Chemical Bonding

1. OCTET RULE (LEWIS-KOSSEL RULE)

Noble gases have 8 electron in their outermost shell (complete octet) and outermost configuration is ns²p⁶. Every atom has a tendency to complete its octet by losing or gaining or by sharing electron.

1.1 Exceptions of Octet Rule

- (i) Electron-Deficient Compounds : Compounds having less than 8 electrons in the outermost shell of the central atom. e.g. BF₃, BeCl₂, AlCl₃.
- (ii) Expansion of Octet : The compounds having more than 8 electrons in the outermost shell of the central atom. e.g PCl₅, SF₆
- (iii) Transition Metal lons : Transition metal ions have 9 to 18 electrons in their outermost shell, e.g. Cr⁺³, Mn⁺², Cu⁺
- (iv) H and Li atoms attain configuration like He by gaining and losing one electron, respectively, e.g. H⁻¹, Li⁺¹.
- (v) Odd Electron Bond : Compounds having unpaired electron are also exceptions to the octet rule. The molecules having odd electrons are NO₂, NO, CIO_2 , O_2^{-1} etc.
- **Ex.1** Octet rule is not followed in :

[1] Ti+3	[2] Na+1	[3] Ca+2	[4] K ⁺¹	Ans. [1]
----------	----------	----------	---------------------	----------

- Sol. Ti⁺³ has 9 electron in its outermost shell.
- Ex.2Which of the following compounds has the central atom with incomplete octet ? $[1] NH_4^{+1}$ $[2] BCI_3$ $[3] CCI_4$ $[4] PCI_3$ Ans. [2]
- **Sol.** B has 6 electron in BCl_3 .
- **Ex.3** An element forms cation by losing electron. The configuration of the cation may be like that of :

[1] inert gas	[2] pseudo inert gas	[3] inert pair	[4] all above	Ans. [4]
i i i ilieit uas		ISTILIEILDAII	141 all apove	AU2.141
		Leg e ches		

Sol. Inert gas – 8 electron in outermost shell. Pseudo inert gas – 18 electron in outermost shell.

1.2 Inert Pair Configuration

The heavy elements of IIIA, IV A and V A groups form cations having charge equal to group number and two less than group number, e.g. Ti^{+1} , In^{+1} , Sn^{+2} , Pb^{+2} . In these elements due to more penetration power of s orbitals, the atom generally does not lose e⁻ present in ns orbital, so only np electrons are lost by the atom. This effect is called "inert pair effect".

2. IONIC BOND

- (i) Atoms get established by ion formation in formation of an ionic bond. One atom forms a cation by losing electrons and other forms anion by accepting electrons.
- (ii) The octets of the atoms are completed by transfer of electrons.
- (iii) Cations and anions are bonded by electrostatic force of attraction in ionic bond.
- (iv) Ionic bond is formed between metals (cations) and nonmetals (anions).
- (v) During the formation of an ionic bond, cation can attain one of the following configurations.
 - (a) Inert Configuration : I A and II A group metals (octet configuration) Na⁺¹, Mg⁺², K⁺¹, Rb⁺¹ attain s²p⁶ inert configuration.
 - (b) Pseudo Inert Configuration : Metals of I B and II B groups Cu⁺, Zn⁺², Ag⁺¹, Au⁺¹, Cd⁺², Hg⁺².
 - (c) Transition metals, e.g. Ti⁺³ (9), Ti⁺² (10).

(vi) Energies involved in ionic bond formation :

(a) Sublimation Energy – The energy required to convert solid metal to gaseous state.

$$Na(s) \xrightarrow{+S.E.} Na(g)$$

- (b) Ionisation Energy The energy required to remove an electron from the outermost shell of metal in gaseous state.
- (c) Dissociation Energy The energy required to convert the nonmetal molecule to atoms.

 $CI - CI + Dissociation Energy \longrightarrow 2CI$

- (d) Electron Affinity The energy required during formation of an anion by addition of an electron to a nonmetal in gaseous state.
- (e) Lattice Energy -
 - (i) The energy released during the formation of ionic bond.
 - (ii) Cations and anions form crystal lattice of ionic crystal in space by electrostatic force of attraction.

(iii) Lattice Energy $\propto \frac{1}{r^+ + r^-}$

(f) lonic compound is formed when the energy required (Sublimation energy + lonisation energy + Dissociation energy) is less than energy released (Electron affinity + Lattice energy) So total energy change

$$-\Delta H = S + I + \frac{D}{2} - E - U$$

(Borne-Haber Equation)

2.1 Factors Affecting Formation of Ionic Bond

- (a) The sublimation energy and ionisation potential of a metal should be minium so that it may easily form a cation.
- (b) The dissociation energy and electron affinity of a nonmetal should be high so that if may easily form an anion.
- (c) There should be a strong electrostatic force of attraction between cation and anion.
- (d) Metals have low ionisation potential and nonmetals have high electron affinity, so ionic bond is formed between metals and nonmetals.

2.2 Characteristic of Ionic Compounds

(i) Solid and Crystalline Structure :

Ionic compounds do not show molecular structure.

lonic compounds have definite crystal structures.

CsCl has body centered cubic (BCC) structure.

(ii) Melting and Boiling Point :

Ionic compounds have high melting and boiling points.

(iii) Hardness:

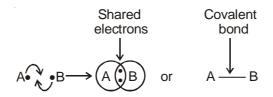
Ionic compounds are solid with brittle nature.

(iv) Conductivity :

lons are not free in solid state so ionic compounds are bad conductor of electric current in solid state but in solution and fused state electric current passes through and the ionic compound becomes good conductor of electricity

(v) Solubility of Ionic Compounds :

lonic compounds are soluble in solvents which have high dielectric constant like water.


(vi) Solvation of Hydration Energy :

The energy released by the attraction of ions and solvent molecules is called solvation energy and when solvent is water this is called hydration energy.

Solubility in water = Lattice energy < Hydration energy

3. COVALENT BOND

A covalent bond is formed between two nonmetal atoms. e.g. in H–H, O=O and N=N.

Formation of a covalnet bond

(a) Nonpolar Covalent Bonds :

Covalent bond between two identical atoms (e.g. H–H, O=O) electronegativity of both atom is same.

(b) Polar Covalent Bond :

When covalent bond is formed between two different atoms. e.g. HCl, HF

3.1 Characteristics of Covalent Compounds

1. Physical State :

Covalent compounds generally occur in gaseous and liquid states, but sometimes in solid state also.

(a) Diamond :

- (i) In the structure of diamond, every carbon atom is attached to four other carbon atoms, tetrahedrally.
- (ii) Density of diamond is high.
- (iii) Every carbon atom is sp³ hybridised and forms four C–C σ bond by sp³–sp³ overlapping
- (iv) Electrons are not free, so diamond is bad conductor of electricity.
- (v) Oxidation number of C in diamond is zero

(b) Graphite :

- (i) In the structure of graphite, every carbon atom is attached to three other carbon atoms forming hexagonal layers.
- (ii) Every carbon atom is sp² hybridised and forms three σ bonds by sp²-sp² overlapping.
- (iii) Every carbon atom has one free electron. So graphite is a good conductor of electricity
- (iv) C–C bond length is 1.42 Å in plane.

2. Boiling and Melting Points :

Melting and boiling points of covalent compounds are generally low due to weak van der Waals forces between molecules.

3. Conductivity :

Covalent compounds are bad conductors of electricity.

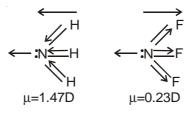
- **Ex.4** F₂ and Cl₂ are gases, Br₂ is liquid and l₂ is solid why?
- **Sol.** Intermolecular distance is high in gaseous state, low in solid state and intermediate in liquid state. When molecular weight increases, van der Waals forces also increase. So F₂ and Cl₂ are gases due to weak van der Waals forces and I₂ is solid.

- CHCl₃ is liquid but CHl₃ is solid. Why ? Ex.5
- Sol. Due to increase in molecular weight, intermolecular force in CHI₃ is greater than in CHCI₃.
- Ex.6 CO₂ is gas but SiO₂ is solid. Why ?
- CO₂ has only weak van der Walls forces, but in SiO₂, one silicon atom is surrounded by four oxygen atoms Sol. tetrahedrally forming macromolecular structure. So SiO, is sold.
- **Ex.7** H₂O is liquid but H₂S is a gas. Why ?
- H₂O is liquid due to strong H-bonding. Sol.
- NH, can be liquefied easily but PH, is not. Why? **Ex.8**
- Sol. H-bonding present in NH₃, while PH₃ is nonpolar due to same value of electronegativity of P and H.

4. **DIPOLE MOMENT**

Polarity of bond is measured by dipole moment. The product of charge (e) and internuclear distance (d) between two poles of polar molecule is called dipole moment (μ). The unit of dipole moment is Debye (D). $\mu = e.d.$

Percentage of ionic character = $\frac{\mu(obs.)}{\mu(cal.)} \times 100 [1D = 10^{-18} \text{ e.s.u cm}]$

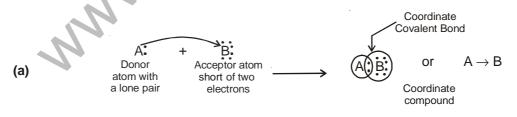

- Dipole moment of nonpolar compounds is zero. (i)
- (ii) When the electronegativity difference of atoms in compounds increases dipole moment also increases.
- If the structure of a compounds is symmetric like linear, trigonal planer & Tetrahedral the dipole moment will be (iii) zero. e.g. BF_3 , BCI_3 , CF_4 , CCI_4 , CH_4 etc.
- Structure of CHCl₃, CH₂Cl₂, CHCl₃, CH₃F is tetrahedral, but due to different bonds, dipole moment will not be (iv) zero.
- What will be the dipole moment of HCl if d = 1.34 Å and charge = 4.8×10^{-10} esu? Calculate ionic character of Ex.9 the bond when observed value of μ is 1.08D.
- Sol. $\mu_{(cal.)}$

= e.d.
=
$$4.8 \times 10^{-10} \times 1.34 \times 10^{-8}$$

$$= 6.4 \times 10^{-18}$$
 esu cm

Percentage of ionic character = $\frac{1.08 \times 10^{-18}}{6.40 \times 10^{-18}} \times 100 = 16.88\%$

- Ex.10 Dipole moment of NH₃ is greater than that of NF₃.
- Sol. N–H bond moment and lone pair moment in NH₃ add up because they are in NF₃ ionisation lone pair moment and N-F bond moment are in opposite direction. So dipole moment will decrease.



Dipole Moments of some Compounds

					CHEMICAL BONDING	
Ex.11	Which of the foll	owing compounds sh	ould have zero dipo	le moment.		
	[1] CO	[2] CCI ₄	[3] NH ₃	[4] CH ₃ Cl	Ans. [2]	
Sol.	Tetrahedral geo	metry of CCI_4 in which	four C–CI bond mc	ments balance each othe	r.	
Ex.12	Which of the foll	owing compounds sh	ould have higher dij	oole moment than the rem	aining three?	
	[1] HF	[2] H ₂ O	[3] NH	₃ [4] NF ₃	Ans. [2]	
Sol.	Higher dipole m	oment of H ₂ O is due t	o H-bonding.			
5.	BOND PAIR	AND LONE PAIR	L.			
(i)	In covalent com	pounds, the number of	of bond pairs is equa	al to the number of shared	pairs of electron.	
		Numbe	er of bond pairs = Nu	mber of bonds		
(ii)	The electron pair, which does not participate in bond formation, is called lone pair.					
(iii)	$\mathbb{N}_{\equiv}\mathbb{N}_{\ast}$ (N ₂) 2 lone pairs and 3 bond pairs.					
(iv)	: CI – CI: (CI ₂) 6 lone pairs and 1 bond pairs.					
Ex.13	What are the nu	imbers of lone pairs a	nd bond pairs in H_2	D ₂ molecule ?		
		H—	 -О—О—Н			
Sol.		Lone pair =	4, Bond pair = 3			
Ex.14	What are the nu	imbers of lone pairs a	nd bond pairs on B	in BF, ?		
Sol.		Lone Pair =	0, Bond Pair = 3	3		
6.	COORDINAT	E BOND OR DAT	IVE BOND OR	COORDINATE COVA	LENT BOND	

CHEMICAL BONDING

- (i) Coordinate bond is formed by unequal sharing of electron pair between two atoms, one of which, called the donor atom, provides the electron pair and the other atom, called the acceptor atom, receives that electron pair.
- (ii) The donor should have complete octet with a lone pair of electrons and acceptor atom should have incomplete octet and a vacant orbital to accept the electron pair.

It is also known as *Dative Bond*, according to Scientist, Menzie.

- (iii) Formation of covalent bond is essential before formation of coordinate bond.
- (iv) This bond is different from a covalent bond, in the latter one electron provided by each of the bonding atoms.
- (v) Coordinate bond is also different from ionic bond because electrons are not completely transferred.
- (vi) In this bond, electrons are donated only in the form of pairs.
- (vii) Electron pair is provided by only one atom and shared equally by both the atoms. So according to Sugden it is a polar bond.

- (viii) Once a coordinate bond is formed, there remains no difference between the coordinate and covalent bonds. So the property of coordinate compounds are similar to those of covalent compounds.
- **Ex.15** Which of the following compounds has coordinate bond?
 - [1] Methyl cyanide [2] Methyl isocyanate [3] Methyl cyanate [4] None of these Ans. [3]
- **Sol.** $CH_3C\equiv N \rightarrow O$

S. No.	Name of the Compound	Formula	Structure	
1,	Sulphur dioxide	SO ₂	S=O ↓ O	
2	Sulphur trioxide	SO3	0 < s→0 0	
3.	Hydronium ion	Н ₃ О'	[H−O−H ↓ H	
4	Anumonium ion	NH₄	$\begin{bmatrix} H \\ I \\ H-N-H \\ \downarrow \\ H \end{bmatrix}$	
5.	Sulphuric acid	H2SO4	о ↑ н-о-s-о-н ↓ о	
6.	Nitric acid	HNO3	H−O−N=O ↓ O	
7.	Carbon monoxide	со	c≦o	
8,	Sulphate ion	SO4 ⁻²	0 0s-0- ↓	
9	Chlorate ion	CIO4-1	0 ↑ 0-Ci→0	
10.	Perchloric acid	HClO4	0 ↑ HO-CI→0 ↓ 0	
11.	Carbonate ion	CO3 ⁻²	0 c- 0 0	
12.	Carbonic acid	H ₂ CO ₃	H-O-C-O-H 0	
13	Phosphate ion	PO4 ⁻³	0 ↑ 0 ⁻ P = 0 ⁻ 1 0 ⁻	

Structures of Some Compounds

S. No.	Name of the Compound	Formula	Structure
14.	Orthophosphoric acid	H3PO4	О НО-Р-О-Н О-Н
15.	Sulphuric chloride	SO ₂ CI ₂	ci−s−ci
16.	Hypophosphorous acid	H ₃ PO ₂	H H-O-P→O H
17.	Orthophosphurous acid	Н ₃ РО3	О ↑ H-Р-О-Н О-Н
18.	Thiosulphate ion	\$203 ⁻²	$\begin{bmatrix} 0 \\ \uparrow \\ 0 - s - 0 \\ \downarrow \\ s \end{bmatrix}^{3}$
19.	Dicromate ion	Cr ₂ O ₂ ⁻²	0 0 - ↑ ↑ - 0
20.	Permangnate ion	MnO ₄	$ \begin{array}{c} 0 \\ \uparrow \\ 0 - Mn - 0 \\ \downarrow \\ 0 \end{array} $
21.	Dichloro septoxide	Cl ₂ O ₂	0 0 ↑ ↑ 0← ci-o-ci→0 ↓ ↓ 0 0
22.	Nitrogen pentoxide	N ₂ Os	0 ≪N-P-N→ 0 0 0
23.	Nitrogen trioxide	N ₂ O ₃	0 ↑ 0=N-N=0
24.	Nitrus oxide	N ₂ O	N≡N→O

CHEMICAL BONDING

S. No.	Name of the Compound	Formula	Structure
25.	Nitromethane	CH ₃ NO ₂	CH ₃ −N=O ↓ O
26.	Methyl nitrite	CH ₃ NO ₂	CH3-O-N=O
27.	Methyl isocyanide	CH3NC	$H \\ \\ H - C - N \ge C \\ \\ H$
28.	Ozone	O ₃	0-0
29.	Methyl cyanide	CH ₃ CN	H = H = H

S. No.	Name of the Compound	Formula	Structure
30.	Methyl cyanate	CH₃CNO	H = H = H = H
31.	Methy isocyanate	CH ₃ NCO	CH ₃ -N=C=O
32.	Fluoroborate ion	BF4 ⁻¹	$\begin{bmatrix} F \\ I \\ F - B \leftarrow F \\ I \\ F \end{bmatrix}^{-1}$
33.	Pyrophosphoric acid	$H_4P_2O_7$	ОО М М H-O-P-O-P-O-H I ОО I H H H
34.	Anhydrous aluminium chloride	Diameric Al ₂ Cl ₆ or Halogen- bridge compound	

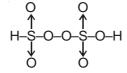
6.1 Characteristics of Coordinate Compounds

- (i) These compounds show partial ionic character due to polar nature.
- (ii) Melting and boiling points of these compounds are less than those of ionic compounds are less then those of ionic compounds and more than those of covalent compounds.
- (iii) **Solubility**: These are partially soluble in water (polar solvent) and soluble in nonpolar solvents.
- (iv) Conductivity : Coordinate compounds are bad conductor of electricity due to absence of ions.
- (v) **Stability :** These are stable due to polar nature. When bonding molecules are independently stable, the coordinate bond is less stable, e.g. in $H_3N \rightarrow BF_3$ molecule, the coordinate bond is less stable because NH_3 and BF_3 are themselves stable.

6.2 Compounds Having Ionic, Covalent and Coordinate Bonds

Some compounds have all the three types of bonds, i.e. ionic, covalent and coordinate bond, e.g.

(i) NH_4CI – Ionic bond between NH_4^+ and CI^- and covalent bonds and a coordinate bond are present in NH_4^+ .


7. IONIC CHARACTER IN COVALENT COMPOUNDS

- (i) When electronegativity difference of two atoms is less than 0.8, the covalent bond is nonpolar, e.g. PH₃.
- (ii) When electronegativity difference of atoms is 0.1 to 0.8, the bond between them is nonpolar covalent bond. When electronegativity difference of atoms is 0.8 to 1.6, the bond between them is polar covalent bond. Then electronegativity difference is 1.7 to 3.2, the bond is ionic.

Ionic character \propto Electronegativity difference of bonded atoms

- (iii) Pauling used dipole moment for depicting percentage of polarity and ionic character of the bond. According to Pauling, a bond can never be 100% ionic.
- (iv) When electronegativity difference between two atoms is 2.1, there is 50% ionic character in the bond.

When electronegativi	ty difference is zero (ident	ical atoms), the bond will	be 100% covalent.	
		of ionic character of a pola	r covalent bond can be calc	culated with
	% Ionic character :	$= (0.16\Delta + 0.035\Delta^2) \times 100$)	
W		,		
Atomic number of A, I	B and C are Z, Z + 1 and Z			ould be the
[1] Ionic	[2] Coordinate	[3] Covalent	[4] Hydrogen bond	Ans. [1]
		as and Z for halogen. Sir	nce A is halogen and C is a	lkali metal,
		ell of an element A and six	electrons in that of B. What	compound
[1] A ₂ B ₃	[2] AB ₂	[3] A ₆ B ₆	[4] All of the above	Ans. [1]
A has 3 electrons in c be Al ₂ O ₃ , i.e. A ₂ B ₃ .	outermost shell, like Al. B	has 6 electrons in outerr	nost shell, like O, their con	npound will
Compound having da	tive and covalent bond, is a			
[1] SO ₂	$[2] NH_4CI$	[3] CuSO ₄ , 5H ₂ O	[4] AgCl	Ans. [1]
All the three types of bonds in SO_2 .	bonds are present in NH_4	Cl and $CuSO_4$, ionic bond	in AgCI and both dative ar	nd covalent
Compound formed by	the elements having ator	mic number 6 and 16, will	be :	
[1] Ionic	[2] Covalent	[3] Coordinate	[4] Hydrogen bonded	Ans.[2]
Atomic number 6 = C	arbon ; Atom	ic number 16 = Sulphur		
The compound will be	CS_2 (covalent)	-		
Diamond and graphite	e are :			
[1] isotone	[2] isomers	[3] isotope	[4] allotropes	Ans.[4]
Diamond and graphite	e are allotropic forms of ca	rbon.		
Which of the following	compounds has ionic an	d covalent bonds ?		
[1] NaCN	[2] CO ₂	[3] NaCl	[4] N ₂	
⊕ ⊖ Na C≡N			-	
Inorganic graphite is :				
[1] boron nitrate	[2] boron nitride (BN)	[3] boron carbonate	[4] None of the above	Ans. [2]
In disulphuric acid (H ₂	S_2O_7), the number of cove	alent bonds and coordinat	e bonds, respectively, are	
[1] 6 and 4	[2] 6 and 6	[3] 4 and 4	[4] 4 and 6	Ans. [1]
Structure of $H_2S_2O_7$ is	5			
	According to Haney at help of the following end W Atomic number of A, I nature of bond between [1] Ionic (Z + 2) stands for alka the nature of bond will Three electrons are pro- will be formed by A at [1] A ₂ B ₃ A has 3 electrons in or be Al ₂ O ₃ , i.e. A ₂ B ₃ . Compound having da [1] SO ₂ All the three types of I bonds in SO ₂ . Compound formed by [1] Ionic Atomic number 6 = Ca The compound will be Diamond and graphite [1] isotone Diamond and graphite [1] NaCN \textcircled{m} $\stackrel{\odot}{R}$ $\stackrel{\odot}{R}$ Inorganic graphite is : [1] boron nitrate In disulphuric acid (H ₂ [1] 6 and 4	According to Haney and Smith, the percentage of help of the following expression. % Ionic character = Where Δ = Electronegativity Atomic number of A, B and C are Z, Z + 1 and Z nature of bond between A and C ? [1] Ionic [2] Coordinate (Z + 2) stands for alkali metal, (Z + 1) for inert g the nature of bond will be ionic. Three electrons are present in the outermost she will be formed by A and B ? [1] A_2B_3 [2] AB_2 A has 3 electrons in outermost shell, like AI. B be Al_2O_3 , i.e. A_2B_3 . Compound having dative and covalent bond, is [1] SO_2 [2] NH_4Cl All the three types of bonds are present in NH_4Cl bonds in SO_2 . Compound formed by the elements having atom [1] lonic [2] Covalent Atomic number 6 = Carbon ; Atom The compound will be CS_2 (covalent) Diamond and graphite are [1] isotone [2] isomers Diamond and graphite are allotropic forms of card Which of the following compounds has ionic and [1] NaCN [2] CO_2 $\begin{tabular}{lllllllllllllllllllllllllllllllllll$	According to Haney and Smith, the percentage of ionic character of a polahelp of the following expression. % Ionic character = $(0.16\Delta + 0.035\Delta^2) \times 100$ Where Δ = Electronegativity difference between bond Atomic number of A, B and C are Z, Z + 1 and Z + 2, respectively, and C nature of bond between A and C? [1] Ionic [2] Coordinate [3] Covalent (Z + 2) stands for alkali metal, (Z + 1) for inert gas and Z for halogen. Since the nature of bond will be ionic. Three electrons are present in the outermost shell of an element A and six will be formed by A and B? [1] A_2B_3 [2] AB_2 [3] A_6B_6 A has 3 electrons in outermost shell, like Al. B has 6 electrons in outerm be Al_2O_3 , i.e. A_2B_3 . Compound having dative and covalent bond, is : [1] SO_2 [2] NH_4Cl [3] $CuSO_4$, $5H_2O$ All the three types of bonds are present in NH_4Cl and $CuSO_4$, ionic bonds bonds in SO_2 . Compound formed by the elements having atomic number 6 and 16, will [1] lonic [2] Covalent [3] Coordinate Atomic number 6 = Carbon ; Atomic number 16 = Sulphur The compound will be CS_2 (covalent) Diamond and graphite are : [1] isotone [2] isomers [3] isotope Diamond and graphite are : [1] isotone [2] covalent $Corealent bonds$? [1] NaCN [2] CO_2 [3] NaCl $\[mathebreak]$ and $\[mathebreak]$ [3] boron carbonate In organic graphite is : [1] boron nitrate [2] boron nitride (BN) [3] boron carbonate In disulphuric acid ($H_2S_2O_7$), the number of covalent bonds and coordinate In disulphuric acid ($H_2S_2O_7$), the number of covalent bonds and coordinate I [1] 6 and 4 [2] 6 and 6 [3] 4 and 4	% lonic character = $(0.16 \Delta + 0.035 \Delta^2) \times 100$ Where Δ = Electronegativity difference between bonded atoms.Atomic number of A, B and C are Z, Z + 1 and Z + 2, respectively, and C is an alkali metal. What she nature of bond between A and C?[1] lonic[2] Coordinate[3] Covalent[4] Hydrogen bond(Z + 2) stands for alkali metal, (Z + 1) for inert gas and Z for halogen. Since A is halogen and C is a the nature of bond will be ionic.[3] Covalent[4] Hydrogen bondThree electrons are present in the outermost shell of an element A and six electrons in that of B. What will be formed by A and B ?[1] A_2B_3 [2] AB_2[3] A_nB_6 [4] All of the aboveA has 3 electrons in outermost shell, like Al. B has 6 electrons in outermost shell, like O, their con be Al_Q_3, i.e. A_2B_3 .Compound having dative and covalent bond, is :[1] SO_2[2] NH_Cl[3] CuSQ_1, SH_2O[4] AgClAll the three types of bonds are present in NH_4Cl and CuSQ_2 honic bond in JgCl and both dative ar bonds in SQ_2.Compound formed by the elements having atomic number 6 and 16, will be :[1] Ionic[2] Covalent[3] Coordinate[4] Hydrogen bondedAtomic number 6 = Carbon : Atomic number 16 = SulphurThe compound formed by the allotropic forms of carbon.Which of the following compounds has ionic and covalent bonds ?[1] Ionic[2] isomers[3] isotope[4] allotropesDiamond and graphite are allotropic forms of carbon.Which of the following compoun

Ex.24 When electronegativity difference of B and Cl is 1.0, the % ionic character in the bond will be :

[1] 10% [2] 19.5% [3] 30% [4] 45.5% Ans. [2] Sol. $\Delta = 1.0$ % ionic character $= (0.16 \times 1 + 0.035 \times 1^2) \times 100$ $= 0.195 \times 100 = 19.5\%$ Ex.25 What should be the percentage ionic character in CsF when electronegativity difference is 3.3? [3] 93.3% [2] 0.09% [4] 95.7% [1] 90.9% Ans. [1] Sol. % ionic character $= (0.16 \times 3.3 + 0.035 \times 3.3^2) \times 100$ = 90.9% What is the increasing order of ionic character in H_2O , H_2S and H_2Se ? Ex.26 Sol. Electronegativity difference is maximum in H and O. So H₂Se < H₂S < H₂O Ex.27 What is the increasing order of ionic character in OF, and Cl₂O? Sol. Electronegativity difference in F–O is greater then in O–Cl. .: Cl₂O < OF 8. COVALENT CHARACTER IN IONIC COMPOUNDS (FAJJAN'S RULE) Some ionic compound show that covalent character by polarization of anion

(i) Size of Cation : Size of cation must be small

Covalent character $\approx \frac{1}{\text{Size of cation}}$

ionic character ~ Size of cation

(ii) Size of Anion : Size of anion must be large

Covalent character ~ Size of anion

Ionic character $\propto \frac{1}{\text{Size of anion}}$

(iii) Charge on Cation and Anion :

Covalent character \propto Charge on cation and anion

(iv) Inert and Pseudo Inert Structures :
 Configuration of cations must be equal to pseudo inert type [ns⁰ (n − 1) d¹⁰] e.g. Cu⁺, Ag⁺, Au⁺, Zn²⁺, Cd⁺², Hg⁺², Pb⁺⁴ etc.

- Ex.28 AgCl is white, AgBr is yellow and AgI is deep yellow, why ?
- **Sol.** I⁻ is largest, so polarization of I⁻ by Ag⁺ is maximum and the shared electrons are easily transferred to higher energy level in visible light. So AgI is deep yellow. But in chloride, electrons are transferred easily. So AgCI is colourless similarly.
 - (i) $SnCl_2$ is white but SnI_2 is yellow.

(ii) $PbCl_2$ is white but PbI_2 is yellow.

(iii) HgCl_2 is white but HgI_2 is red.

(iv) SbCl₃ is white but SbI₃ is black.

8.1 Applications of Fajjans Rule

Due to polarization of anion compounds gives a specific colour.

8.1.1 Ionic Potential

(i) It is represented by ϕ and is only for cation.

Ionic potential = $\frac{\text{Charge on cation}}{\text{Size of cation}}$

- (ii) When the size of cation is small and the charge is high, the value of ϕ is high and the polarizing power of cation is also high.
- (iii) In a period, radius decreases but charge increases. So ϕ increases and the covalent character of the bond increases.

$$Li^+ < Be^{+2} < B^{+3} < C^{+4}$$

8.1.2 Application of Ionic Potential

(a) Nature of Bond :

(i) When $\sqrt{\phi}$ < 2.2, the bond is ionic

Example – NaCl, KCl, RbCl, BaCl₂, CaCl₂, SnCl₂, etc.

(ii) If $\sqrt{\phi} > 2.2$, the bond is covalent.

Example - LiCl, BeCl₂, BCl₃, etc,

Covalent character $\propto \sqrt{\phi}$

(b) Acidic and Basic Nature of Metal Oxides :

(i) If $\sqrt{\phi}$ < 2.2, the oxide is basic.

Example - Oxides of groups I A and II A.

Basic character of oxides $\propto \frac{1}{\sqrt{\phi}}$

(ii) If $\sqrt{\phi} = 2.2$ to 3.2, the oxide is amphoteric.

Example - Oxides of groups III A and IV A

(iii) If $\sqrt{\phi} > 3.2$ then oxide will be acidic

Example - Oxides of V A, VI A and VII A

(c) Boiling and Melting Points of Compounds :

In a group, $\sqrt{\phi}$ decreases and the ionic character also increases. Therefore, melting points and boiling points increase.

(d) Nature of Metal Halides :

When $\sqrt{\phi}$ of metal < 2.2, the ionic character and conductivity increase and when $\sqrt{\phi}$ > 2.2, the covalent character increases and conductivity decreases.

Formation of complex ion $\propto \sqrt{\phi}$

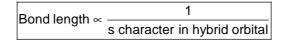
Ex.29 Which of the following compounds has minimum melting point?

[1] $PbCl_2$ [2] $SnCl_2$ [3] NaCl [4] SnF_4 **Ans. [4]**

Sol. Covalent character \propto Charge on cation

Ex.30	Which of the f	ollowing compounds has	maximum n	nelting point	?	
	[1] CaF ₂	[2] CaCl		3] CaBr	[4] Cal ₂	Ans. [1]
Sol.	2	, so CaF, is most ionic. Th	nus, melting	point and b	oiling point are maximum.	
		-		-		
		Ionic	character •	$\sim \frac{1}{\text{Size of an}}$	lion	
Ex.31					e compounds is least soluble	
	[1] MgS	[2] Na ₂ S	-	3] NaCl	[4] MgCl ₂	Ans. [1]
Sol.	Mg ⁺² (small ca	ation) and S ⁻² (large anion), therefore	, MgS is cov	alent, so least soluble in pol	ar solvents.
Ex.32	Melting point	of SnCl ₂ is 606° while me	lting point of	f SnCl ₄ is 11	4ºC. Why ?	
Sol.	SnCl ₄ is cova	lent due to small size of S	n ⁺⁴ .			
Ex.33	Which of the f	following compounds has	least ionic o	character?		
	[1] NaCl	[2] BaCl ₂	[3] KCI		[4] HgCl ₂	Ans. [4]
Sol.	Hg⁺² is pseud	o inert ion, but others are	inert ions.			
9.	BOND LEN	IGTH		•		
	The distance	between nuclei of two bor	nded atoms	is called bor	nd length.	
	Factors effect	ing Bond Length		C		
1.	Radius of Bo	onded Atoms :				
	Bond length in	ncreases with increase in	radii of the b	bonded atom	ns.	
		H–	0-H < H-S	–H < H–Se–	-H	
2.	Difference B	etween Electronegativit	y of Two B	onded Ator	ns :	
	Bond length c	an be determined by the r		n by Shoem	naker and Stevension.	
		$d_{A-B} = r_A + r_B -$	0.09 (Δ)			
		d _{A-B} = Bond lea	ngth r	_A = Radius c	of A	
			r	_в = Radius o	of B	

 $\overline{\Delta}$ = Difference in electronegativity of A and B.


3. Bond Order :

Bond length of single bond is greater than that of the double bond and bond length of double bond is greater than that of triple bond.

C - C	>	C = C >	$C \equiv C$
1.54 Å		1.34 Å	1.20Å
$C \equiv C$	>	$C \equiv N >$	$N \equiv N$

4. Hybridization :

When s character in hybrid orbitals increases, bond length decreases, because s orbital as attracted by the nucleus with greater force.

or bond length $\propto p$ character in hybrid orbital

Ans. [4]

- **Ex.34** Which of the following statements is not true ?
 - [1] N–N bond length in N_2 is less than in NH_2 – NH_2

[2] O–O bond length in O_3 is less than in H_2O_2

[3] Bond length in H–Cl is greater than in H–F

[4] Bond length in H₂S is greater than in H₂Se

- **Sol.** Electronegativity of S is greater than that of Se. So bond length in H₂S is less than bond length in H₂Se.
- $\textbf{Ex.35} \quad \text{Correct order of bond length of N-H in NH}_3\text{, and bond length of N-F in NF}_3\text{ is :}$

[1] N - H = N - F [2] N - F < N - H [3] N - F > N - H [4] None of these **Ans. [3**]

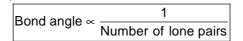
Sol. The electronegativity difference of N–F is less than that in N–H. So N–H bond is more polar.

10. BOND ANGLE

Bond angle between two adjacent bonds in a molecule is called bond angle. Factors effecting Bond Angle

1. Type of Hybridization :

Bond angle depends on hybridization of an atom. Increasing order of bond angle is as follows :


	sp ³ <	sp ²	< sp
Hybridization	sp ³	Sp ²	sp
Bond angle	109º28'	120°	180º

Bond angle \propto s – character in hybrid orbitals

Bond angle ∝	1
bonu angle ∝	p-character in hybrid orbitals

2. Lone Pair of Electrons :

Bond angle decreases with increase in the number of lone pairs on the central atom.

3. Electronegativity of Central Atom :

Bond angle will be high if the electronegativity value of the central atom is high.

Bond angle ∝ Electronegativity of central atom

Molecule	H ₂ O	H ₂ S	H ₂ Se
Bond angle	105°	92°	37.5°

11. BOND ENERGY

The energy released during formation of one mole gaseous substance from two neutral gaseous species is called bond energy of the bond formed.

(a) Dissociation Energy :

The energy required to dissociate the bond into two neutral atoms is called dissociation energy.

(b) Bond Energy :

More than one bond is present in a polyatomic molecule. So, the average of bond dissociation energies of different bonds is called bond energy.

O-H

<

F–H

11.1 Factors Affeting Bond Energy

C-H

<

(1) Atomic Radius :

Bond energy decreases with increase in atomic size because overlapping decreases.

<

Bond energy $\propto \frac{1}{\text{atomic radius}}$

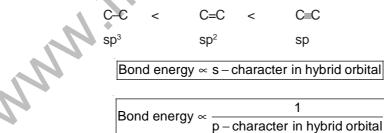
N–H

(2) Bond length :

Bond energy increase with decrease in bond length because of more effective orbital overlap.

CI-CI > F-F > Br-Br > I-I

Bond energy $\propto \frac{1}{\text{Bond length}}$


(3) Polarity of the Bond :

Bond energy increases with polarity of bond and polarity depends on difference in electronegativity.

HF > HCl > HBr > HI

(4) Hybridization :

Bond energy increases with increase in s-character or decrease in p-character in hybrid orbital.

(5) Bond Order :

Bond energy increases with bond order.

$N \equiv N >$	O = O >	H - H
C≡C >	C = C >	C – C

Ex.36 Highest bond energy will be.

[1] F – F	[2] CI – CI	[3] I – F	[4] Br – Br	Ans. [2]

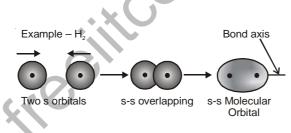
Sol. Due to small size of F atoms, electron-electron (l.p.) repulsion will be effective, so bond energy of F₂ will be less than Cl₂.

Ex.37 NF₃ is more stable than NCl₃. Why ?

Sol. NF₃ is more polar than NCl₃. So bond energy of will be higher.

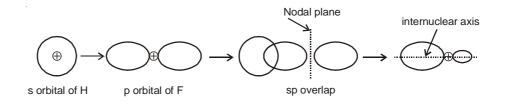
- **Ex.38** The bond energy of I₂ and Cl₂ is 150.6 and 247.8 kJ./mole. Calculate the bond energy of ICl bond.
- **Sol.** $I_2 = 150.6$ $Cl_2 = 247.8$

I = 75.3 Cl = 123.9


ICl = 75.3 + 123.9 = 199.2 KJ/mole.

12. OVERLAPPING

- (i) Overlapping does not take place in ionic bond, only takes place in covalent bond.
- (ii) The orbitals of unpaired electrons overlap in the formation of covalent bond.
- (iii) When overlapping is coaxial, a σ bond is formed and when overlapping is collateral, a π bond is formed.
- (iv) A σ bond is stronger than a π bond.
- (v) A π bond is never formed along as it is very weak. It is formed after a σ bond is formed.
- (vi) s-Orbital always forms σ bond.


12.1 Types of Overlapping

(i) s-s Overlapping – When two s orbitals of two atoms each having an unpaired electron, participate in overlapping, it is called s-s overlapping.

Formation of H₂ by s-s overlapping

(ii) **s-p Overlapping** – When s orbital of an atom and p orbital of the other atom, each having one unpaired electron, participate in overlapping, a sausage-shaped σ molecular orbital is formed.

(iii) **p-p Overlapping** – Two p orbitals can form either a σ bond or a π bond by different type of overlapping. When overlapping of p orbital is coaxial, a σ bond is formed and when it is collateral, a π bond is formed.

	$F = 1s^2, 2s^2, 2p^5$	
	$X \longrightarrow p_x \text{ orbital} \longrightarrow (Coaxial of Coaxial of Coaxia of Coaxial of Coaxial of Coaxial o$	p_x orbital overlap
		Nodal plane Nuclear axis
	The order of bond strength is 1. p–p (coaxial) > s–p >	
	2. p-p (coaxial) > p-p- (collad	
Ex.39	Four bonds are never formed between two atoms. Why?	
Sol.	There are three axes (x, y and z) perpendicular to each other collateral overlapping and one σ bond is formed by coaxial over atoms can be three and never four.	
Ex.40	p-p Overlapping is not possible in :	
Sol.	[1] Cl ₂ [2] O ₂ [3] N ₂ p-Orbital is not present in H atom.	[4] H ₂ Ans. [4]
Ex.41	A σ bond is formed in $O_{_2}$ by overlapping of :	
	[1] $2p_y - 2p_z$ [2] $2p_y - 2s$ [3] $2p_z - 2s$	s [4] $2p_z - 2p_z$ Ans. [4]
Sol.	Extent of $p_y - p_z$ and $p_y - s$ overlapping is zero.	
Ex.42	Which of the following orbitals will form a weak bond by the ov	verlapping?
	[1] $sp^2 - sp^2$ [2] $sp^2 - s$ [3] $s - s$	[4] p – p (coaxial) Ans. [3]
Sol.	Due to non directional character of s orbital, bond formed by s	s-s orbitals will be weak.
Ex.43	Which of the following overlapping will form a π bond ?	
	[1] sp-p [2] sp ² -s [3] sp ³ -sp ³	³ [4] None of these Ans. [4]
Sol.	Hybrid orbitals always form a σ bond.	
13	VALENCE BOND THEODY	

13. VALENCE BOND THEORY

This theory was first put forward by **Heitler and London** in 1927.

- (i) Covalent bond is formed between atoms by sharing of unpaired electrons of the outermost shell in order to attain greater stability.
- (ii) The valency of an element depends on the number of unpaired electrons in its outermost orbit.

In order to explain bond angle and geometry of molecules, valence shell electron pair repulsion theory was forward by Gillepsie and Nyholm.

- (iii) The valency of an element depends on the number of unpaired electrons in its outermost orbit and the same number of bonds will be formed by overlapping of orbitals, e.g. 1 for F, 1 for H, etc.
- (iv) The elements, which have empty orbitals, can increase their covalency by excitation of electrons.
- (v) Orbitals of unpaired electrons come closer in such a direction that maximum overlapping can occur and stronger bond is formed.
- (vi) The electron cloud formed by overlapping is localized in between the two atoms.
- (vii) If unpaired electrons are present in different orbitals, the orbitals make hybrid orbitals by hybridization before bond formation and these hybrid orbitals form stronger σ bond by overlapping.

(i) Geometry of the molecule depends on the numbers of lone pairs and bond pairs on the central atom.

- (1) *l.p.-l.p.* Repulsion When there are two *l.p.* on the central atom, the bond angle decreases due to *l.p.-l.p.* repulsion.
- (2) b.p.-*l*.p. Repulsion When a *l*.p. is present on the central atom, this will repel b.p. so bond angle will decrease.

The decreasing order of repulsions is as fallows

$$\ell.p.-\ell.p. > b.p.-\ell.p. > b.p.-b.p.$$

14. HYBRIDIZATION

- (1) Hybridization occurs in the central atom of a compound, e.g. in CH_4 , H_2O .
- (2) Generally, the orbitals of the outermost shell of the central atom participate in hybridization.
- (3) In hybridization, all types of orbitals (empty and half-filled and fully-filled) can participate.
- (4) If the orbitals participating in hybridization have paired electrons, the new orbitals formed will also have paired electrons.
- (5) The σ bonds formed by hybrid orbitals are strong and their orientation is different in space.
- (6) All hybrid orbitals are generally identical having one larger lobe and one smaller lobe.

Total no. of hybrid orbitals = No. of σ bonds + No. of lone pairs

- (7) In hybridization, the orbitals of the outermost shell of central atom having almost equal energy, combine and form new hybrid orbitals of identical energy.
- (8) The number of hybrid orbitals formed will be equal to the number of orbitals participating in hybridization e.g. 2,
 3 and 4 hybrid orbitals are formed in sp, sp² and sp³ hybridization, respectively.
- (9) Orbitals having unpaired electrons overlap for pairing and overlapping occurs in the orbitals having paired electrons.
- (10) Bond pair is formed by overlapping of hybrid orbitals. So lone pair or bond pair is present in a hybrid orbital.
- (11) The hybridization of central atom of a molecule can be determined by the following formula.

Total no. of hybrid orbitals = No. of σ bonds + No. of lone pairs

(12) Hybrid orbitals have directional property, so more the directional property of hybrid orbital, stronger will be the bond formed : $sp < sp^2 < sp^3 < sp^3d < sp^3d^2 < sp^3d^3$

14.1 Types of Hybridisation

sp³ Hybridisation :

- (i) In this hybridisation, one s orbital and three p orbitals join up and form four sp³ hybrid orbitals of same energy.
- (ii) The geometry of the compound will be tetrahedral and bond angle will be about 109° 28'.e.g. CH₄,CCl₄ & Diamond

sp² Hybridisation :

- (i) One s and two p orbitals join up and form three new sp^2 hybrid orbitals.
- (ii) The geometry of the molecule will be trigonal and bond angle will be 120°.

Examples – BF_3 , BCI_3 , BH_3 , C_2H_4 and graphite.

sp Hybridisation :

- (i) In sp hyrbridisation, one s orbital and one p orbital join up and form two sp hybrid orbitals of equal energy.
- (ii) Geometry of along sp hybrid orbital will be linear and bond angle will be 180°.
- (iii) Two σ bonds will be formed by sp hybridised atom.
- (iv) The dipole moment will be zero.

Examples $-BeF_2$, $BeCl_2$, C_2H_2 , CO_2 etc.

sp³ d Hybridisation :

One s, three p and one d orbitals join up and form five sp³d hybrid orbitals of same energy.

Example – PCl_5 , CIF_3 , SF_4 , XeF_2 , $TeCl_4$, ICl_2 etc.

sp³d² Hybridisation :

One s, three p and two d orbitals combine and form six sp³ d² hybrid orbitals of same energy.

 $\mathsf{Example} - \mathsf{SF}_6, \mathsf{CIF}_5, \mathsf{XeF}_4, \mathsf{IF}_4, \mathsf{SiF}_6^{-2}, \mathsf{ICI}_4^{-}.$

sp³d³ Hybridisation :

One s, three p and three d orbitals join up and form seven new sp³d³ hybrid orbitals of same energy. Example – IF_{γ} , SeF₆, etc.

Ex.44 Which of the following molecules is bent?

[1] CO_2 [2] O_3 [3] N_2O [4] None of these **Ans.** [2]

Sol.

- **Ex.45** What is the type of hybridisation in H_3O^+ ?
- **Sol.** O atom is sp³ hybridised and has one lone pair. Its geometry is pyramidal.

Ground state $O^8 = 1s^2$, $2s^2 2p^4$

↑↓	1↓	î↓	ţ↑
sp ³	sp ³	sp ³	sp ³
<i>ℓ</i> .p.	¥ H⁺	I Н	l H

Hybrised state

Geometry – Pyramidal

Bond angle – 107°

Ex.46 Which of the following species is planar?

	[1] [⊕] _{NH4}	Θ [2] BF ₄	[3] XeF ₄	[4] SiCl ₄	Ans. [3]
Sol.	Types of hybridisation a	are sp ³ in $\mathbf{N}\mathbf{H}_{4}^{+}$, $\mathbf{B}\mathbf{F}_{4}^{-}$ and	SiCl ₄ and sp ³ d ² in XeF ₄ .		
Ex.47	Which of the following i	ons has tetrahedral geom	netry?		
	[1] Na⁺	[2] NH ₄ ⁺	[3] Mg ⁺²	[4] CO ₃ ⁻²	Ans. [2]
Sol.	NH ₄ ⁺ is sp ³ hybridisation	n so structure will be tetra	ahedral.	. .	
Ex.48	What should be the geo	metry of the molecule wh	nen there are three bond	pairs and one lone pair on	the central
	atom ?				
	[1] Tetrahedral	[2] Pyramidal	[3] Trigonal	[4] Octahedral	Ans. [2]
Sol.	For example, NH_3 has t	hree N–H bond pair and	one lone pair. Its geometr	y is trigonal pyramidal.	
Ex.49	Which of the following r	nolecules has sp² hybrid	isation on N atom ?		
	[1] NH ₃		[3] N ₂ H ₄	[4] All of the above	Ans. [2]
Sol.	Nitrogen atom in CI-N	= O has one lone pair, tw	o σ bond pairs and one π	bond pair. So, N atom is i	n a state of
	sp ² hybridisation.				
Ex.50	If hybridisation on Co a	tom is sp³d², the geomet	ry of $[Co(NH_3)_6]^{+3}$ will be s	similar to that of :	
	[1] SiF ₆ ⁻²	[2] SF ₆	[3] both 1 and 2 [4] No	ne of these	Ans. [3]
Sol.	S is in a state of sp ³ d ² hybridisation in SiF ₆ ⁻² and SF ₆ and the geometry of sp ³ d ² and d ² sp ³ will be octahedral.				

14.2 Hybridisation in Transition Metal Ions

In sp³d hybridisation, d orbital of the outermost orbit participates. But in dsp³ hybridisation, the d orbital of inner orbit (n - 1), which is vacant in transition elements, participates.

S.No.	Molecule or Ion	Hybridisation	Geometry	
1.	Diamond	sp³	Tetrahedral	
2.	CH ₄	sp ³	Tetrahedral	
3.	H ₂ O	sp ³	Angular	
4.	H ₂ Se	sp ³	Angular	
5.	OF ₂	sp ³	Angular	
6.	Cl ₂ O	sp ³	Angular	
7.	NH ₃	sp³	Pyramidal	
8.	NF ₃	sp ³	Pyramidal	
9.	PH ₃	sp³	Pyramidal	
10.	SO ₄ ⁻²	sp³	Tetrahedral	
11.	NH ₄ +	sp³	Tetrahedral	
12.	H ₃ O⁺	sp ³	Pyramidal	
13.	BH_3	sp ²	Trigonal planar	
14.	BCl ₃	sp ²	Trigonal planar	
15.	BF ₃	sp ²	Trigonal planar	
16.	CO ₃ ⁻²	sp ²	Trigonal planar	
17.	NO ₃ ⁻¹	sp ²	Trigonal planar	
18.	Graphite	sp ²	hexagonal layer structure	
19.	SO ₃	sp ²	Trigonal planar	
20.	SnX ₂	sp ²	Angular	
21.	BeCl ₂	sp	Linear	
22.		sp	Linear	
23.	ZnCl ₂	sp	Linear	
24.		sp	Linear	
25.	H–C ≡ N	sp	Linear	
26.	$N\equivN\toO$	sp	Linear	
27.	PCI ₅	sp³d	Trigonal bipyramid	
28.	SF ₄	sp³d	Distorted trigonal Pyramidal	
29.	CIF3	sp³d	T shaped	
30.	XeF2	sp³d	Linear	
31.		sp³d	Linear	

14.3 Hybridisation, Geometry of Some Molecules and Ions

15. MOLECULAR ORBITAL THEORY

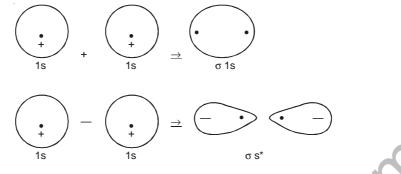
- (a) There is another approach to chemical bonding known as molecular orbital theory (MOT) developed by Muliken (1932) and Hund. Which explains the bonding characteristics in a better way.
- (b) The molecular orbital theory considers the entire molecule as a unit with all the electrons moving under the influence of all the nuclei present in the molecular.
- (c) This approach recognizes that each electron belongs to the molecule as a whole and may move within the entire molecule.

15.1 Important Features of M.O.T.

- (i) Like an A.O. (atomic orbital) which is around the nucleus of an atom there are M.O. (Molecular orbital) which are around the nuclei of a molecule.
- (ii) The molecular orbitals are entirely different from the atomic orbitals from which they are formed.
- (iii) The molecular orbitals possess different energy levels like atomic orbitals in an isolated atom.
- (iv) The shape of molecular orbitals are dependent upon the shapes of atomic orbitals from which they are formed.
- (v) Molecular orbitals are arranged in order of increasing energy just like atomic orbitals.
- (vi) The number of molecular orbitals formed is equal to the number of atomic orbitals combining in bond formation.
- (vii) Like atomic orbitals, the filling of electron in molecular orbitals is governed by the three principles such as Aufbau principle, Hund's rule and Pauli's exclusion principle.

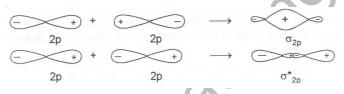
15.2 Conditions for atomic orbitals to form M.O.

- (i) The combining A.O. should be a comparable energy
- (ii) The combining atomic orbitals must overlap to a large extent greater the overlap, stable is the molecule formed.

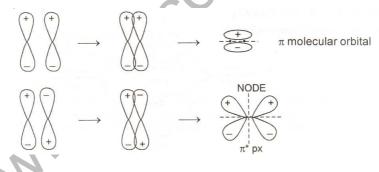

15.3 Different between A.O. and M.O.

A.O. (Atomic orbital)	M.O. (Molecular Orbital)
1. An e^- in an A.O. is under the influence	An e ⁻ in a M.O. is under the influence
of only one nucleus.	of nuclei of two or more atoms of a molecule.
2. Their existence is because of inherent	These are formed by the combination of atomic
property of the atoms	orbitals of comparable energies
3. They are less stable than bonding M.O.	They are less or more stable than A.O.
Which are more stable than antibonding M.O.	
4. They have simple shapes	They have complex shapes
5. They are represented by s, p, d, f	They are represented by $\sigma, \sigma^*, \pi, \pi^*$ etc.

15.4 Formation of Bonding and Antibonding Molecular orbitals (LCAO method)


- (i) An electron in an atom is described by a wave function, ψ called an atomic orbitals. Similarly, the behavior of an electron in a molecule is described by a molecular wave function called molecular orbitals.
- (ii) Quantum mechanics shows that linear combination of two functions gives, not one but two combination and hence two molecule orbitals; a bonding orbital and an antibonding orbital.
- (iii) Such an orbital. Obviously cannot lead to the formation of a chemical bond and is therefore, termed as an antibonding M.O. combination of atomic orbitals-sigma (σ) and Pi (π) molecular orbitals.
- (iv) In the M.O. theory, orbitals are identified as σ or π depending upon the type of the symmetry of the molecular orbital.

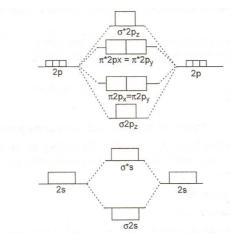
- (v) A sigma (σ) M.O. is one that has cylindrical symmetry around the internuclear axis, i.e. it does not show any change of sigma on rotation through 180° about the axis.
- (vi) It can be said that a sigma M.O. has no nodal plane (in which the electron density is zero) along the inter nuclear axis.



Formation of σ 1s and σ^* is bonding anti bonding M.O.

- (vii) The bonding orbital is designated simply as σ orbital and antibonding as σ^* .
- (viii) Such a sigma (σ) orbital is also formed when any two p-atom itals overlap in end -on (along their axes) position.

(ix) Since the energy of a molecular orbital is directly related to the number of nodal planes, the π -orbital is more energetic then the σ -orbital. The explains why a π -bond is weaker bond then a σ -bond.



15.5 Relative energies of M.O. and filling of e-

(i) Two general criteria, which determine the energy of the molecular orbitals are

(i) Initial energy of the atomic orbitals

- (ii) The extent of the overlap of the atomic orbitals
- (ii) It is obvious that molecular orbitals formed from lower energy atomic orbitals have lower energy than the molecular orbitals formed from higher energy atomic orbitals.
- (iii) As the σ overlap is much more effective than π -overlap, σ p-molecular orbital is of lowest energy, even through originally all the three π -orbitals are of equal energy.
- (iv) The relative energies of the M.O. are obtained experimentally from spectroscopic data.
- (v) The sequence in the order of increasing energy is given below i.e., for more than N₂. $\sigma^{1s} < \sigma^*1s < \sigma^2s < \sigma^*2s < \sigma^2p_z < \pi^2p_z = \pi^2p_z < \pi^*2p_z = \pi^*2p_z < \sigma^*2\pi_z$

M.O. Energy level diagram for O₂, F₂ and Ne.

- (vi) Using preceding figures for respective molecules as a guide, we can build up the electronic structure of simple diatomic molecules.
- (vii) The filling of electrons in various M.O. follows similar rules to those for filling A.O. similar M.O. belongs to entire molecule, the total number of electrons are taken into consideration and accommodated in molecular orbitals according to the following rules.

(i) Aufbau principle : The M.O. of lower energy is filled up first.

(ii) Pauli exclusion principles. Each M.O. can accommodate a maximum of two electrons having opposite spins.

(iii) Hund's rule. Whenever two equal energy M.O. are available electrons prefer to remain unpaired. This is particularly significant for π -orbitals because π -bonding and π -antiboding M.O. have equal energies.

15.6 Stability of Molecules

(A) Stability of molecules in terms of bonding and antibonding electrons :

(i) If $N_{b} > N_{a}$, the molecule is stable.

(ii) If $N_{b} < N_{a}$, the molecule is unstable.

(iii) Even if $N_b = N_a$, the molecule is unstable. This is due to the fact that antibonding effect is some what stronger than the bonding effect.

- (B) Stability of molecules in terms of bond order :
- (a) The relative stability of a molecule is further evaluated by a parameter known as bond order.
- (b) It can be defined as number of covalent bonds formed in molecule.
- (c) It is given by one half of the difference between the number of electrons in bonding orbitals and those in antibonding orbitals.
- (d) Bond order = $\frac{1}{2}$ [No. of electrons in bonding orbitals No. of electrons in antibonding orbitals]

$$= \frac{1}{2}[N_b - N_a]$$

- (e) The bond order of 1, 2 and 3 corresponds to single, double and triple bonds respectively. It may be mentioned that according to MO theory, even a frictional bond order is possible.
- (f) Stability of molecule ∞ bond order

(g) Dissociation energy ∞ bond order

(h) bond length $\propto \overline{\text{bond order}}$

- (i) If all the electrons in a molecule are paired the substance is diamagnetic on the other hand it there are unpaired electron in the molecules, the substance is paramagnetic. More the number of unpaired electron in the molecule greater is the paramagnetism of the substance.
- 15.7 M.O. Configuration
- (A) Homonuclear diatomic species : These types of ions have two identical atoms linked together of A₂ type.

 N_2 : (a) The electron configuration of N is 1s², 2s², 2p³. In N_2 molecule, there are 14 electrons of which 4 are in K shell and are nonbonding. Each atom contributes four atomic orbitals and thus, the molecule consists of 8 M.O. Then ten electron are allotted to M.O. as follows

 $[\mathsf{KK}\,(\sigma 2s)^2\,(\sigma^* 2s)^2\,(\sigma 2p_x)^2\,(\pi_y 2p_y)^2\,(\pi_z 2p_z^2)]$

where KK denotes the closed K shell structure $(\sigma 1s)^2\,(\sigma^* 1s)^2$

(b) Bond order \rightarrow 1/2 (8 – 2) = 3

(c) Thus N_2 molecule has three bonds, one sigma and two pi.

(B) Heteronuclear diatomic molecules

(a) CO: (a) We know that total number of valence electrons = 8 + 6 = 1

The distribution of electrons in various molecular orbitals of CO molecule is done in the following manner $KK(\sigma_2s)^2(\sigma_2s)^2(\pi_2p_y)^2(\sigma_2p_y)^2(\sigma_2p_y)^2$

(b) Bond order = $\frac{1}{2}$ (8–2) = 3

(c) It represents one sigma bond and two π -bonds (d) The molecule is stable and diamagnetic in nature.

16. HYDROGEN BOND

- (1) Hydrogen bond is formed in covalent compounds and not in ionic compounds.
- (2) H-bond is not formed in nonpolar covalent compounds.
- (3) H-bond is the attraction between H atom and strongly electronegative atom.
- **16.1** Intermolecular Hydrogen Bond : Bond between two nearest molecules.

(a) Homointermolecular H-Bond :

This type of H-bond is formed between same molecules. For example, H_2O , HF, NH_3 , ROH, CH_3COOH , etc.

(b) Heterointermolecular H-Bond :

The type of H-bond is formed between molecules of different compounds.

$$\mathsf{R-O-H}^{\delta^+} = \mathsf{C}_2\mathsf{H}_5$$

- 16.2 Intramolecular Hydrogen Bond : Bond in a single molecule e.g. Nitrophenol
- (i) Due to higher electronegative in nature of O, electron density transfers from electron-rich O⁸⁻ to electron deficient H⁸⁺ bonded to the electronegative atom of the other molecule.
- (ii) H-bond is formed between two molecules, so this is called intermolecular H-bond.
- (iii) One H_2O molecule can form a maximum of four H-bonds.

17. SOME USEFUL FORMULAE

Ionic character : (1) \propto Melting and boiling point $(2) \propto$ Solubility (Polar solvent) $(3) \propto$ Conductivity (Fused state) (5) $\propto \frac{1}{\text{Size of anion}}$ 1 $(6) \propto \frac{1}{\text{Charge on cation & anion}}$ (4) \propto Size of cation 1 $(8) \propto \frac{1}{\text{Pseudo inert configuration}}$ $(7) \propto$ Inert configuration $(9) \propto$ Difference in electronegativity of the covalently bonded atoms $(10) \propto$ Dipole moment **Covalent character :** (1) $\propto \frac{1}{\text{Melting & Boiling point}}$ $(2) \propto \frac{1}{\text{Solubility}}$ $(3) \propto \overline{Conductivit}$ $(5) \propto \frac{1}{\text{Size of cation}}$ $(4) \propto \frac{1}{\text{Hardness}}$ (6) ∝ Size of anion 1 $(8) \propto \frac{1}{\text{Inert configuration}}$ $(7) \propto$ Charge an ions (9) \propto Pseudo inert configuration 1 $(10) \propto \overline{\text{Dipole moment}}$ **Bond length :** 1 (1) \propto Size of bonded atoms Difference of electronegativity of bonded atoms (4) \propto p Character in hybrid orbital $(3) \propto \frac{1}{\text{sCharacter in hybrid orbital}}$ (5) $\propto \frac{1}{\text{Resonance}}$

Bond angle :

(1) ∝ Number of lone pair

1 (3) $^{\infty}$ Electronegativity of terminal atom

Bond energy :

(1) $\approx \frac{1}{\text{Atomic size}}$ (2) ∝

 $(4) \propto$ difference of electronegativity values of bonded atoms

(2) ~ Electronegativity of central atom

(4) \propto s character in hybrid orbitals

 $(3) \propto$ s character in hybrid orbitals

(5) $^{\infty}$ Lone pair present on bonded atom