 [3] X_2Y_5 [4] XY_5 Ans. [1]
Sol.	Valency of element X is 2 (2 electron in the outermost shell) while that of element Y is (1 electron required in the outermost shell to complete octet). So the formula of the compound between X and Y is XY_2 .
Ex.5	An atom of element A has three electrons in its outer shell and B has six electrons in its outermost shell. The formula of the compound formed between these two will be :
	[1] A_6B_6 [2] A_2B_3 [3] A_3B_2 [4] A_2B Ans. [
Sol.	In this case the valence electron in the atom A is three and hence its valency is generally 3.


Sol. In this case the valence electron in the atom A is three and hence its valency is generally 3. In the atom B the number of valence electron is six. Hence its valency is usually 2. Hence the formula of the molecule formed from A and B could be A_2B_3 . An example of two such elements are Al and O and the formula of aluminium oxide is Al_2O_3 .

- The dipole moment of LiH is 1.964×10^{-29} C × m and the interatomic distance between Li and H Ex.6 in this molecule is 1.596Å. Calculate the percent ionic character in LiH : [1] 76.8 [2] 70 [3] 65.5 [4] 72 Ans. [1] Sol. The dipole moment of 100% ionic molecule (Li⁺H⁻) = (1 electronic charge) (interatomic distance) $= (1.602 \times 10^{-19} \text{C}) (1.5963 \times 10^{-10} \text{m}) = 2.557 \times 10^{-29} \text{Cm}$ Exp. value of dipole moment percentage ionic character = Theoretical value of dipole moment $= \frac{1.964 \times 10^{-29}}{2.557 \times 10^{-29}} = 0.768$ The bond in LiH is 76.8% ionic. The total number of valence electrons in 4.2g of $\mathrm{N_3^-}$ ion are : **Ex.7** 4] 3.2 [1] 2.2 N [2] 4.2 N [3] 1.6 N Ans. [3] Sol. 4.2g N_3^- 1.6 N valence electrons. In which of the following compounds carbon atom undergoes hybridization of more than one type Ex.8 (ii) CH₃—CH=CH–CH₃ (i) CH₃CH₂CH₂CH₃ (iii) $CH_2=CH-CH_2-CH_3$ (iv) H-C=C-H[1] (iii) and (iv) [2] (i) and (iv) [3] (ii) and (iii) [4] Only (ii) Ans. [3] In (ii) CH_3 -CH=CH-CH₃, the carbon atoms C_1 and C_4 are in sp³ hybridized while C_2 and C_3 are Sol. sp² hybridized. In (iii) $\begin{array}{cccc} 1 & 2 & 3 & 4 \\ CH_2=CH-CH_2-CH_3, \text{ the carbon atoms } C_1 \text{ and } C_2 \text{ are in } sp^2 \text{ while } C_3 \text{ and } C_4 \text{ are in } sp^3 \text{ state} \end{array}$ of hybridization. In (i) all the carbon atoms are sp³ hybridized while in (iv) both carbon atoms are in sp state of hybridization. The geometry of AIF_6^{-3} is as follows : Ex.9 [2] Hexagonal [3] Pyramidal [1] Tetrahedral [4] Ocatahedral Ans. [4]
- **Sol.** The geometry of AIF_6^{-3} is octahedral. The type of hybridization is sp^3d^2 . It forms an outer orbital complex. The geometry of AIF_6^{-3} is as follows :

- **Ex.10** The type of hybridization of Xe in XeF₆ will be the same as that of the central atom in the following molecule :
 - [1] PCl_5 [2] SF_6 [3] IF_7 [4] CCl_4 Ans. [3]

Sol. The type of hybridisation of Xe in XeF_6 will be sp^3d^3 . The same type of hybridisation is present in IF_7 the geometry of the molecule is pentagonal bipyramidal ;

Ex.11 Which bond angle, θ would result in the maximum dipole moment for the triatomic molecule XY₂

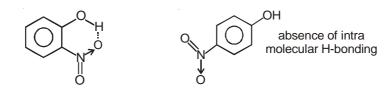
shown below : $\chi = \frac{\theta}{\theta}$

[1] $\theta = 90^{\circ}$ [2] $\theta = 120^{\circ}$ [3] $\theta = 150^{\circ}$ [4] $\theta = 180^{\circ}$ Ans. [1] Sol. The value of the resultant increases with decreasing angle θ . The resultant is given by :

$$\mu = \sqrt{\mu_1^2 + \mu_2^2 + 2\mu_1\mu_2 \cos\theta} \qquad \mu \text{ is maximum}$$

Value of $cos\theta$ increases with decreases in angle θ and hence m (resultant dipole moment) increases.

- Ex.12 The order of increasing polarity in HCl, CO_2 , H_2O and HF molecules is :
 - [1] CO2, HCI, H2O, HF
 [2] HF, H2O, HCI, CO2


 [3] CO2, HCI, HF, H2O
 [4] CO2, HF, H2O, HCI
 Ans. [1]
- Sol. The geometry of CO₂ molecule is linear so the dipole moment of two C–O bonds cancel each other because of opposite directions and CO₂, becomes non polar. In other molecules order of electronegativity of Cl, O and F is Cl < O < F. So polarity order is</p>

H - F > H - O > H - CI bonds.

Q.13 Do o-nitrophenol and p-nitrophenol have hydrogen bonding in their molecules ? Explain which of the two has higher boiling point :

The correct answer is :

- [1] o-Nitrophenol has higher boiling point [2] p-Nitrophenol has higher boiling point
- [3] Both have same boiling point [4] None
- **Sol.** Both have hydrogen bonding. o-Nitrophenol has intramolecular hydrogen bonds. But due to larger distance between -NO₂ and -OH groups in p-nitrophenol, there is no such bonding.

However, there is intermolecular hydrogen bonding in p-nitrophenol and therefore, it exists as associated molecule. In o-nitrophenol, intermolecular hydrogen bonding is possible.

Due to associated nature of p-nitrophenol, it is less volatile and has high boiling point.

Ans. [2]

		Exerci	ise # 1	
Q.1	Which of the following	ions does not have ps	seudo inert gas structu	ire :
	[1] Zn ²⁺	[2] Sc ³⁺	[3] Ag ⁺	[4] Cd ²⁺
Q.2	Amongst the following	the molecule that is lin	near, is :	
	[1] CO ₂	[2] NO ₂	[3] SO ₂	[4] SiO ₂
Q.3	The oxide which is mo	ost acidic is :		
	[1] Bi ₂ O ₃	[2] As ₂ O ₃	[3] P ₂ O ₃	[4] N ₂ O ₃
Q.4	The compound which h	nas maximum dipole m	oment is :	
	[1] CH ₄	[2] CHCI ₃	[3] CCI ₄	[4] CO ₂
Q.5	Which of the following	molecules contains cov	valent, ionic and coord	inate bond ?
	[1] NH ₄ CI	[2] AICI ₃	[3] NaCl	[4] Cl ₂
Q.6	The order of bond ang	le in NH ₃ , PH ₃ and A	sH ₃ is :	V
	[1] NH ₃ > PH ₃ > AsH	3	[2] PH ₃ > NH ₃ > A	AsH ₃
	[3] AsH ₃ > PH ₃ > NH	3	[4] PH ₃ = NH ₃ < A	AsH ₃
Q.7	Which of the following	is that molecule whose	e shape is pyramidal '	?
	[1] PCI ₃	[2] SO ₂	[3] CO ₃ ⁻²	[4] NO ₃ ⁻
Q.8	Which of the following	is helpful in making th	e ionic bond ?	
	[1] Small cation		[2] Small anion	
	[3] Small cation and si	mall anion	[4] Low positive char	ge, large cation and small anion
Q.9	Out of the following, th			
	[1] LiCl	[2] LiBr	[3] LiF	[4] Lil
Q.10	The number of electron			
4.1.0	[1] 2	[2] 4	[3] 6	[4] 10
0 11	Which of the following			יי [ד]
Q.11		-		
0.40	[1] AgCl	[2] KCI	[3] BaCl ₂	[4] CaCl ₂
Q.12	A sp ³ hybrid orbital co			
	[1] 1/4 s-character	[2] 1/2 s-character	[3] 2/3 s-character	[4] 3/4 s-character
Q.13	The bond angle in wat	er molecule is nearly :		
	[1] 120º	[2] 180°	[3] 109º28'	[4] 104º30'
Q.14	Variable valency is sho	own by :		
	[1] Typical elements	[2] Transition eleme	nts [3] Metallic elemer	nts[4] Inert elements
Q.15	Analysis of a compound of iodine is 127 and the			80 to 254 g. The atomic mass und is :
	[1] IO	[2] I ₂ O	[3] I ₅ O ₂	[4] I ₂ O ₅
Q.16	Ammonia molecule is f	ormed by the following	type of hybrid orbital	s :
	[1] dsp ²	[2] sp ³	[3] sp ³ d	[4] d ² sp

Q.17	High boiling point of wa	ter is due to :		
	[1] Weak dissociation of	water molecules		
	[2] The presence of hyd	rogen bond in water m	nolecules	
	[3] High specific heat of	water		
	[4] High dielectric consta	ant of water		
Q.18	Chloride of a metal is N	/ICI ₂ . The formula of it	s phosphate will be :	
	[1] M ₂ PO ₄	[2] M ₃ (PO ₄) ₂	[3] M(PO ₄) ₃	[4] MPO ₄
Q.19	Which has highest boilir	ng point ?		
	[1] HI	[2] HF	[3] HBr	[4] HCI
Q.20	Which molecule has line	ear structure ?		^
	[1] CO ₂	[2] NO ₂	[3] SO ₂	[4] SiO ₂
Q.21	CO ₂ is iso structural w	vith :		0
	[1] HgCl ₂	[2] SnCl ₂	[3] SO ₂	[4] NO ₂ ⁻
Q.22	The nature of bonding in	n graphite is :	\mathbf{A}	*
	[1] Covalent	[2] Ionic	[3] Metallic	[4] Coordinate
Q.23	Which has the stronges	t hydrogen bond?		
	[1] Triethyl amine	[2] Ethanol	[3] Diethyl ether	[4] Acetone
Q.24	Sulphuric acid contains	:		
	[1] Only covalent bonds		[2] Covalent and ioni	ic bond
	[3] Covalent and coordin	ate bonds	[4] Covalent, ionic ar	nd coordinate bonds
Q.25				+ 2 respectively. If P belongs ed by the combination of the
	[1] Electrovalent	[2] Covalent	[3] Coordinate	[4] Not known
Q.26				nged in the following shape :
		[2] Trigonal planar	0	
Q.27	According to valence bo			
	[1] Paramagnetic	-		e [4] None of the above
Q.28	The central atom of a r			
	[1] Planar	[2] Pyramidal	[3] V-shaped	[4] T-shaped
Q.29	The hydrogen bonding is	s strongest in :		
	[1] O–HS	[2] S–HO	[3] F–HF	[4] F–HO
Q.30	HCI is a gas where HF	is low boiling point li	quid. Its reason is :	
	[1] H-F bond is a stron	ger bond		
	[2] H-F bond is a weak	ker bond		
	[3] HF molecules are as	sociated through hydro	ogen bonding	
	[4] HF is a weaker acid	1		
Q.31	The shape of ethylene	molecule is :		
	[1] Regular tetrahedral	[2] Pyramidal	[3] Planar	[4] Linear

Q.32	The state of hybridisatio	on of the central metal	cation and the geome	etry of $[Ni(NH_3)_4]^{2+}$ ion is :
	[1] dsp ² and square place	nar	[2] sp ³ and tetrahed	ral
	[3] sp ³ bipyramidal		[4] sp ³ and trigonal	
Q.33	Out of the following con	npounds which has zer	o bond order :	
	[1] N ₂	[2] O ₂	[3] F ₂	[4] Ne ₂
Q.34	Which one of the follow	ing halogens has the l	highest bond energy ?	
	[1] F ₂	[2] Cl ₂	[3] Br ₂	[4] I ₂
Q.35	XeF ₆ is :			
	[1] Octahedral	[2] distorted octahed	ral [3] Planar	[4] Tetrahedral
Q.36	If a compound has reso	nance :		
	[1] The experimental val	ue of its heat of forma	ation decreases	
	[2] The experimental val	ue of its heat of forma	ation increases	
	[3] The stability of the o	compound decreases		6
	[4] The stability of the c	compound remains una	ffected	*
Q.37	In the formation of a ch	emical bond :		
	[1] The potential energy	decreases	[2] The potential ene	ergy increases
	[3] The potential energy	remains unaffected	[4] Then potential energy	gy first decreases then increases
Q.38	The maximum number of	of hydrogen bond forme	ed by a molecule of w	vater in ice is :
	[1] 4	[2] 3	[3] 2	[4] 1
Q.39	Which one of the follow	ing fluorides does not	exist ?	
	[1] NF ₅	[2] PF ₅	[3] AsF ₅	[4] SbF ₅
Q.40	Which has the maximun	n number of unpaired	electrons ?	
	[1] O ₂	[2] O ₂ +	[3] O ₂ ⁻	[3] O ₂ ²⁻
Q.41	The weakest bond of th			
	[1] Ionic bond	[2] Covalent bond	[3] Hydrogen bond	[4] Metallic bond
Q.42	A molecule is formed b		Bond angle in it is :	
	[1] 90°	[2] 109º28'	[3] 90° and 120°	[4] 120°
Q.43	When two ice cubes are forces is responsible to	•	r, they unite to form on	e cube. Which of the following
	[1] Hydrogen bond forma	ation	[2] van der Waal's f	orce
	[3] Covalent attraction		[4] Dipole interaction	
Q.44	The compound with low	est melting point is :		
	[1] SnCl ₄	[2] KCI	[3] AICI ₃	[4] CaCl ₂
Q.45	H ₂ O is :			
	[1] A linear triatomic mo	blecule	[2] An angular triato	mic molecule
	[3] Both of the above		[4] None of the abov	/e
Q.46	Element X is strongly ele The compound formed v		ent Y is strongly electro	onegative. Both are univalent.
	[1] X ⁺ Y ⁻	[2] X ⁻ Y ⁺	[3] X – Y	$[4] X \to Y$

Q.47	Acetylene molecule co	ntains :		
	[1] 5 σ bonds		[2] 4 σ and one π	bonds
	[3] 3 σ and 2 π bonds	3	[4] 2 σ and 3 π b	ond
Q.48	PCl_5 exists but NCl_5	does not because :		
	[1] Nitrogen atom does	s not contain empty or	bitals	
	[2] NCI ₅ is unstable			
	[3] Nitrogen atom is c	omparatively smaller in	size	
	[4] Nitrogen is highly i	nactive		
Q.49	The octet rule is not v	alid for the molecule :		
	[1] CO ₂	[2] H ₂ O	[3] CO	[4] O ₂
Q.50	When NaCl is dissolve	d in water, the sodium	ion becomes :	
	[1] Oxidised	[2] Reduced	[3] Hydrolysed	[4] Hydrated
				0
			C	X *
				9
			\mathbf{C}	
		C	10	
		0.0		
	<u>(</u>	< CO		
	1	•		
	MANA			
	7			

											-									
Qus.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Ans.	2	1	4	2	1	1	1	4	4	3	1	1	4	2	4	2	2	2	2	1
Qus.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
Ans.	1	1	2	4	1	3	2	1	3	3	3	1	4	2	2	2	1	1	1	1
Qus.	41	42	43	44	45	46	47	48	49	50										
Ans.	3	1	1	1	2	1	3	1	3	4										

Answer Key - 1

	Exercis	se # 2	
Q.1	The electronic configuration of four elements a	re given in brackets	
	L(1s ² , 2s ² 2p ¹); M(1s ² , 2s ² 2p ⁵); Q(1s ² , 2s ²)	-	s ² 2p ²)
	The element that would most readily form a d		
	[1] Q [2] M	[3] R	[4] L
Q.2	The electronic configuration of four elements L		
	L (1s ² , 2s ² 2p ⁴); Q(1s ² , 2s ² 2p ⁶ , 3s ² 3s ⁵); F		
	The formulae of ionic compounds that can be		
	[1] L_2P , RL, PQ and R_2Q	[2] LP, RL, PQ and	
	[3] P_2L , RL, PQ and RQ ₂	[4] LP, R_2L , P_2Q ar	
Q.3	In the following which bond will be responsible	E E	
QIO	[1] O – H [2] N–H	[3] S-H	[4] F-H
Q.4	Which compound is highest covalent		
_	[1] LiCl [2] LiF	[3] LiBr	[4] LiI
Q.5	In BeCl ₂ , which type of hybridization is presen		
_	[1] sp [2] sp ²	[3] sp ³	[4] sp ³ d
Q.6	In the following metals which one has lowest p		
		[3] Zinc	[4] Mercury
Q.7	Contrary to other hydrogen halides, hydrogen f	luoride is a liquid bec	ause
	[1] Size of F atom is small	[2] HF is weak acid	Ł
	[3] HF molecule are hydrogen bonded	[4] Fluorine is highly	/ reactive
Q.8	In the following which molecule or ion possesse	es electrovalent, covale	ent and coordinate bond at the
	same time		
Q.9	[1] HCl [2] NH_4^+	[3] CI [_]	[4] H ₂ O ₂
Q.9	The nature of bonding in graphite is [1] Covalent [2] Ionic	[3] Metallic	[4] Coordinate
Q.10	In the following which species does not contai		
Q.10	[1] NH_3 [2] CH_4	[3] H ₂ O	[4] CO ₂
Q.11	As a result of sp hybridization, we get	[0] 1120	[+] 002
Q.11	[1] Two mutual perpendicular orbitals	[2] Two orbitals at f	1800
	[3] Four orbitals in tetrahedral directions	[4] Three orbitals in	
Q.12	The reason for exceptionally high boiling point		the same plane
Q.12	[1] Its high specific heat	[2] Its high dielectric	c constant
	[3] Low ionization of water molecules		g in the molecules of water
Q.13	Which one in the following is not the resonant		ig in the molecules of water
w.10	[1] $O = C = O$ [2] $^{-}O - C \equiv O^{+}$	2	$[4] \cap = \bigcirc = \bigcirc$
Q.14	The bond in the formation of fluorine molecule		
w. 14	[1] Due to s-s overlapping	[2] Due to s-p overla	anning
	[3] Due to p-p overlapping	[4] Due to hybridiza	
	[o] Due to h-h overlabbility		

Q.15	An atom of sodium loses of sodium chloride mole		•	ectron. This result the formation
	[1] Coordinate	[2] Covalent	[3] Electrovalent	[4] Metallic bond
Q.16	Silicon carbide (SiC) is			
	[1] Ionic solid	[2] Molecular solid	[3] Covalent solid	[4] Metallic solid
Q.17	Which type of overlappin	ng results the formation	n of a π bond	
	[1] Axial overlapping of	s-s orbitals	[2] Lateral overlappir	ng of p-p orbitals
	[3] Axial overlapping of	p-p orbitals	[4] Axial overlapping	of s-p orbitals
Q.18	For the formation of cov	alent bond, the different	nce in the value of ele	ctronegativities should be
	[1] Equal to or less that	ın 1.7	[2] More than 1.7	
	[3] 1.7 or more		[4] None of these	
Q.19	The valency of carbon i	s four. On what princi	ple it can be explained	d in a better way
	[1] Resonance	[2] Hybridization	[3] Electron transfer	[4] None of the above
Q.20	Which type of compound	ds show high melting	and boiling points	6
	[1] Electrovalent compou	nds	[2] Covalent compour	nds
	[3] Coordinate compound	ls)
	[4] All the three types of	of compounds have eq	ual melting and boiling	g points
Q.21	Each of the following pa best explained by the co	pordinate covalent bond	d	of the following combination is
	[1] H ₂ + I ₂	[2] Mg + $\frac{1}{2}O_2$	[3] CI + CI	[4] H ⁺ + H ₂ O
Q.22	Select the compound fro	om the following which	dissolves in water	
	[1] CCl ₄	[2] CS ₂	[3] CHCl ₃	[4] C ₂ H ₅ OH
Q.23	-	nding orbitals. Which of	•	on the number of electrons in its is true about it ? The bond
	[2] Has always an integ	ral value		
	[3] Can assume any pos	sitive or integral or fra	ctional value including	zero
	[4] Is a non zero quant	ity		
Q.24	Electrovalent compounds	do not have		
	[1] High M.P. and Low	B.P.	[2] High dielectric co	onstant
	[3] High M.P. and High	B.P.	[4] High polarity	
Q.25	The dipole moment of ch	lorobenzene is 1.73D.	The dipole moment of	p-dichlorobenzene is expected
	to be			
	[1] 3.46 D	[2] 0.00 D	[3] 1.73 D	[4] 1.00 D
Q.26	The bond order of NO r		-	
	[1] 1	[2] 2	[3] 2.5	[4] 3
	['] '			ן דן

Q.27	When two atomic orbita	als combine they form								
	[1] One molecular orbita	al	[2] Two molecular o	rbital						
	[3] Three molecular orb	ital	[4] Four molecular c	orbital						
Q.28	The shape of H ₃ O ⁺ ion	is								
	[1] Linear	[2] Angular	[3] Trigonal planar	[4] Triangular pyramidal						
Q.29	Compound formed by s	p ³ d hybridization will ha	ave structure							
	[1] Planar	[2] Pyramidal	[3] Angular	[4] Trigonal bipyramidal						
Q.30	Which of the molecules	is of V-shaped								
	[1] SO ₂	[2] C ₂ H ₂	[3] SnCl ₄	[4] CO ₂						
Q.31	Which of the following	statement is not correc	ct							
	[1] Hybridization is the	mixing of atomic orbita	als prior to their comb	ining into molecular orbitals						
	[2] sp ² hybrid orbitals a	are formed from two p	atomic orbitals and o	ne s atomic orbital						
	[3] d ² sp ³ hybrid orbitals	are directed towards	the corners of a regula	ar octahedron						
	[4] dsp ³ hybrid orbitals	are all at 90° to one	another							
Q.32	The structure of [Cu(H ₂	O) ₄] ⁺⁺ ion is								
	[1] Square planar	[2] Tetrahedral	[3] Distorted rectang	le [4] Octahedral						
Q.33	Molecular orbital theory	was developed mainly	by							
	[1] Pauling	[2] Pauling and Slat	er [3] Mulliken	[4] Thomson						
Q.34	The bond order of a m	olecule is given by								
	[1] The difference betwee	een the number of elec	trons in bonding and	anti bonding orbitals						
	[2] Total number of electrons in bonding and anti bonding orbitals									
			-	-						
	[4] Half the difference t	between the number of	electrons in bonding a	and anti bonding electrons						
Q.35	Oxygen molecule is par	-								
	[1] Bonding electrons a		ling electrons							
	[2] Contains unpaired e									
	[3] Bonding electrons a		-							
	[4] Bonding electrons a	-	g electrons							
Q.36	The bond order in N_2^+		[2] 2.5	[4] 2						
Q.37	[1] 1	[2] 2	[3] 2.5 es not use sp ³ hybrid							
Q.07	[1] BeF_3^-	[2] OH ₃ ⁺	[3] NH_2^-	_						
Q.38	The sp ³ d ² hybridisation	0	2	e e						
	[1] Square planar geom		[2] Tetrahedral geom							
	[3] Trigonal bipyramidal	geometry	[4] Octahedral geom	 [4] Trigonal bipyramidal [4] CO₂ combining into molecular orbital egular octahedron egular octahedral [4] Thomson and anti bonding orbitals als and anti bonding orbitals and anti bonding electron ing and anti bonding electrons [4] 3 vbrid orbitals in its bonding [4] NF₃ d lead to geometry 						

Q.39	Which of the following c	occurs when two hydro	gen atoms bond with e	each others		
	[1] Potential energy is lo	owered	[2] Kinetic energy is	lowered		
	[3] Electronic motion cea	ases	[4] Energy is absorb	ed		
Q.40	XeF ₂ involves hybridisation	n				
	[1] sp ³	[2] sp ³ d	[3] sp ³ d ²	[4] None of these		
Q.41	A set of molecular orbita	als which is degenerate	e			
	[1] π_y^2 p and π^x^2 p	[2] π_y^2 p and $\pi_z^x^2$ p	[3] π_y^2 p and π_z^2 p	[4] σ 1s and σ 2s		
Q.42	Which molecular orbital	in N ₂ has least energy	y			
	[1] π2p _y	[2] σ2p _z	[3] σ2s	[4] π ^x 2p _x		
Q.43	Which molecule has the	highest bond order				
	[1] N ₂	[2] Li ₂	[3] He ₂	[4] O ₂		
Q.44	The molecular electronic	configuration of H_2^- id	on is			
	[1] (σ1s) ²	[2] $(\sigma 1s)^2 (\sigma^x 1s)^2$	[3] (σ1s) ² (σ ^x 1s) ¹	[4] (σ1s) ³		
Q.45	Octahedral molecular sh	ape exists inh	ybridisation			
	[1] sp ³ d	[2] sp ³ d ²	[3] sp ³ d ³	[4] None of these		
Q.46			ydrogen into free gaseo	us atoms is 208 kcal at 25ºC.		
	[1] 104 kcal	[2] 10.4 kcal	[3] 1040 kcal	[4] 1.04 kcal		
[1] Potential energy is lowered [2] Kinetic energy is lowered [3] Electronic motion ceases [4] Energy is absorbed Q.40 XeF ₂ involves hybridisation [1] sp ³ [2] sp ³ d [3] sp ³ d ² [4] None of these Q.41 A set of molecular orbitals which is degenerate [1] π_y 2p and π^x 2p [2] π_y 2p and π_z 2p [3] π_y 2p and π_z 2p [4] σ 1s and σ 2s Q.42 Which molecular orbital in N ₂ has least energy [1] π 2p _y [2] σ 2p _z [3] σ 2s [4] π^x 2p _x Q.43 Which molecule has the highest bond order [1] N ₂ [2] Li ₂ [3] He ₂ [4] O ₂ Q.44 The molecular electronic configuration of H ₂ ion is [1] (σ 1s) ² [2] (σ 1s) ² (σ ^x 1s) ² [3] (σ 1s) ² (σ ^x 1s) ¹ [4] (σ 1s) ³ Q.45 Octahedral molecular shape exists inhybridisation [1] sp ³ d [2] sp ³ d ² [3] sp ³ d ³ [4] None of these Q.46 Energy required to dissociate 4gm of gaseous hydrogen into free gaseous atoms is 208 kc The bond energy of H-H bond wills be						
		CCC CC)			
		0				
		0				
	C.\	(V)				
	N *	*				
	N					

Answer	Key	-	2

Qus.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Ans.	2	3	4	4	1	4	3	2	1	4	2	4	4	3	3	3	2	1	2	1
Qus.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
Ans.	4	4	3	1	2	3	2	4	4	1	4	1	3	4	2	3	1	4	1	2
Qus.	41	42	43	44	45	46														
Ans.	3	3	1	3	2	1														

	Exe	rcise # 3		
Q.1	Which of the following compounds is not	linear :		[CPMT 1996]
	[1] SnCl ₂ [2] HCl	[3] CO ₂	[4] HgCl ₂	
Q.2	Electrovalent compounds are :			[CPMT 1996]
	[1] Good conductor of electricity	[2] Polar in nature		
	[3] Low M.P. and low B.P.	[4] Easily available		
Q.3	Atomic number of an element is 26. The			[CPMT 1996]
	[1] Ferromagnetism [2] Diamagnetism	[3] Paramagnetism	[4] None of the	
Q.4	Among the following compounds, the one th is :	hat is polar and has the	central atom with s	sp ² hybridisation [IIT 1997]
	[1] H ₂ CO ₃ [2] SiF ₄	[3] BF ₃	[4] HCIO ₂	
Q.5	Which one of the following is having zero	0		[RPMT 1997]
	[1] CCl₄ [2] CH ₃ Cl	[3] CH ₃ F	[4] CHCl ₃	
Q.6	The correct order towards bond angle is :	0	•	[RPMT 1997]
	[1] sp < sp ² < sp ³	[2] sp ² < sp < sp ³	9	
	[3] $sp^3 < sp^2 < sp$	[4] Bond angle does	not depend on h	ybridisation
Q.7	Which bond is strongest :			[RPMT 1997]
	[1] F–F [2] Br–F	[3] CI-F	[4] I–F	
Q.8	Which compound has dipole moment :		[4] NU I	[RPMT 1997]
Q.9	[1] CCl ₄ [2] BF ₃ Which has weakest bond :	[3] CO ₂	[4] NH ₃	[RPMT 1997]
Q.J	[1] Diamond [2] Neon (Solid)	[3] KCI	[4] Ice	
Q.10	Which has a coordinate bond :			[RPMT 1997]
	[1] SO ₃ ²⁻ [2] CH ₄	[3] CO ₂	[4] NH ₃	
Q.11	The geometry and the type of hybrid orbi	ital present about the	central atom in BI	F ₃ is :
			[IIT 98; BHU 01]
	[1] Linear, sp	[2] Trigonal planar, s	sp ²	
	[3] Tetrahedral, sp ³	[4] Pyramidal, sp ³		
		O ⁺¹		
Q.12	Assertion : The electronic structure of O	3 is 0 0^{-1}		[IIT 1998]
	Reason : structure is not allowed	d because octet around	O cannot be exp	panded.
	[1] Both assertion and reason are correct			
	[2] Both assertion and reason are correct		-	
	[3] Assertion is correct but reason is inco		-	
	[4] Assertion is incorrect but reason is co	prrect		
Q.13	Which of the following have both polar an	d nonpolar bonds :		[AIIMS 1997]
	[1] C ₂ H ₆ [2] NH ₄ Cl	[3] HCI	[4] AICI ₃	
Q.14	Which of the following is not paramagneti	c :		[AIIMS 1997]
	[1] S ⁻² [2] N ₂ ⁻	[3] O ₂ ⁻	[4] NO	

			L	OTEMICAE BONDING
Q.15	Which one of the following shows bond in	n silica :		[CPMT 1997]
	[1] _Si–O–Si–O–Si– [2] Si–C–Si–O–Si			
0.16				
Q.16	The number of electrons shared by each		-	[AFMC 1998]
0.47	[1] 2 [2] 3	[3] 4	[4] 5	othered is higher
Q.17	Ethanol and dimethyl ether form a pair of than that of dimethyl ether due to the pre-		e bolling point of	[AIIMS 1998]
	[1] Hydrogen bonding in ethanol	[2] Hydrogen bondir	ig in dimethyl et	
	[3] CH ₃ group in ethanol	[4] CH ₃ group in di		
Q.18	When the hybridisation state of carbon ato hybridised orbitals :	•		angle between the [AIIMS 1998]
	[1] Decreases gradually	[2] Increases gradua	ally	
	[3] Decreases considerably	[4] All of these		
Q.19	The compound containing coordinate bond			[AFMC 1999]
	[1] O ₃ [2] SO ₃	[3] H₂SO₄	[4] All of the	
0.00		<u> </u>		
Q.20	CO_3^{2-} anion has which of the following cha	aracteristics :		[Roorkee 1999]
	[1] Bonds of unequal length	[2] sp ² hybridization	of C atom	
	[3] Resonance stabilization	[4] Same bond ang	les	
Q.21	The correct order of dipole moment is :			[Roorkee 1999]
	[1] $CH_4 < NF_3 < NH_3 < H_2O$	[2] NF ₃ < CH ₄ < N		
	[3] $NH_3 < NF_3 < CH_4 < H_2O$	$[4] H_2 O < NH_3 < N_3$	$NF_3 < CH_4$	
Q.22	Which of the following hydrides are ionic			[Roorkee 1999]
	[a] CaH ₂ [b] BaH ₂ Correct answer is	[c] SrH ₂	[d] BeH ₂	
	[1] a,b,c [2] a,b,c,d	[3] b,c	[4] b,c,d	
Q.23	Highest melting point would be of :			[RPMT 1999]
	[1] He [2] CsCl	[3] NH ₃	[4] CHCI ₃	
Q.24	Maximum covalent character is associated	I with the compound :		[RPMT 1999]
	[1] Nal [2] Mgl ₂	[3] AICI ₃	[4] AlI ₃	
Q.25	According to Fajjan's rule, covalent bond	-		[AIIMS 1999]
	[1] Large cation and small anion	[2] Large cation and	-	
	[3] Small cation and large anion			
Q.26	Assertion (A) : A resonance hybrid is all		any of its cand	
	Reason (R) : This stability is due to delo			[AIIMS 1999]
	[1] Both A and R are true and R is a co	-		
	[2] Both A and R are true but R is not[3] A is true but R is false	a correct explanation of	JIA	
	[4] Both A and R are false			
Q.27	Assertion (A) : Bond order can assume a	any value number inclu	idina zero	[AIIMS 1999]
<u> </u>	Reason (R) : Higher the bond order, shor	-	-	
	[1] Both A and R are true and R is a c	-	•	
	[2] Both A and R are true but R is not	-		
	[3] A is true but R is false	-		
	[4] Both A and R are false			

CHEMICAL BONDING

Q.28	Assertion (A) : Ortho nitrophenol molecules are associated on hydrogen bonding while paranitrophenol involves intramolecular	
	Reason (R) : Ortho nitrophenol is more volatile than the para	a nitrophenol [AIIMS 1999]
	[1] Both A and R are true and R is a correct explanation of	of A
	[2] Both A and R are true but R is not a correct explanation	on of A
	[3] A is true but R is false	
	[4] A is false but R is true	
Q.29	Which compound does not possess linear geometry	[RPET1999]
	[1] $CH_2 = CH_2$ [2] $HC \equiv CH$ [3] $BeCl_2$	[4] CO ₂
Q.30	Which of the following molecule does not show tetrahedral sl	hape [RPET1999]
	[1] CCl ₄ [2] SiCl ₄ [3] SF ₄	[4] CF ₄
Q.31	Which molecule does not show zero dipole moment	[RPET1999]
	[1] BF ₃ [2] NH ₃ [3] CCl ₄	[4] CH ₄
Q.32	The shape of CH ₃ ⁺ species is	[RPET1999]
	[1] Tetrahedral [2] Square planar [3] Trigonal plana	ar [4] Linear
Q.33	Hybridisation state of chlorine in CIF ₃ is	[RPET1999]
	[1] sp^3 [2] sp^3d [3] sp^3d^2	[4] sp ³ d ³
Q.34	Pyramidal shape would be of	[RPET1999]
	[1] NO ₃ ⁻ [2] H ₂ O [3] H ₃ O ⁺	[4] NH ₄ +
Q.35	Which of the following exhibits the weakest intermolecular for	rces [AIIMS1999]
	[1] He [2] HCI [3] NH ₃	[4] H ₂ O
Q.36	The hybridization of atomic orbitals of nitrogen in $\mathrm{NO_2}^+$, NC	-
	[1] sp, sp ³ and sp ² respectively [2] sp, sp ² and	
		d sp respectively
Q.37	Molecular shapes of SF_4 , CF_4 and XeF_4 are	[IIT 2000]
	[1] The same with 2, 0 and 1 lone pairs of electrons respect	
	[2] The same, with 1, 1 and 1 lone pairs of electrons respe	-
	[3] Different, with 0,1 and 2 lone pairs of electrons respectiv	
	[4] Different, with 1,0 and 2 lone pairs of electrons respectiv	
Q.38	The dipole moment of diatomic molecule AB is 0.98 D and its ex character of molecule is	perimental value is 1.4 D. The covalent
	[1] 20 [2] 10 [3] 30	[4] 70
Q.39	In which of the following pairs the two molecules have identi	cal bond order [MPPMT 2000]
	[1] N_2 , O_2^{2+} [2] N_2 , O_2^{-} [3] N_2^{-} , O_2	[4] O ₂ ⁺ , N ₂
Q.40	Which of the following is not conduct electricity in the fused	state [Roorkee 2000]
	[1] BeCl ₂ [2] MgCl ₂ [3] SrCl ₂	[4] BaCl ₂
Q.41	The order of dipole moments of the following molecules is	[Roorkee 2000]
	[1] $CHCl_3 > CH_2Cl_2 > CH_3Cl > CCl_4$ [2] $CH_2Cl_2 > CH_3Cl > CCl_4$	$H_3CI > CHCI_3 > CCI_4$
	$[3] CH_3CI > CH_2CI_2 > CHCI_3 > CCI_4 \qquad [4] CH_2CI_2 > CHCI_4$	$HCI_3 > CH_3CI > CCI_4$
Q.42	How many π -bonds are there in a nitrogen molecule	[RPMT 2000]
	[1] One [2] Two [3] Three	[4] Zero

 Q.43 The geometry of the molecule with sp³d² hybridised centr [1] Square planar [2] Trigonal bi [3] Octahedral [4] Square py Q.44 The bond angle in PH₃ is [1] Much less than NH₃ [2] Equal to the [3] Much greater than NH₃ [4] Slightly gr Q.45 Choose the correct statement [1] Amino polarizations is more pronounced by highly chan [2] Small cation has minimum capacity to polarize an ant [3] Small anion has maximum polarizability [4] None of these Q.46 Which type of bonding exists in Li₂O and CaF₂ respective [1] lonic, lonic [2] lonic, covalent [3] Covalent, [4] Nonpolar solvent is [1] Dimethyl sulphoxide [2] Carbon to [3] Ammonia [4] Ethyl alco 	ipyramidal (RPMT 2000] that of NH ₃ reater than NH ₃ (RPMT 2000] arged cation ion. rely [RPET 2000]
 [1] Square planar [2] Trigonal bi [3] Octahedral [4] Square py Q.44 The bond angle in PH₃ is [1] Much less than NH₃ [2] Equal to the correct statement [3] Much greater than NH₃ [4] Slightly gr Q.45 Choose the correct statement [1] Amino polarizations is more pronounced by highly chances [2] Small cation has minimum capacity to polarize an and [3] Small anion has maximum polarizability [4] None of these Q.46 Which type of bonding exists in Li₂O and CaF₂ respective [1] lonic, lonic [2] Ionic, covalent [3] Covalent, Q.47 Nonpolar solvent is [1] Dimethyl sulphoxide [2] Carbon te 	ipyramidal (RPMT 2000] that of NH ₃ reater than NH ₃ [RPMT 2000] arged cation ion. ely , ionic [4] Coordinate, ionic
 Q.44 The bond angle in PH₃ is [1] Much less than NH₃ [2] Equal to fill [3] Much greater than NH₃ [4] Slightly gr Q.45 Choose the correct statement [1] Amino polarizations is more pronounced by highly cha [2] Small cation has minimum capacity to polarize an ani [3] Small anion has maximum polarizability [4] None of these Q.46 Which type of bonding exists in Li₂O and CaF₂ respective [1] Ionic, Ionic [2] Ionic, covalent [3] Covalent, Q.47 Nonpolar solvent is [1] Dimethyl sulphoxide [2] Carbon te 	[RPMT 2000] that of NH ₃ reater than NH ₃ [RPMT 2000] arged cation ion. ely [RPET 2000] , ionic [4] Coordinate, ionic
 Q.44 The bond angle in PH₃ is Much less than NH₃ Buch greater than NH₃ Slightly gr Q.45 Choose the correct statement Amino polarizations is more pronounced by highly cha Small cation has minimum capacity to polarize an ani Small anion has maximum polarizability None of these Q.46 Which type of bonding exists in Li₂O and CaF₂ respective Ionic, lonic Ionic, covalent Covalent, Q.47 Nonpolar solvent is Dimethyl sulphoxide 	[RPMT 2000] that of NH ₃ reater than NH ₃ [RPMT 2000] arged cation ion. ely [RPET 2000] , ionic [4] Coordinate, ionic
 [1] Much less than NH₃ [2] Equal to 1 [3] Much greater than NH₃ [4] Slightly gr [2] Choose the correct statement [1] Amino polarizations is more pronounced by highly cha [2] Small cation has minimum capacity to polarize an ani [3] Small anion has maximum polarizability [4] None of these [4] Which type of bonding exists in Li₂O and CaF₂ respective [1] lonic, lonic [2] lonic, covalent [3] Covalent, [4] Nonpolar solvent is [1] Dimethyl sulphoxide [2] Carbon te 	that of NH ₃ reater than NH ₃ (RPMT 2000) arged cation ion. rely (RPET 2000) , ionic [4] Coordinate, ionic
 [3] Much greater than NH₃ [4] Slightly gr [2.45 Choose the correct statement [1] Amino polarizations is more pronounced by highly cha [2] Small cation has minimum capacity to polarize an ani [3] Small anion has maximum polarizability [4] None of these [4] Which type of bonding exists in Li₂O and CaF₂ respective [1] Ionic, Ionic [2] Ionic, covalent [3] Covalent, [4] Nonpolar solvent is [1] Dimethyl sulphoxide [2] Carbon te 	reater than NH ₃ [RPMT 2000] arged cation ion. rely [RPET 2000] , ionic [4] Coordinate, ionic
 Q.45 Choose the correct statement [1] Amino polarizations is more pronounced by highly cha [2] Small cation has minimum capacity to polarize an ani [3] Small anion has maximum polarizability [4] None of these Q.46 Which type of bonding exists in Li₂O and CaF₂ respective [1] lonic, lonic [2] lonic, covalent [3] Covalent, Q.47 Nonpolar solvent is [1] Dimethyl sulphoxide [2] Carbon te 	[RPMT 2000] arged cation ion. ely [RPET 2000] , ionic [4] Coordinate, ionic
 [1] Amino polarizations is more pronounced by highly cha [2] Small cation has minimum capacity to polarize an ani [3] Small anion has maximum polarizability [4] None of these Q.46 Which type of bonding exists in Li₂O and CaF₂ respective [1] Ionic, Ionic [2] Ionic, covalent [3] Covalent, Q.47 Nonpolar solvent is [1] Dimethyl sulphoxide [2] Carbon te 	rged cation ion. ely [RPET 2000] , ionic [4] Coordinate, ionic
 [2] Small cation has minimum capacity to polarize an anial [3] Small anion has maximum polarizability [4] None of these Q.46 Which type of bonding exists in Li₂O and CaF₂ respective [1] lonic, lonic [2] lonic, covalent [3] Covalent, Q.47 Nonpolar solvent is [1] Dimethyl sulphoxide [2] Carbon te 	ion. rely [RPET 2000] , ionic [4] Coordinate, ionic
 [3] Small anion has maximum polarizability [4] None of these Q.46 Which type of bonding exists in Li₂O and CaF₂ respective [1] Ionic, Ionic [2] Ionic, covalent [3] Covalent, Q.47 Nonpolar solvent is [1] Dimethyl sulphoxide [2] Carbon te 	ely [RPET 2000] , ionic [4] Coordinate, ionic
 [4] None of these [4] None of these [2] Which type of bonding exists in Li₂O and CaF₂ respective [1] Ionic, Ionic [2] Ionic, covalent [3] Covalent, [2] Nonpolar solvent is [1] Dimethyl sulphoxide [2] Carbon te 	, ionic [4] Coordinate, ionic
 Q.46 Which type of bonding exists in Li₂O and CaF₂ respective [1] Ionic, Ionic [2] Ionic, covalent [3] Covalent, Q.47 Nonpolar solvent is [1] Dimethyl sulphoxide [2] Carbon terms 	, ionic [4] Coordinate, ionic
[1] Ionic, Ionic [2] Ionic, covalent [3] Covalent, Q.47 Nonpolar solvent is [1] Dimethyl sulphoxide [2] Carbon to	, ionic [4] Coordinate, ionic
Q.47Nonpolar solvent is [1] Dimethyl sulphoxide[2] Carbon te	
[1] Dimethyl sulphoxide [2] Carbon to	
	etrachloride
0.48 Glycerol has strong intermolecular bonding therefore it is	[RPET 2000]
[1] Sweet [2] Reactive [3] Explosive	[4] Viscous
Q.49 Resonance hybrid of nitrate ion is	[4] VISCOUS
$\begin{bmatrix} 1 \end{bmatrix} \xrightarrow{-1/2} O \xrightarrow{\dots} O^{-1/2} \qquad \begin{bmatrix} 2 \end{bmatrix} \xrightarrow{-2/3} O \xrightarrow{-2/3} O \xrightarrow{-1/2} \qquad \begin{bmatrix} 2 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	O ^{-2/3}
[3] - ^{1/3} O [4] - ^{2/3} O [4]	
Ö ^{-1/3}	Ö ^{-2/3}
2.50 The electronic configuration of COCl ₂ is	[RPET 2000]
Ö	
[1] : ĊI ĊI ĊI: [2] : ĊI :: C : Ŏ ĊI: [3] : ĊI : Ŏ : Ċ	:CI: [4] None of these
Q.51 Which of the following has tetrahedral structure	[CPMT 2000]
	[4] None of these
Q.52 Which of the following is the correct reducing order of bo	•
[1] $NH_3 < CH_4 < C_2H_2 < H_2O$ [2] $C_2H_2 > NH_3$	
$[3] NH_3 > H_2O > CH_4 < C_2H_2$	$[4] H_2OCH_4$
2.53 The correct order of the O–O bond length in O_2 . H_2O_2 a	
$[1] O_2 > O_3 > H_2O_2 [2] O_3 > H_2O_2 > O_2 [3] O_2 > H_2O_2$	
Q.54 An atom with atomic number 20 is most likely to combine number is	
[1] 11 [2] 14 [3] 16	[4] 10
Q.55 Bond formed in crystal by anion and cation is	[CBSE 2000]

Q.56	The single, double and triple bond lengt	hs of carbon in carbon dioxide	are respectively
	[1] 1.15, 1.22 and 1.10Å	[2] 1.22, 1.15 and 1.10Å	
	[3] 1.10, 1.15 and 1.22 Å	[4] 1.15, 1.10 and 1.22 /	Å [AIIMS 2000]
Q.57	Shape of BF ₃ molecule is		[CPMT 2001]
	[1] Linear [2] Planar	[3] Tetrahedral [4]	Square pyramidal
Q.58	The correct order of hybridization of the	central atom in the following	o . o
	and BCl_3 is	101	[IIT 2001]
	[1] dsp ² , dsp ³ , sp ² and sp ³	[2] sp^3 , dsp^2 , dsp^3 , sp^2	
0.50	[3] dsp^2 , sp^2 , sp^3 , dsp^3	[4] dsp^2 , sp^3 , sp^2 , dsp^3	
Q.59	The common features among the specie		[IIT 2001]
	[1] Bond order three and isoelectronic	[2] Bond order three and	
0.00	[3] bond order two and π -acceptors	[4] Isoelectronic and weak	
Q.60	The number of S–S bonds in sulphur tr	0 0	[IIT 2001]
0.64	[1] Three [2] Two	[3] One [4]	
Q.61	Which of the following pairs has same s		[BHU 2001] NH ₄ ⁺ and SO ₄ ²⁻
Q.62	[1] PH_3 and BCI_3 [2] SO_2 and NH_3 Which of the following is a polar compo		[AIIMS 2001]
Q.02	[1] HF [2] HCl		H ₂ SO ₄
Q.63	The smallest bond angle is found in		[AIIMS 2001]
Q.00	[1] IF_7 [2] CH_4	[3] BeF ₂ [4]	BF ₃
Q.64	Assertion (A) : Diborane is electron def	-	[AIIMS 2001]
Q.04	Reason (R) : There are no enough valence		
	[1] Both A and R are true and R is a	-	
	[2] Both A and R are true but R is no	-	
	[3] A is true but R is false	·	
	[4] Both A and R are false		
Q.65	The bond order is not three for		[CBSE 2001]
	[1] N ₂ ⁺ [2] O ₂ ²⁺	[3] N ₂ [4]	NO ⁺
Q.66	Which of the following has $p\pi$ -d π bonding		[CBSE 2002]
	[1] NO ₃ [2] CO ₃ ⁻²	[3] BO ₃ ⁻³ [4]	SO ₃ ⁻²
Q.67	In H_2O_2 molecule, the angle between the		[CBSE 2002]
	[1] 90° [2] 101°	[3] 103 ^o [4]	105°
Q.68	As the s-character of hybridisation orbitation	al increases, the bond angle	[BHU 2002; RPMT 2002]
	[1] Increases [2] Decreases	[3] Becomes zero [4]	Does not change
Q.69	Which of the following has the highest of	dipole moment	[AIIMS 2002]
	H CH ₃	CH ₃ H I I	CI CH ₃
	$\begin{bmatrix} 1 \end{bmatrix} \xrightarrow{H} C = O \qquad \begin{bmatrix} 2 \end{bmatrix} \xrightarrow{I} C = C$	[3] $\dot{C} = \dot{C}$ [4]	Ċ = Ċ
	··· H / · · · · · · · · · · · · · · · ·		
	I I CH ₃ H	$ \begin{array}{cccc} CH_{3} H \\ I & I \\ [3] C = C \\ I & I \\ CH_{3} H \end{array} $ [4]	I I CH ₃ CI

Q.70	Which of the following arrangement of m	olecules is correct on	the basis of thei	r dipole moments
	[1] BF ₃ > NF ₃ > NH ₃	[2] NF ₃ > BF ₃ > N	IH ₃	
	[3] NH ₃ > BF ₃ > NF ₃	[4] NH ₃ > NF ₃ > E	BF ₃	[AIIMS 2002]
Q.71	Which of the following molecule has high	est bond energy		[AIIMS 2002]
	[1] F – F [2] C – C	[3] N – N	[4] O – O	
Q.72	Number of sigma bonds in one of its res	sonance structure of P	_t O ₁₀ is	[AIEEE 2002]
	[1] 6 [2] 7	[3] 17	[4] 18	
Q.73	Which of the following statements is true)		[AIEEE 2002]
	[1] HF is less polar than HBr	[2] Absolutely pure	water does not	contain any ions
	[3] Chemical bond formation take place w	when forces of attraction	overcome the f	orces of repulsion
	[4] In covalency transference of electron	takes place		
Q.74	In which of the following species is the	interatomic bond angle	is 109º28'	[AIEEE 2002]
	[1] NH ⁺ ₄ , BF ₄ ⁻ [2] (NH ₄) ⁺ , BF ₃	[3] NH ₃ , BF ₄	[4] (NH ₂) ⁻¹ , E	3F ₃
Q.75	The energy that opposes dissolution of a	solvent is	0	[CPMT 2002]
	[1] Hydration energy [2] Lattice energy	[3] Internal energy	[4] Bond ene	rgy
Q.76	Which of the following is weakest bond			[CPMT 2002]
	[1] Ionic [2] Covalent	[3] Metallic	[4] van der V	Vaal
Q.77	The bond angle of water is 104.5° due t	0		[CPMT 2002]
	[1] Repulsion between lone pair and bon	d pair [2] sp ³ hybridiza	ition of O	
	[3] Bonding of H ₂ O	[4] Higher electrone	gativity of O	
Q.78	Which of the following is correct for $\mathrm{N_2}$:	triple bond		[CPMT 2002]
	[1] 3σ [2] 1π, 2σ	[3] 2π, 1σ	[4] 3π	
Q.79	Coordinate bond is absent in			[RPMT 2002]
	[1] BH ₄ ⁻ [2] CO ₃ ⁻²	[3] H ₃ O+	[4] NH ₄ +	
Q.80	The values of electronegativity of atoms A	A and B are 1.20 and 4	.0 respectively.	
	ionic character of A–B bond is	[2] 55 20/	[4] 70 040/	[MP PET 2003]
Q.81	[1] 50% [2] 43% The bond energies of H–H and CI–CI are	[3] 55.3%	[4] 72.24%	tively ALL for LCL
Q.01	is 91 kJ mol ^{-1} . The bond energy of HCl		ku mor respec	[MP PET 2003]
	[1] 427 kJ [2] 766 kJ	[3] 285 kJ	[4] 245 kJ	
Q.82	Which of the following has dsp ² hybridiza			[MP PET 2003]
	[1] NiCl ₄ ²⁻ [2] SCl ₄	[3] NH ₄ +	[4] PtCl ₄ ²⁻	
Q.83	Which of the following compounds has co	oordinate (dative) bond	·	[RPET 2003]
	[1] CH ₃ NC [2] CH ₃ OH	[3] CH ₃ CI	[4] NH ₃	
Q.84	Which of the following have highest melti	-	*	[RPET 2003]
	[1] Alkali metals	[2] Transitional meta	als	
	[3] Alkaline earth metals	[4] All of these		

Q.85	True order of bond angle is		[RPET 2003]
	[1] $H_2O > H_2S > H_2Se > H_2Te$	[2] H ₂ Te > H ₂ Se >	$H_2S > H_2O$
	[3] $H_2S > H_2O > H_2Se > H_2Te$	[4] H ₂ O > H ₂ S > H	₂ Te > H ₂ Se
Q.86	Which of the following has highest melting	point	[RPET 2003]
	[1] BeCl ₂ [2] MgCl ₂	[3] CaCl ₂	[4] BaCl ₂
Q.87	Which of the following compounds doesn't	have linear structure	[RPET 2003]
	[1] CO ₂ [2] SO ₂	[3] BeCl ₂	[4] C ₂ H ₂
Q.88	Which of the following compounds has lea	st dipole moment	[RPET 2003]
	[1] PH ₃ [2] CHCl ₃	[3] NH ₃	[4] BF ₃
Q.89	Which of the following statements is not the	rue for ionic compound	ds [RPET 2003]
	[1] High melting point	[2] Least lattice ene	rgy
	[3] Least solubility in organic compounds	[4] Soluble in water	
Q.90	Which of the following is Lewis acid		[RPET 2003]
	[1] BF ₃ [2] NH ₃	[3] PH ₃	[4] SO ₂
Q.91	Water has high boiling point because		[CPMT 2003]
	[1] It has higher molecular weight	[2] It has more lattic	ce energy
	[3] It is weak acid	[4] It associated with	n hydrogen bonding
Q.92	$\rm H_2O$ is a liquid while $\rm H_2S$ is gas due to	G	[BHU 2003]
	[1] Covalent bonding	[2] Molecular attraction	on
	[3] H-bonding	[4] H-bonding and m	olecular attraction
Q.93	Isoelectronic species are)	[BHU 2003]
	[1] N ³⁻ , O ²⁻ [2] Na ⁺ , Ca ²⁺	[3] O ²⁻ , C ²⁻	[4] K ⁺ , Na ⁺
Q.94	H-bonding is maximum in		[BHU 2003]
	[1] С ₆ Н ₅ ОН [2] С ₆ Н ₅ СООН	[3] CH ₃ CH ₂ OH	[4] CH ₃ COCH ₃
Q.95	Diamond exists as		[BHU 2003]
	[1] Planner [2] Octahedral	[3] Tetrahedral	[4] None of these
Q.96	CO is isoelectronic with		[AFMC 2003]
	[1] NH ₃ [2] N ₂	[3] O ₂	[4] NO ₂
Q.97	The structure of H_2O_2 is		[AFMC 2003]
	[1] Planar [2] Non-planar	[3] Linear	[4] Three dimensional
Q.98	The correct order of bond angle (smallest	- •	
		[2] NH ₃ < H ₂ S < S	
	[3] $H_2S < NH_3 < SiH_4 < BF_3$	[4] H ₂ S < SiH ₄ < N	IH ₃ < BF ₃
Q.99	The bond order in NO is 2.5 while that in	NO ⁺ is 3. Which of th	-
	these two species ?		[AIEEE 2004]
	[1] Bond length is unpredictable [2] Bond length in NO is greater than in	NO+	
	[3] Bond length in NO ⁺ is equal to that in		
	[4] Bond length in NO ⁺ is greater than in		

CHEMICAL BONDING

Q.100	Which of the follo	owing has the regula	r tetrahedral structure ?		[AIEEE 2004]
	[1] [Ni(CN) ₄] ⁻²	[2] SF ₄	[3] BF ₄ ⁻	[4] XeF ₄	
Q.101	Which of the follo	wing molecules has	trigonal planer geometry	y ?	[CPMT 2005]
	[1] IF ₃	[2] PCI ₃	[3] NH ₃	[4] BF ₃	
Q.102	Which chloride i 1s ² 2s ² 2p ⁶ 3s ² 3s ⁶ 3	-	ement X whose atoms	have the electro	onic configuration [VITEEE 2005]
	[1] X ₂ Cl	[2] XCI	[3] XCl ₂	[4] XCl ₃	
Q.103	Which one of the	following species is	diamagnetic in nature	?	[AIEEE 2005]
	[1] H ₂	[2] He ₂ +	[3] H ₂ ⁻	[4] H ₂ +	
Q.104	Lattice energy of	an ionic compound	depends upon		[AIEEE 2005]
	[1] Size of the ic	on only	[2] Charge on th	e ion only	
	[3] Charge on the	e ion and size of the	e ion [4] Packing of io	ons only	
Q.105	The molecular sh	apes of SF ₄ , CF ₄ ar	nd XeF ₄ are	$\dot{\sim}$	[AIEEE 2005]
	[1] the same with	n 1, 1 and 1 lone p	air of electrons on the	central atoms resp	ectively
	[2] the same with	n 2, 0 and 1 lone p	airs of electrons on the	central atom, resp	pectively
	[3] different with	1, 0 and 2 lone pair	rs of electrons on the c	entral atom, respe	ctively
	[4] different with	0, 1 and 2 lone pair	rs of electrons on the c	entral atom, respe	ctively
Q.106	The number and	type of bonds betwe	en two carbon atoms in	calcium carbide ar	re [AIEEE 2005]
	[1] 1σ, 2π	[2] 1σ, 1π	[3] 2σ, 2π	[4] 2σ, 1π	
Q.107	Which of the followi	ng hydrogen bonds is t			[AIEEE 2007]
0 400	[1] O – H O	[2] O – H F		[4] F – H F	
Q.108			diamagnetic behaviour?	[4] () +	[AIEEE 2007]
	[1] O ₂	[2] NO	[3] O ₂ ²⁻	[4] O ₂ +	
		Ans	wer Key - 3		

Answer Key - 3

Qus.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Ans.	1	2	1	1	1	3	1	4	4	1	2	2	2	1	1	2	1	2	4	2
Qus.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
Ans.	1	1	2	4	3	1	2	4	1	3	2	3	2	3	1	2	4	3	1	1
Qus.	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
Ans.	4	2	3	1	1	1	2	4	3	1	2	2	4	3	1	2	2	2	1	4
Qus.	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
Ans.	4	1	1	1	1	4	1	1	1	4	2	4	3	1	2	4	1	3	2	4
Qus.	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100
Ans.	4	4	1	2	1	4	2	4	2	1	4	3	1	3	3	2	2	3	2	3
Qus.	101	102	103	104	105	106	107	108												
Ans.	4	3	1	3	3	1	4	3												