			ercise # 1	
Q.1	Identify the intens	ive quantity from the followi	ng –	
	[1] Enthalpy and t	emperature	[2] Volume and tem	perature
	[3] Enthalpy and v	volume	[4] Temperature and	d refractive index
Q.2	For an adiabatic p	process which of the followi	ng relations is correct	
	[1] ∆E = 0	[2] PΔV = 0	[3] ∆q = 0	[4] q = + W
Q.3	A thermodynamic	c quantity is that :		
	[1] Which is used	in thermochemistry	[2] Which obeys all	l laws of thermodynamics
	[3] Quantity whos	e value depends only upon	the state of the system	
	[4] Quantity which	n is used in measuring therr	mal change	
Q.4	Which one is a st	ate function –		
	[1] Heat supplied	at constant pressure	[2] Heat supplied at	t constant volume
	[3] Enthalpy		[4] All of the above	C V
Q.5	Which represent l	largest amount of energy :		
	[1] Calorie	[2] Joule	[3] Erg	[4] Electron volt
Q.6	A system has inte energy of the sys		i0 J of heat is taken out c	of it and 600 J of work is done on it. The final
	[1] (E ₁ + 150)	[2] (E ₁ + 1050)	[3] (E ₁ – 150)	[4] None of these
Q.7	The work done by	/ 100 calorie of heat is		
	[1] 418.4 J	[2] 4.184 J	[3] 41.84 J	[4] None
Q.8	Thermodynamics	is concerned with	0	
	[1] Total energy o	f a system	[2] Energy changes	s in a system
	[3] Rate of a chen	nical change	[4] Energy change	of system and surrounding
Q.9	A well stoppered	thermas flask contains som	he ice cubes. This is an e	example of -
	[1] Closed system	n [2] Open system	[3] Isolated system	[4] Non-thermodynamic system
Q.10	When a gas is co	mpressed adiabatically and	reversibly, the final temp	perature is
	[1] Higher than the	e initial temperature	[2] Lower than the i	nitial temperature
	[3] The same as i	nitial temperature	[4] Dependent upor	n the rate of compression
Q.11	Specific heat may	y be defined as :		
	[1] Heat capacity	at constant volume	[2] Heat capacity a	t constant pressure
	[3] Heat capacity	mol ⁻¹	[4] Heat capacity g	-1
Q.12	If work done by the process is –	e system is 300 joule when [,]	100 cal. heat is supplied t	o it. The change in internal energy during the
	[1] – 200 Joule	[2] 400 Joule	[3] 720 Joule	[4] 120 Joule
Q.13	In endothermic re	eactions the reactants :		
	[1] Have more end	ergy than products	[2] Have as much e	energy as the products
	[3] Are at lower te	mperature than products	[4] Have less energ	gy than the products
Q.14	The work done by the process :	a system is 8J when 40J he	eat is supplied to it. The ch	nange in internal energy of the system during
	[1] 32 J	[2] 40 J	[3] 48 J	[4] –32 J

Q.15	Internal energy change	e during a reversible isoth	nermal expansion of an ide	eal gas is –
	[1] Always negative	[2] Always positive	[3] Zero	[4] May be positive or neative
Q.16	Which of the following	statements is correct for	the reaction :	
	$CO(g) + \frac{1}{2}O_2(g) \rightarrow CC$	9 ₂ (g) at constant tempera	ture and pressure	
	$[1] \Delta H = \Delta E$	$[2] \Delta H < \Delta E$	$[3] \Delta H > \Delta E$	[4] None of the above
Q.17	For the gaseous reacti	on involving the complete	e combustion of isobutane	e at 373K –
	$[1] \Delta H = \Delta E$	$[2] \Delta H > \Delta E$	$[3] \Delta H = \Delta E = 0$	$[4] \Delta H < \Delta E$
Q.18	If total enthalpy of read	tants and products is H _R	and H _P respectively, ther	n for exothermic reaction -
	$[1] H_{R} = H_{P}$	[2] H _R < H _P	[3] H _R > H _P	$[4] H_{R} - H_{P} = 0$
Q.19	The enthalpy of vapari	zation of water at 100°C	is 40.63 kJ mol ^{–1} . The val	ue ΔE for this process would be -
	[1] 37.53 kJ mol ⁻¹	[2] 39.08 kJ mol ⁻¹	[3] 42.19 kJ mol ⁻¹	[4] 43.73 kJ mol ⁻¹
Q.20	For the system S(s) +	$O_2(g) \rightarrow SO_2(g)$: -		
	$[1] \Delta H = \Delta E$	$[2] \Delta H > \Delta E$	[3] ΔE > ΔH	$[4] \Delta H = 0$
Q.21	The difference in ΔH as	nd ΔE for the combustion	of methane at 25°C woul	dbe
	[1] Zero	[2] 2 x 298 x –2 cals	[3] 2 x 298 x –3 cals	[4] 2 x 25 x –3 cals
Q.22	For $CaCO_3(s) \rightarrow CaO$	(s) + CO ₂ (g) at 977°C, Δ	H = 174 KJ/mol; then ΔE i	s
	[1] 160 KJ	[2] 163.6 KJ	[3] 186.4 KJ	[4] 180 KJ
			C Ì	1
Q.23	Heat of formation of H	₂ O(g) at 25⁰C is – 243 K.	I. ΔE for the reaction H ₂ (g	H) + $\frac{1}{2}$ O ₂ (g) \rightarrow H ₂ O(g) at 25°C is –
			0.0	2
	[1] 241.8 KJ	[2] –241.8 KJ	[3] –243 KJ	[4] 243 KJ
Q.24			C _V and C _P on an average	are 5 and 7 cal mol ^{-1} degree ^{-1} the value
	of ΔE and ΔH are resp	ectivey :		
	[1] 2800 cal, 2000 cal		[2] 2000 cal, 2800 cal	
	[3] 280 cal, 200 cal		[4] None of these	
Q.25		$gCO_3(s) \rightarrow MgO(s) + CO$		
	[1] 0	[2]-ve	[3] +ve	[4] ∞
Q.26	Which has the least er	· · ·		
	[1] Graphite	[2] Diamond	[3] N ₂ (g)	[4] N ₂ O(g)
Q.27			roundings increases if the	
	[1] Reversible	[2] Irreversible	[3] Exothermic	[4] Endothermic
Q.28	Molar heat capacity of	water in equilibrium with	ice at constant pressure	
	[1] Zero	[2] Infinity	[3] 40.50 KJ K ⁻¹ mol ⁻¹	[4] 75.48 JK ⁻¹ mol ⁻¹
Q.29	Change in entropy is no	egative for		
	[1] Bromine $(l) \rightarrow$ Bron	nine (g)	$[2] C(s) + H_2O(g) \rightarrow Co$	-
	$[3] \operatorname{N}_2(g, 10 \text{ atm}) \rightarrow \operatorname{N}_2$	-	[4] Fe(at 400 K) \rightarrow Fe(at 300K)
Q.30	In which reaction ΔS is	s positive –		
	$[1] H_2O(l) \rightarrow H_2O(s)$	$[2] \operatorname{3O}_2(g) \to \operatorname{2O}_3(g)$	$[3] \operatorname{H}_2 O(l) \to \operatorname{H}_2 O(g)$	$[4] \operatorname{N}_2(g) + 3\operatorname{H}_2(g) \to 2\operatorname{NH}_3(g)$

Q.31	When the egg is hard b	ooiled, there -		
	[1] Increase in disorder		[2] Decrease in disorde	er
	[3] No change in disord	ler	[4] ΔG is negative	
Q.32	5 mole of an ideal gas e	expand reversibly from a v		³ at a temperature of 27°C. The change in
	entropy is –			
	[1] 41.57 JK ⁻¹	[2] –95.73 JK ^{–1}	[3] 95.73 JK ⁻¹	[4] –41.57 JK ^{–1}
Q.33	What is the sign of ΔG	for the process in ice me	elting at 283 K	
	[1] ∆G > 0	$[2] \Delta G = 0$	[3] ∆G < 0	[4] None of these
Q.34	The temperature at wh	nich the reaction Ag ₂ O(s)	\rightarrow 2Ag(s) + ½O ₂ (g) is at	equilibrium is,
	Given $\Delta H = 30.5 \text{ KJ m}$	ol ⁻¹ and $\Delta S = 0.066 \text{ KJK}^{-1}$	⁻¹ mol ⁻¹ :	
	[1] 462.12 K	[2] 362.12 K	[3] 262.12 K	[4] 562.12K
Q.35	The spontaneous natu	re of a reaction is imposs	ible if :	
	[1] ΔH is +ve, ΔS is als	0 +Ve	[2] ΔH is –ve; ΔS is all	so –ve
	[3] Δ H is –ve ; Δ S is +v	/e	[4] ∆H is +ve; ∆S is –v	e
Q.36	For a reaction at 25°C	enthalpy change (ΔH) ar	id entropy change (ΔS) a	re –11.7 x 10 ³ Jmol ^{–1} and
	–105 J mol ^{–1} K ^{–1} resp	ectively. The reaction is :		
	[1] Spontaneous	[2] Non spontaneous	[3] At equilibrium	[4] Can't say anything
Q.37	At a certain temperatur	e T, the endothermic read	ction A \rightarrow B proceeds alm	ost to completion. The entropy change is
	:			
	[1] ∆S = 0	[2] ∆S < 0	[3] ∆S > 0	[4] Cannot be predicted
Q.38	If the equilibrium const	ant for a reaction is 10, th	hen the value of ΔG^{o} will l	be (R = $8JK^{-1}$ mol ⁻¹ , T = 300K)
	[1] + 5.527 KJ mol ⁻¹	[2] –5.527 KJ mol ^{–1}	[3] +55.27 KJ mol ⁻¹	[4] –55.27 KJ mol ^{–1}
Q.39	If $\Delta G^{\circ} > 0$ for a reaction	n then :		
	[1] K _P > 1	0	[2] K _P < 1	
	[3] The products predo	minate in the equilibrium	mixture [4] None	
Q.40	A reaction A + B \rightarrow C -	+ D + q is found to have a	a positive entropy change	e, the reaction will be –
	[1] Possible at high ten	nperature	[2] Possible only at lov	v temperature
	[3] Not possible at any	temperature	[4] Possible at any tem	nperature
Q.41		zation for water is 186.5 k		
	[1] 0.5 KJK ⁻¹ mol ⁻¹	[2] 1.0 KJK ⁻¹ mole ⁻¹	[3] 1.5 KJ K ⁻¹ mole ⁻¹	[4] 2.0 KJK ⁻¹ mol ⁻¹
Q.42	The enthalpy of vaporis	sation of per mole of etha	nol (b.p. = 79.5°C and Δ S	$S = 109.8 \text{ JK}^{-1} \text{ mol}^{-1}$) is
	[1] 27.35 KJ/mol	[2] 32.19 KJ/mol	[3] 38.70 KJ/mol	[4] 42.37 KJ/mol
Q.43		-	$_{2}(g) + Br_{2}(g) \rightarrow 2HBr(g),$	$\Delta S^{o} = 20.1 J K^{-1}$ given, entropy of H ₂ and
	HBr is 130.6 and 198.5		,	
	[1] 246.3 JK ⁻¹	[2] 123.15 JK ⁻¹		[4] 20 KJK ⁻¹
Q.44		provide exceptions to thir	-	
	[1] CO	[2] ice	[3] CO ₂	[4] All the above

Q.45	Evaporation of v	vater is :		
	[1] A process in	which neither heat is evolved	nor absorbed	
	[2] A process ac	compained by chemical read	ction	
	[3] An exotherm	ic change	[4] An endothermic	change
Q.46	For the process	$CO_2(s) \rightarrow CO_2(g)$		
	[1] Both ΔH and	ΔS are +ve	[2] ΔH is negative a	and ΔS is +ve
	[3] ΔH is +ve and	d ∆S is –ve	[4] Both ΔH and ΔS	Sare-ve
Q.47	Enthalpy change	e during a reaction does not c	lepend upon :	
	[1] Condition of a	a reaction	[2] Initial and final of	concentration
	[3] Physical stat	e of reactants and product	[4] Number of step	s in the reaction
Q.48	For the reactions	8		
	(i) $H_2(g) + CI_2(g)$	\rightarrow 2HCl(g) + xKJ (ii)	$H_2(g) + Cl_2(g) \rightarrow 2HCl(l$) + yKJ
	Which one of the	e following statement is corre	ect :	6
	[1] x > y	[2] x < y	[3] x = y	[4] More data required
Q.49	Enthalpy of form	ation of an atom is zero while	e the enthalpy of formati	on of a compound is
	[1] Zero	[2]-ve	[3] +ve	[4] May be +ve or –ve
Q.50	If $H_2(g) = 2H(g)$; $\Delta H = 104$ Kcal, than heat of	atomisation of hydroge	n is :
	[1] 52 Kcal	[2] 104 Kcal	[3] 208 Kcal	[4] None of these
		*		
		NN Free		
		N		

Qus.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Ans.	4	3	3	4	1	1	1	2	3	1	4	4	4	1	3	2	2	3	1	1
Qus.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
Ans.	2	2	2	2	3	2	2	2	4	3	1	3	3	1	4	2	3	2	3	4
Qus.	41	42	43	44	45	46	47	48	49	50										
Ans.	1	3	1	1	4	1	4	2	4	1										

Answer Key - 1

		Ex	ercise # 2	
Q.1	Two atoms of hydroge	n combine to form a mo	ecule of hydrogen gas, th	he energy of the H_2 molecule is :
u	[1] Greater than that o		[2] Equal to that of se	2
	[3] Lower than that of s	-		and some times higher
Q.2		-	ion indicates that the prod	-
Q.2	[1] –94 K cal	[2] –231.6 K cal	[3] + 21.4 K cal	[4] +64.8 K cal
Q.3				change for the reaction $2NH_3((g) \rightarrow N_2(g)$
	[1] 46.0 KJ mol ⁻¹	[2] 92.0 KJ mol ⁻¹	[3] –23.0 kJ mol ^{–1}	[4] –92.0 KJ mol ⁻¹
Q.4	Given that standard h $C_2H_4 \rightarrow C_3H_8$ is	eat enthalpy of CH ₄ , C ₂	$_{2}H_{4}$ and $C_{3}H_{8}$ are –17.9,	12.5, –24.8 Kcal/mol. The ΔH for $\rm CH_4$ +
	[1] –55.2 Kcal	[2] –30.2 Kcal	[3] 55.2 K cal	[4] –19.4 Kcal
Q.5	From the following dat	a, the heat of formation	of Ca(OH) ₂ (s) at 18ºC is	Kcal.
	$CaO(s) + H_2O(l) = Ca(s)$	(OH) ₂ (s) ; ∆H ₁₈ ⁰C = − 15	.26 Kcal (i)	
	$H_2O(l) = H_2(g) + \frac{1}{2}O_2(g)$	(g); ∆H _{18°} C = 68.37 Kcal	(ii)	
	$Ca(s) + \frac{1}{2}O_2(g) = CaC$	D(s) ; ∆H _{18°} C = −151.80	Kcal (iii)	
	[1] –98.69	[2] -235.43	[3] 194.91	[4] 98.69
Q.6	If S + $O_2 \rightarrow SO_2$; ∆H = – 298.2		
	$SO_2 + \frac{1}{2}O_2 \rightarrow SO_3$			
	$SO_3 + H_2O \rightarrow H_2SO_4$		0	
	$H_2 + \frac{1}{2}O_2 \rightarrow H_2O$		CO CO	
		ormation of H_2SO_4 at 29	8 K is –	
	[1] –814.4 KJ	[2] –650.3 KJ	[3] –320.5 KJ	[4] –433.5 KJ
Q.7	Given than :			
	$Zn + \frac{1}{2}O_2 \rightarrow ZnO + 8$	4000 cal	1	
	Hg + $\frac{1}{2}O_2 \rightarrow$ HgO + 2		2	
	-	(AH) for Zn + HgO \rightarrow ZnC	+ Hg is –	
	[1] 105700 cal	[2] 62300 cal	[3] –105700 cal	[4] –62300 cal
Q.8	Given that			
		$D_{0}(a) \Delta H = -787 \text{ KJ}$		
	$\begin{aligned} & 2\mathrm{C}(\mathrm{s}) + 2\mathrm{O}_2(\mathrm{g}) \to 2\mathrm{C}\mathrm{C}\\ & \mathrm{H}_2(\mathrm{g}) + \frac{1}{2}\mathrm{O}_2(\mathrm{g}) \to \mathrm{H}_2\mathrm{C} \end{aligned}$	$\Delta H = -286 \text{ KJ}$		
	$C_2H_2(g) + \frac{3}{2}O_2(g) \rightarrow 2$	2CO ₂ (g) + H ₂ O (<i>l</i>) ∆H = -	-1310 KJ	
	Heat of formation of a	cetylene is -		
	[1] +1802 KJ	[2] –1802 KJ	[3] –800 KJ	[4] + 237 KJ
Q.9	The heat of reaction fo	r		
	A + $\frac{1}{2}$ O ₂ \rightarrow AO is - 5			
	$AO + \frac{1}{2}O_2 \rightarrow AO_2$ is	100 Kcal. The heat of re	action for A + $O_2 \rightarrow AO_2$	is -
	[1] – 50 K cal	[2] + 50 K cal	[3] 100 K cal	[4] 150 K cal.

THERMOCHEMISTRY

 $C(s) + O_2(g) \rightarrow CO_2(g) + 94.0 \text{ K cal.}$ Q.10 $CO(g) + \frac{1}{2}O_2(g) \to CO_2(g) \Delta H = -67.7$ Kcal. from the above reactions find how much heat (Kcal mole⁻¹) would be produced in the following reaction : $C(s) + \frac{1}{2}O_2(g) \rightarrow CO(g)$ [1] 20.6 [2] 26.3 [3] 44.2 [4] 161.6 Q.11 The enthalpy of vapourisation of liquid water using the data : $H_2(g) + 1/2O_2(g) \rightarrow H_2O(l)$; $\Delta H = -285.77 \text{ KJ mol}^{-1}$ $H_2(g) + 1/2 O_2(g) \rightarrow H_2O(g); \Delta H = -241.84 \text{ KJ mol}^{-1}$ [1] +43.93 KJ mol⁻¹ [2] –43.93 KJ mol⁻¹ [3] + 527.61 KJ mol⁻¹ [4] –527.61 KJ mol⁻¹ $H_2(g) + \frac{1}{2}O_2(g) = H_2O(l)$; $\Delta H 298K = -68.32$ Kcal. Heat of vapourisation of water at 1 atm and 25°C is 10.52 Q.12 Kcal. The standard heat of formation (in Kcal) of 1 mole of water vapour at 25°C is [2] -78.84 [4] -57.80 [1] 10.52 [3] +57.80 The heat of combustion of CH₄(g),C(s) and H₂(g) at 25°C are -212.4 K cal, -94.0 K cal and 68.4 K cal Q.13 respectively, the heat of formation of CH₄ will be -[1] +54.4 K cal [2] -18.4 K cal [3] -375.2 K cal [4] +212.8 K cal The heats of combustion of C_2H_4 , C_2H_6 and H_2 are -1409.5 KJ, -1558.3 KJ and -285.6 KJ. The heat of Q.14 hydrogenation of ethene is -[3] 273.6 KJ [1] -136.8 KJ [2] -13.68 KJ [4] 1.368 KJ Q.15 When two atoms of hydrogen combine to form a molecule of hydrogen gas, the energy of the molecule is [2] Equal to that of separate atoms [1] Greater than that of separate atoms [3] Lower than that of separate atoms [4] Sometimes lower and some times higher Q.16 The enthalpy of combustion of cyclohexane, cyclohexene and H₂ are respectively – 3920, – 3800 and –241 KJ mol⁻¹. The heat of hydrogenation of cyclohexene is -[2] 121 KJ mol⁻¹ [1] -121 KJ mol⁻¹ [3] –242 KJ mol^{–1} [4] 242 KJ mol⁻¹ The bond energies of F_2 , Cl_2 , Br_2 and l_2 are 155.4, 243.6, 193.2 and 151.2 KJ mol⁻¹ respectively. The strongest Q.17 bond is : [2] CI--CI [1] F–F [3] Br-Br [4] | – | Q.18 The enthalpy change for the reaction $H_2(g) + C_2H_4(g) \rightarrow C_2H_6(g)$ is the bond energies are , H-H = 103, C-H = 99, C-C=80 & C=C 145 K cal mol⁻¹ $[1] -10 \text{ K cal mol}^{-1}$ [2] +10 K cal mol⁻¹ [3] –30 K cal mol⁻¹ [4] +30 K cal mol⁻¹ Q.19 Calculate the heat of formation of HI if the bond energies of I2, H2 and HI are a, b & c KJ/mol respectively -[1] $\frac{2c - (b + a)}{2}$ KJ/mol [2] (b + a) - 2c KJ/mol [3] $\frac{a + b - 2c}{2}$ KJ/mol [4] 2c-(b + a) KJ/mol Q.20 Form the reactions : $C(s) + 2H_2(g) \rightarrow CH_4(g), \Delta H = -X \text{ Kcal}$ $C(g) + 4H(g) \rightarrow CH_4(g), \Delta H = -X_1$ Kcal $CH_4(g) \rightarrow CH_3(g) + H(g), \Delta H = + Y(Kcal)$ Bond energy of C-H bond is -[1] $\frac{X}{4}$ K cal. mol⁻¹ [2] Y K cal. mol⁻¹ [3] $\frac{X_1}{4}$ K cal. mol⁻¹ [4] X_1 K cal. mol⁻¹

Q.21	The inversion tempera	ture for vander Waal's ga	s is :	
	[1] T _i = 2a/Rb	[2] T _i = a / Rb	[3] T _i = a/ 2Rb	[4] T _i = 0.5 T Boyle
Q.22	The enthalpy changes	at 298K in successive bro	eaking of O–H bonds of v	water are
	$H_2O \rightarrow H(g) + OH(g);$	∆H = 498 KJ mol ^{–1}		
	$OH(g) \rightarrow H(g) + O(g)$;	$\Delta H = 428 \text{ KJ mol}^{-1}$	the bond enthalpy (en	ergy) of O–H bond is
	[1] 498 KJ mol ⁻¹	[2] 428 KJ mol ⁻¹	[3] 70 KJ mol ⁻¹	[4] 463 KJ mol ⁻¹
Q.23	The standard heats o dimerization of NO ₂ in	_	nd $N_2O_4(g)$ are 8.0 and	2.0 Kcal mol ⁻¹ respectively the heat of
	[1] 10.0	[2] –6.0	[3] –12.0	[4] –14.0
Q.24		ation of HCI by NaOH is ergy of dissociation of HC		at of neutralization of HCN by NaOH is
	[1] –43.8 KJ	[2] 43.8 KJ	[3] 68 KJ	[4] –68KJ
Q.25		nt of ethylene was burnt f $O_2(at NTP)$ that entered		ved. If heat of combustion of ethylene is
	[1] 296.5 ml	[2] 296.5 litre	[3] 6226 x 22.4 litre	[4] 22.4 litre
Q.26				ture of equal volume of H_2 and CO) is :
		$= H_2 O(g); \Delta H = -241.8$	KJ	
	$CO(g) + \frac{1}{2}O_2(g) = CO_2$	-		
	[1] 241.8 KJ	[2] 283 KJ	[3] 29338.8 KJ	[4] None of these
Q.27		70 Kcal of energy of lead nsumption of sugar is :	I normal daily life. If hea	at of combustion of cane sugar is -1349
	[1] 728 g	[2] 0.728 g	[3] 342 g	[4] 0.342 g
Q.28	If water is formed from	H ⁺ ions and OH ⁻ the en		
	[1] –13.7 Kcal	[2] 13.7 Kcal 🔹		[4] More data required
Q.29		HCI and 1 M H ₂ SO ₄ are n Which of the following is		H solution and x and y K cals of heat are
	[1] x = y	[2] x = 0.5 y	[3] x = 0.4 y	[4] None
Q.30		f benzene to elements is 2 KJ respectively. Resona		nd enthalpies of C–C, C=C and C–H are s
	[1] 1.51 KJ	[2] 15.1 KJ	[3] 151 KJ	[4] 1511 KJ
Q.31		is salt AB dissolves in wa he heat of dissolution of h		mol ⁻¹ of heat. The value of $\Delta H_{(hydration)}$ of) is –
	[1] 50.4 J mol ⁻¹	[2] 8.4 mol ⁻¹	[3] –50.4 J mol [–] 1	[4] –8.4 J mol ^{–1}
Q.32	•	ion of 2gm methane 265 ation of CO_2 and H_2O are	•	ed. The heat of formation of methane will respectively) :
	[1] + 20400 cals	[2] +20600 cals	[3] –20400 cals	[4] –2000 cals
Q.33	The heat of combustio at constant pressure is		constant volume is -32	1.30 KJ at 27ºC. The heat of combustion
	[1] –321.30 – 300 R	[2] –321.30 + 300 R	[3] –321.30 – 150 R	[4] –321.30 + 900 R
Q.34	Heat of formation, ΔH^{o}	f of an explosive compou	nds like NCl ₃ is –	
	[1] Positive	[2] Negative	[3] Zero	[4] Positive or negative
Q.35	If ΔH_{f}^{0} of ICI(g), CI(g), a ICI bond is –	and I(g) is 17.57, 121.34 a	and 106.96 J mol ⁻¹ respe	ectively. Then bond dissociation energy of
	[1] 35.15 J mol ⁻¹	[2] 106.69 J mol ⁻¹	[3] 210.73 mol ⁻¹	[4] 420.9 J mol ⁻¹

Q.36	q = -w is not true for -			
	[1] Isothermal process	[2] Adiabatic process	[3] Cyclic process	[4] 1 and 3 both
Q.37	For which change ΔH =	≠ ΔE —		
	[1] H ₂ (g) + I ₂ (g) 2H	łl (g)	[2] HCl (<i>l</i>) + NaOH (<i>l</i>)	\rightarrow NaCl(s) + H ₂ O(l)
	$[3] C(s) + O_2(g) \rightarrow CO_2$	<u>(g)</u>	$[4] \operatorname{N}_2(g) + 3\operatorname{H}_2(g) \to 2\operatorname{I}$	NH ₃ (g)
Q.38	The heat change during	g the reaction 24g C and	128g S following the cha	ange C + S $_2 \rightarrow$ CS $_2$; Δ H = 22K cal
	[1] 22 K cal	[2] 11 K cal	[3] 44 K cal	[4] 32 K cal
Q.39	The value of ΔH for the	combustion of C(s) is – -	-94.4 Kcal. The heat of fo	prmation of $CO_2(g)$ is –
	[1] –49.5 K cal	[2] –94.4 K cal	[3] –188.0 K cal	[4] More data required
Q.40	The Gibbs free energy the reaction is	change of a reaction at 2	27⁰C is –26K. Cals. and	its entropy change is –60 Cals/K. ΔH for
	[1] –44 K cals	[2] –18 K. Cals	[3] 34 K. Cals	[4] –24 K. Cals.
Q.41	If $CH_3COOH + OH^- = 0$ $CH_3COOH = CH_3COO$		d H ⁺ + OH [−] = H ₂ O + q ₂ , t	hen the enthalpy change for the reaction
	[1] q ₁ + q ₂	[2] q ₁ – q ₂	$[3] q_2 - q_1$	$[4] - (q_1 + q_2)$
Q.42	One mole of a gas occ The workdone is –	upying 3dm ³ expands ag	ainst a constant externa	al pressure of 1 atm to a volume of 13 lit.
	[1] –10 atm dm ³	[2] –20 atm dm ³	[3] –39 atm dm ³	[4] –48 atm dm ³
Q.43	M is a metal that forms	s an oxide M ₂ O, $\frac{1}{2}$ M ₂ O -	\rightarrow M + $\frac{1}{4}O_2 \Delta H = 120$ K	. Cal.
	When a sample of met	al M reacts with one mole	e of oxygen what will be	the ΔH in that case
	[1] 240 K. Cal.	[2] –240 K. Cal 💊 🗙	[3] 480 K. Cal	[4] –480 K. Cal
Q.44	For a reaction 2X(s) + 2			
	The q _(p) at 27ºC is – 28	8 K cal. mol ^{−1} . The q _(v) is ·	K. Cal. mol ^{−1}	
	[1] –27.4	[2] +27.4	[3] –28.6	[4] 28.6
Q.45		$\rightarrow 6CO_2(g) + 6H_2O(g)$; 2 combustion of glucose is -		th of $CO_2(g)$ produced when 170 Kcal of
	[1] 265 gm	[2] 66 gm	[3] 11 gm	[4] 64 gm
Q.46	If a gas absorbs 100J in internal energy is –	of heat and expands by 5	500cm ³ against a consta	nt pressure of 2 x 10^5 Nm ⁻² , the change
	[1] –300 J	[2] –100 J	[3] + 100 J	[4] None of these
Q.47	Heat of neutralisation of	of oxalic acid is –106.7 KJ	mol ⁻¹ using NaOH hence	e ΔH of :
	$H_2C_2O_4 \rightarrow C_2O_4^{2-} + 2H_2O_4^{2-}$	H⁺ is :		
	[1] 5.88 KJ	[2] –5.88 KJ	[3] –13.7 K cal	[4] 7.5 KJ

							A	nsv	ver	K	By	- 2								
Qus.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Ans.	3	4	2	4	2	1	2	4	2	2	1	4	3	1	3	1	2	3	3	1
Qus.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
Ans.	1	4	2	2	2	3	1	1	2	3	4	3	3	1	3	4	4	3	2	1
Qus.	41	42	43	44	45	46	47													
Ans.	3	1	4	3	2	4	4													

Exercise # 3 Q.1 Heat of formation in the reaction $H_2 + CI_2 \rightarrow 2HCI + 44$ Kcal is-[MPPMT 1995] [1] 44 Kcal [2] 44000 Kcal [3] 22 Kcal [4] 11 kcal Q.2 In an exothermic reaction ΔH is [MP PMT 1995, CPMT 1999] [1] Positive [2] Negative [3] Zero [4] Both positive or negative Q.3 [MP PET 1993, 95] Decrease of free energy of a reacting system indicates to a/an [2] Equilibrium reaction [1] Exothermic reaction [4] Slow reaction [3] Spontaneous reaction Q.4 In a spontaneous process, the entropy of the system and its surroudnings [MP PET 1996] [2] Decreases [3] Increases [1] Equals zero [4] Remains constant The bond dissociation energies of gaseous H_2 , CI_2 and HCI are 104, 58 and 103 kcal respectively. The enthalpy Q.5 [MP PET 1997, MP PMT 1999,2001] of formation of HCI gas would be [1] -44 kcal [2] 44 kcal [3] –22 kcal [4] 22 kcal Q.6 Mark the correct statement [MP PET 1997] [1] For a chemical reaction to be feasible, ΔG should be zero [2] Entropy is a measure of order in a system [3] For a chemical reaction to be feasible, ΔG should be positive [4] The total energy of an isolated system is constant Q.7 The heat of reaction at constant pressure is given by -[MP PMT 1997] $[1] E_{P} - E_{R}$ $[2] E_{R} - E_{P}$ [3] H_p [4] H_R – H_P The positive value of ΔS indicates that [MP PMT 1997] Q.8 [2] The system becomes more disordered [1] The system becomes less disordered [3] The system is in equilibrium position [4] The system tends to reach at equilibrium position What is the free energy change ΔG when 1.0 mole of water at 100°C and 1 atm pressure is converted into steam Q.9 [MP PET/PMT 1998] at 100°C and 1 atm pressure? [2] -9800 cal [3] .9800 cal [1] 540 cal [4] 0 cal Q.10 In an endothermic reaction, the value of ΔH is [CBSE 1999, AIIMS 1998, BHU 2000 MP PMT 2000] [1] zero [2] Positive [3] Negative [4] Constant Q.11 The free energy change $\Delta G = 0$ when [AIIMS 1996] [1] The reactants are completely consumed [2] A catalyst is added [3] The system is at equilibrium [4] The reactants are initially mixed C+ $\frac{1}{2}O_2 \rightarrow CO; \Delta H = -42 \text{ kJ} \text{ CO} + \frac{1}{2}O_2 \rightarrow CO_2; \Delta H = -24 \text{ kJ}$ Q.12 The heat of formation of CO₂ is [CPMT 1996] [2] +66 kJ [4] --66 kJ [1] – 16 kJ [3] + 16 kJ Q.13 Molar heat capacity of water in equilibrium with ice at constant pressure is [IIT 1997] [3] 40.45 kJ K⁻¹ mol⁻¹ [1] Zero [2] Infinity (∞) [4] 75.48 JK⁻¹ Q.14 [IIT 1997, BHU 2001] Standard molar enthalpy of formation of CO₂ is equal to [1] Zero [2] The standard molar enthalpy of combustion of gaseous carbon [3] The sum of standard molar enthalpies of formation of CO and O_2 [4] The standard molar enthalpy of combustion of carbon (graphite)

Q.15	$C + O_2 \rightarrow CO_2; \Delta H =$	= X			
	$\mathrm{CO} + \frac{1}{2} \mathrm{O}_2 \to \mathrm{CO}_2;$	$\Delta H = Y$			
	Then the heat of for	mation of CO is		[BHU, 1997, I	Delhi PMT 2002]
	[1] X – Y	[2] Y – 2X	[3] X + Y	[4] 2X – Y	
Q.16	The enthalpy of neu	tralization of HCN by NaO	H is −12.13 KJ mol ⁻¹ . The	e enthalpy of ionisatio	n of HCN will be
	[1] 4.519 kJ	[2] 45.10 kJ	[3] 451.9 kJ	[4] 45.19 kJ	[BHU 1997]
Q.17	Fermentation is a re	eaction called			[RPMT 1997]
	[1] Endothermic	[2] Exothermic	[3] Isotemperature	[4] Reversible	
Q.18	The enthalpy chang	e of a reaction does not de	epend on		[AIIMS 1997]
	[1] The state of read	tants and products	[2] Nature of reactan	ts and products	\sim
	[3] Different interme	diate reaction	[4] Initial and final en	thalpy change of a re	action
	3	1			•
Q.19	$S + \frac{3}{2}O_2 \rightarrow SO_3 +$	2x kcal ; $SO_2 + \frac{1}{2}O_2 -$	\rightarrow SO ₃ + y kcal	0	
		-			
	Find out the heat of	–	_	7; CBSE 1999; Karna	ataka CET 1999]
	[1] 2x – y	[2] 2x + y	[3] x + y	[4] 2x / y	
Q.20	•	statement regarding entrop		-	1998, BHU 2001]
		py of a perfectly crystallin			
		of temperature, the entrop			
		of temperature, the entro			
		of temperature, the entro			
Q.21		al gas at 300 K is expan		n initial volumeo of 1	
		or this process is $(R = 2 ca)$			[CBSE 1998]
	[1] 163.7 cal	[2] 850.2 cal	[3] 1381.1 cal	[4] Zero	
Q.22		burnt to ferric oxide at con	istant pressure, 29.28 kJ	of heat is evolved. W	
		xide (At. Wt. of Fe = 56)			[AIIMS 1998]
0.00	[1] –81.98 kJ	[2] –819.8 kJ	[3] –40.99 kJ	[4] + 819.8 kJ	
Q.23		vhen 1.89 g of benzoic ac r by 0.632ºC. If the speci			
	combustion of benz				1999; BHU 2000]
	[1] 771.1 kcal	[2] 871.2 kcal	[3] 881.1 kcal	- [4] 981.1 kcal	· •
Q.24	Internal energy does				99, CPMT 2000]
	[1] Nuclear energy		[2] Rotational energy	-	· •
	[3] Vibrational energ	IV	[4] Energy arising by		
Q.25		+ Cl ₂ $ ightarrow$ 2HCl , Δ H = 194 k			
				CET 2000, AFMC 20	00: CPMT 20001
	[1] + 97 kJ	[2] +194 kJ	[3] –194 kJ	[4] –97 kJ	
Q.26		sation of acetic acid by Na			ation of a strong acid
v		s –55.9 kJ/mol. What is the			[AIIMS 2000]
	[1] + 5.3 kJ/mol	[2] +6.2 kJ/mol	[3] +8.2 kJ/mol	[4] +9.3 kJ/mol	- •

THERMOCHEMISTRY

				TH	IERMOCHEMISTRY
Q.27	Work done during iso constant = 2)	othermal expansion of on	e mole of an ideal gas	from 10 atm to 1at	m at 300 K is (Gas [AIIMS 2000]
	[1] 938.8 cal	[2] 1138.8 cal.	[3] 1381.8 cal.	[4] 1581.8 cal	
Q.28	Following data is kno melting point is	own about melting of a co	pmpound AB. $\Delta H = 9.2$		008 kJ K ⁻¹ mol ⁻¹ . Its 00; AIIMS 2000]
	[1] 736 K	[2] 1050 K	[3] 1150 K	[4] 1150ºC	
Q.29		ergy for Li is 5.4 eV and el Cl [–] is (if resulting ions do n	•		
				[MI	P PMT 2000, 03]
	[1] 70	[2] 100	[3] 170	[4] 270	\frown
Q.30	The enthalpy of comb vessel, the amount of	ustion of C ₆ H _{6(I)} is –3250 k heat evolved is :		ene is burnt excess CET 2000; AFMC 2	
	[1] 16.25 J	[2] 16.25 kJ	[3] 32.5 J	[4] 32.5 kJ	
Q.31		nce melting point is T _B an nge and temperature is :	nd freezing point is T _A ,	, then correct variat	ion shown by graph [DEC 2001]
	$\begin{bmatrix} 1 \end{bmatrix} \xrightarrow{\Delta S} \xrightarrow{T_B} \xrightarrow{T_A} \xrightarrow$	$[2] \xrightarrow{\uparrow} T_{B} \xrightarrow{T_{A}} T_$	$\begin{bmatrix} 3 \end{bmatrix} \xrightarrow{\Delta S} T_A \xrightarrow{T_B} \\ \hline T \rightarrow \end{bmatrix}$	$[4] \xrightarrow{\uparrow} \Delta S \xrightarrow{T_A T_B} T_{-}$	
Q.32	The heat of neutraliz –12.1 kJ, the heat of i	ation of HCl by NaOH un noization of HCN is :	der certain condition is	- 55.9 kJ and that	of HCN by NaOH is [MP PET 2001]
	[1] –68.0 kJ mol ⁻¹	[2] –43.8 kJ mol ⁻¹	[3] 68.0 kJ mol ⁻¹	[4] 43.8 kJ mol ⁻¹	
Q.33	Free energy change for	or a reversible process is :			[MP PET 2001]
	[1] More than zero	[2] Less than zero	[3] Equal to zero	[4] None of these	
Q.34	Spontaneity of a chen	nical reaction is decided by	y the negative change in	n :	[MP PET 2001]
	[1] Internal energy	[2] Enthalpy	[3] Entropy	[4] Free energy	
Q.35	The heat of neutraliza	tion of HCI and NaOH is :			[MP PET 2001]
	[1] Zero	[2] –57.3 kJ	[3] + 57.3 kJ	[4] None of these	
Q.36	For melting of 3 moles	s of water at 0°C the ΔG° i	S :		[MP PMT 2001]
	[1] Zero	[2] + ve	[3] – ve	[4] Unpredictable	
Q.37	For conversion C (gra	phite) \rightarrow C (diamond) the	∆S is :	[MP PMT 2001	; MP PET 2003]
	[1] Zero	[2] Positive	[3] Negative	[4] Unknown	
Q.38	Which of the following	is correct criteria for spor	ntaneity :		[MP PET 2002]
	[1] $\Delta H = +ve T.\Delta s = +ve T.\Delta s$	ve (T. Δ s > Δ H)	[2] ΔH = +ve T.Δs = +	ve (T. Δ s < Δ H)	
	[3] ∆H = −ve T.∆s = +v	/e (T.∆s > ∆H)	[4] ∆H = −ve T.∆s = −v	ve (T.∆s > ∆H)	
Q.39		stion of carbon monoxide nt pressure (R = 8.314 J c		id at 17⁰C is –283.3	kJ, then its heat of [CPMT 2001]
	[1] –284.5 kJ	[2] 284.5 kJ	[3] 384.5 kJ	[4] –384.5 kJ	

Q.40	The standard entropies of CC entropy of formation of $CO_2(g)$	<u>_</u>	O ₂ (g) are 213.5, 5.690	and 205 JK ⁻¹ resp	ectively. The standard [CPMT 2001]
	[1] 1.86 JK ⁻¹ [2] 1.4	96 JK ^{−1}	[3] 2.81 JK ⁻¹	[4] 2.86 JK ⁻¹	
Q.41	An adiabatic expansion of an i	deal gas, alway	s has :		[MP PMT 2002]
	[1] Increase in temperature		[2] ∆H = 0		
	[3] q = 0		[4] W = 0		
Q.42	The heat of neutralisation will I	be highest in :			[MP PMT 2002]
	[1] NH_4OH and CH_3COOH		[2] NH₄OH and HCI		
	[3] KOH and CH ₃ COOH		[4] KOH and HCl		
Q.43	Gibbs free energy G, enthalpy	H and entropy \$			[MP PMT 2002]
		= H – TS	[3] G – TS = H	[3] G = S = H	•
Q.44	If an endothermic reaction is point, then :	non-spontanec	ous at freezing point of v	water and becomes	s feasible at its boiling [AIEEE 2002]
	[1] ΔH is – ve, ΔS is + ve		[2] ΔH and ΔS both a	are + ve	*
	[3] ΔH and ΔS both are – ve		[4] ΔH is + ve, ΔS is	– ve	
Q.45	A heat engine absorbs heat Q + Q_2). This data :	at temperature	T_1 and heat Q_2 at temper	erature T ₂ . Work do	ne by the engine is (Q ₁ [AIEEE 2002]
	[1] Violates I st law of thermody	namics	[2] Violates I st law of	thermodyanics if Q	₁ is –ve
	[3] Violates I st law of thermody	anamics if Q_2 is	-ve		
	[4] Does not violate I st law of th	ermodynamics			
Q.46	The entropy changed involve temperature will be : $[\Delta H_{vap} =$		rsion of 1 mole of liquid	d water at 373 K to	o vapour at the same [MP PET 2002]
	[1] 0.119 kJ [2] 0.	109 kJ	[3] 0.129 kJ	[4] 0 4 2 0 1/1	
	[1] 0. 119 KJ [2] 0.	103 KJ	[5] 0.129 KJ	[4] 0.120 kJ	
Q.47	Which of the following reaction			[4] U. 120 KJ	[MP PMT 2002]
Q.47	•• ••		rmic : [2] $C(s) + 2S(s) \rightarrow C$	S ₂ (g)	[MP PMT 2002]
Q.47	Which of the following reaction	ns is not exothe	rmic :	S ₂ (g)	[MP PMT 2002]
Q.47 Q.48	Which of the following reaction [1] $C(s) + O_2(g) \rightarrow CO_2(g)$	ns is not exother + 2H ₂ O(I)	rmic : [2] C(s) + 2S(s) \rightarrow C [4] CO(g) + $\frac{1}{2}$ O ₂ (g)	$S_2(g)$ $\rightarrow CO_2(g)$	
	Which of the following reaction [1] C(s) + O ₂ (g) \rightarrow CO ₂ (g) [3] CH ₄ (g) + 2O ₂ (g) \rightarrow CO ₂ (g) The correct relationship between	ns is not exother + 2H ₂ O(I) en free energy o	rmic : [2] C(s) + 2S(s) \rightarrow C [4] CO(g) + $\frac{1}{2}$ O ₂ (g) - change in a reaction and	$S_2(g)$ $\rightarrow CO_2(g)$ the corresponding e	equilibrium constant K _C [AIEEE 2003]
	Which of the following reaction [1] C(s) + O ₂ (g) \rightarrow CO ₂ (g) [3] CH ₄ (g) + 2O ₂ (g) \rightarrow CO ₂ (g) The correct relationship betwe is :	ns is not exother + 2H ₂ O(I) en free energy c NG = RT <i>I</i> n K _C ng place at cor	rmic : [2] C(s) + 2S(s) \rightarrow C [4] CO(g) + $\frac{1}{2}O_2(g)$ - change in a reaction and [3] $\Delta G^{\circ} = RT ln K_C$ instant T and P and in w	S ₂ (g) → CO ₂ (g) the corresponding ϵ [4] – Δ G ^o = RT <i>l</i> hcih only pressure-	equilibrium constant K _C [AIEEE 2003] In K _C -volume work is being
Q.48	Which of the following reaction [1] $C(s) + O_2(g) \rightarrow CO_2(g)$ [3] $CH_4(g) + 2O_2(g) \rightarrow CO_2(g)$ The correct relationship betwe is : [1] $\Delta G = RT \ln K_C$ [2] -2 In an irreversible process tak	ns is not exother + 2H ₂ O(I) en free energy c NG = RT <i>I</i> n K _C ng place at cor	rmic : [2] C(s) + 2S(s) \rightarrow C [4] CO(g) + $\frac{1}{2}O_2(g)$ - change in a reaction and [3] $\Delta G^{\circ} = RT ln K_C$ instant T and P and in w	S ₂ (g) → CO ₂ (g) the corresponding e [4] $-\Delta G^{0} = RT l$ hcih only pressure-), satisfy the criteria	equilibrium constant K _C [AIEEE 2003] In K _C -volume work is being
Q.48	Which of the following reaction [1] $C(s) + O_2(g) \rightarrow CO_2(g)$ [3] $CH_4(g) + 2O_2(g) \rightarrow CO_2(g)$ The correct relationship betwe is : [1] $\Delta G = RT \ln K_C$ [2] -2 In an irreversible process tak done, the change in Gibbs free	ns is not exother + 2H ₂ O(I) en free energy c NG = RT <i>I</i> n K _C ng place at cor	rmic : [2] C(s) + 2S(s) \rightarrow C [4] CO(g) + $\frac{1}{2}$ O ₂ (g) change in a reaction and [3] Δ G ° = RT <i>l</i> n K _C instant T and P and in wind change in entropy (dS	S ₂ (g) → CO ₂ (g) the corresponding e [4] $-\Delta G^{\circ} = RT l$ hcih only pressure-), satisfy the criteria _P < 0	equilibrium constant K _C [AIEEE 2003] In K _C -volume work is being
Q.48	Which of the following reaction [1] $C(s) + O_2(g) \rightarrow CO_2(g)$ [3] $CH_4(g) + 2O_2(g) \rightarrow CO_2(g)$ The correct relationship betwe is : [1] $\Delta G = RT \ln K_C$ [2] -2 In an irreversible process tak done, the change in Gibbs free [1] $(dS)_{V,E} < 0$, $(dG)_{T,P} < 0$	the sis not exother + $2H_2O(I)$ en free energy of $AG = RT In K_C$ ng place at cor e energy (dG) an	rmic : [2] $C(s) + 2S(s) \rightarrow C$ [4] $CO(g) + \frac{1}{2}O_2(g)$ change in a reaction and [3] $\Delta G^{\circ} = RT ln K_C$ instant T and P and in with the change in entropy (dS) [2] $(dS)_{V,E} > 0, (dG)_T$	S ₂ (g) → CO ₂ (g) the corresponding e [4] $-\Delta G^{\circ} = RT l$ hcih only pressure-), satisfy the criteria _P < 0	equilibrium constant K _C [AIEEE 2003] 'n K _C -volume work is being
Q.48 Q.49	Which of the following reaction [1] $C(s) + O_2(g) \rightarrow CO_2(g)$ [3] $CH_4(g) + 2O_2(g) \rightarrow CO_2(g)$ The correct relationship betwe is : [1] $\Delta G = RT \ln K_C$ [2] -2 In an irreversible process tak done, the change in Gibbs free [1] $(dS)_{V,E} < 0$, $(dG)_{T,P} < 0$ [3] $(dS)_{V,E} = 0$, $(dG)_{T,P} = 0$	The second energy of the second energy (dG) and	rmic : [2] $C(s) + 2S(s) \rightarrow C$ [4] $CO(g) + \frac{1}{2}O_2(g)$ change in a reaction and [3] $\Delta G^{\circ} = RT ln K_C$ instant T and P and in with the change in entropy (dS) [2] $(dS)_{V,E} > 0, (dG)_T$	S ₂ (g) → CO ₂ (g) the corresponding e [4] $-\Delta G^{\circ} = RT l$ hcih only pressure-), satisfy the criteria P < 0 P > 0	equilibrium constant K _C [AIEEE 2003] In K _C -volume work is being a : [AIEEE 2003]
Q.48 Q.49	Which of the following reaction [1] $C(s) + O_2(g) \rightarrow CO_2(g)$ [3] $CH_4(g) + 2O_2(g) \rightarrow CO_2(g)$ The correct relationship betwe is : [1] $\Delta G = RT \ln K_C$ [2] -2 In an irreversible process tak done, the change in Gibbs free [1] $(dS)_{V,E} < 0, (dG)_{T,P} < 0$ [3] $(dS)_{V,E} = 0, (dG)_{T,P} = 0$ Which of the reaction defines a	The second energy of the second energy (dG) and	rmic : [2] $C(s) + 2S(s) \rightarrow C$ [4] $CO(g) + \frac{1}{2}O_2(g)$ change in a reaction and [3] $\Delta G^{\circ} = RT ln K_C$ instant T and P and in with the change in entropy (dS [2] $(dS)_{V,E} > 0, (dG)_T$ [4] $(dS)_{V,E} = 0, (dG)_T$	S ₂ (g) → CO ₂ (g) the corresponding e [4] $-\Delta G^{\circ} = RT l$ hcih only pressure-), satisfy the criteria P < 0 P > 0) → HF(g)	equilibrium constant K _C [AIEEE 2003] In K _C -volume work is being a : [AIEEE 2003]
Q.48 Q.49	Which of the following reaction [1] $C(s) + O_2(g) \rightarrow CO_2(g)$ [3] $CH_4(g) + 2O_2(g) \rightarrow CO_2(g)$ The correct relationship betwe is : [1] $\Delta G = RT \ln K_C$ [2] -2 In an irreversible process tak done, the change in Gibbs free [1] $(dS)_{V,E} < 0$, $(dG)_{T,P} < 0$ [3] $(dS)_{V,E} = 0$, $(dG)_{T,P} = 0$ Which of the reaction defines a [1] $C_{(diamond)} + O_2(g) \rightarrow CO_2(g)$	hs is not exother + $2H_2O(I)$ en free energy of $AG = RT /n K_C$ ng place at cor e energy (dG) ar AH_f^0	rmic : [2] $C(s) + 2S(s) \rightarrow C$ [4] $CO(g) + \frac{1}{2}O_2(g)$ change in a reaction and [3] $\Delta G^{\circ} = RT ln K_C$ instant T and P and in with a change in entropy (dS [2] $(dS)_{V,E} > 0, (dG)_T$ [4] $(dS)_{V,E} = 0, (dG)_T$ [2] $\frac{1}{2}H_2(g) + \frac{1}{2}F_2(g)$ [4] $CO(g) + \frac{1}{2}O_2(g)$ sed in a bomb calorime	S ₂ (g) → CO ₂ (g) the corresponding e [4] $-\Delta G^{\circ} = RT l$ hcih only pressure-), satisfy the criteria _P < 0 _P > 0) → HF(g) → CO ₂ (g) eter. The temperatu	equilibrium constant K _c [AIEEE 2003] 'n K _c -volume work is being : [AIEEE 2003] [IIT Scr. 2003]

			ТН	ERMOCHEMISTRY							
Q.52	For complete neutralization of HCI with NaOI	H, the heat of neutralization i	is :	[MP PET 2003]							
	[1] + 13.70 kJ mol ⁻¹ [2] – 13.70 kJ mol ⁻¹	[3] – 57.32 kJ mol ^{–1}	[4] + 57.32 kJ mol	J mol ⁻¹							
Q.53	The enthalpies of combustion of carbon and enyhalpy of formation of carbon monoxide pe		8.5 and –283 KJ mo	^{I–1} respectively. The [AIEEE 2004]							
	[1] –110.5 KJ [2] 676.5 KJ	[3] –676.5 KJ	[4] 110.5 KJ								
Q.54	Which of the following pairs of a chemical read	action is certain to result in a	a spontaneous react	on?							
				[CPMT 2005]							
	[1] Exothermic and increasing disorder	[2] Exothermic and dec	creasing disorder								
	[3] Endothermic and increasing disorder	[4] Endothermic and de	ecreasing disorder								
Q,55	A reaction occurd spontaneously if			[CPMT 2005]							
	[1] T Δ S < Δ H and both Δ H and Δ S are + ve	[2] T Δ S > Δ H and Δ H is	s +ve and ΔS is –ve								
	[3] T Δ S > Δ H and both Δ H and Δ S are +ve	[4] $T\Delta S = \Delta H$ and both	ΔH and ΔS are + ve								
Q.56	The absolute enthalpy of neutralisation of the	reaction ;									
	$\text{MgO}_{(s)} + 2\text{HCI}_{(aq)} \rightarrow \text{MgCI}_{2(aq)} + \text{H}_2\text{O}_{(l)}$ will be			[CPMT 2005]							
	[1] –57.33 kJ mol ^{–1}	[2] Greater than –57.33	3 kJ mol ⁻¹								
	[3] Less than –57.33 kJ mol ^{–1}	[4] 57.33 kJ mol ⁻¹	$\langle \mathcal{O} \rangle$								
Q.57	For a spontaneous reaction the ΔG , equilibire	um constant (K) and E°_{cell} wi	Il be respectively.	[AIEEE 2005]							
	[1] -ve, >1, +ve [2] +ve, >1ve	[3] -ve, <1, -ve	[4] -ve, >1, -ve								
Q.58	Consider the reaction : $N_2 + 3H_2 \rightarrow 2NH_3$ carried out at constant temperature and pressure. If ΔH and ΔU are the enthalpy and internal energy changes for the reaction, which of the following expressions is true ?										
				[AIEEE 2005]							
	$[1] \Delta H = 0 \qquad [2] \Delta H = \Delta U$	[3] ΔH < ΔU	$[4] \Delta H > \Delta U$								
Q.59	If the bond dissociation energies of XY, X_2 an the formation of XY is –200 kJ mol ⁻¹ . The bon	-		: 1 : 0.5 and ∆H _f for [AIEEE 2005]							
	[1] 100 kJ mol ⁻¹ [2] 200 kJ mol ⁻¹	[3] 800 kJ ⁻¹	[4] 400 kJ mol ^{–1}								
Q.60	Assume each reaction is carried out in an op	en container,for which react	ion will $\Delta H = \Delta E$?	[CPMT 2006]							
	$[1] \operatorname{PCl}_{5}(g) \rightarrow \operatorname{PCl}_{3}(g) + \operatorname{Cl}_{2}(g)$	CO ₂ (g)									
	$[3] H_2(g) + Br_2(g) \rightarrow 2HBr(g)$	$[4] C(s) + 2H_2O(g) \rightarrow 2$	$H_2(g) + CO_2(g)$								
Q.61	Identify the correct statement for change of pressure ;	Gibbs energy for a system	(ΔG_{system}) at constant	Int temperature and [CPMT 2006]							
	[1] If $\Delta G_{system} = 0$, the system is still moving	in a particular direction									
	[2] If $\Delta G_{\text{system}} < 0$, the process is not sponta										
	[3] If $\Delta G_{\text{system}} > 0$, the process is spontaneo										
	[4] If $\Delta G_{\text{system}} = 0$, the system has attained e										
Q.62	The enthalpy and entropy change for the rea										
	$Br_2(l) + Cl_2(g) \rightarrow 2BrCl(g)$			[CPMT 2006]							
	are 30 kJ mol ⁻¹ and 105 JK ⁻¹ mol ⁻¹ respective										
	[1] 450 K [2] 300 K	[3] 285.7 K	[4] 273 K								
0.62				anzona ia 150 1 kl							
Q.63	The enthalpy of hydrogenation of cyclohexe mol ⁻¹ , its enthalpy of hydrogenation would be		unance energy of be	enzene is –150.4 kJ [CPMT 2006]							
	[1] –269.9 kJ mol ⁻¹ [2] –358.5 kJ mol ⁻¹	[3] –508.9 kJ mol ^{–1}	[4] –208.1 kJ mol⁻	1							

Q.64	The standard enthalp	by of formation ($\Delta_{\rm f} {\rm H^o}$) is	at 298 K for methane, C	CH ₄ (g), is –74.8 kJ	mol ⁻¹ ,The additional										
	information required to determine the average energy for C – H bond formation would be [AIEEE 2006]														
	[1] Latent heat of vapo	ourization of methane													
	[2] The first four ioniza	tion energies of carbon	and electron gain enthalp	y of hydrogen											
	[3] The dissociation energy of hydrogen molecule,H ₂														
	[4] The dissociation er	[4] The dissociation energy of H ₂ and enthalpy of sublimation of carbon													
Q.65	The enthalpy changes														
	$Cl_2(g) = 2Cl(g),$ 242.3 kJ mol ⁻¹														
	$I_2(g) = 2I(g),$	151.0 kJ mol ⁻¹													
	ICI(g) = I(g) + CI(g),														
	$I_{2}(s) = I_{2}(g),$	62.76 kJ mol ⁻¹			^										
	Given that the standard states for iodine and chlorine are $I_2(s) \& CI_2(g)$, the standard enthalpy of format														
	ICI(g) is														
	[1] –16.8 kJ mol ^{–1}	[2] +16.8 kJ mol ⁻¹	[3] +244.8 kJ mol ⁻¹	[4] –14.6 kJ mol	–1										
Q.66	$(\Delta H - \Delta U)$ for the form	ation of carbone monox	kide (CO) from its element	ts at 298 K is											
	(R = 8.314 J K ⁻¹ mol ⁻¹	')		A +	[AIEEE 2006]										
	[1] 1238.78 J mol ⁻¹	[2] –2477.57 J mol ⁻¹	[3] 2477.57 J mol ⁻¹	[4] –1238.78 J m	nol ⁻¹										
Q.67	7 The reaction A to B is not feasible but on changing entropy through series of steps $A \rightarrow C \rightarrow D$ (A $\rightarrow C$) = 50 eu; ΔS (C $\rightarrow D$) = 30 eu; ΔS (B $\rightarrow D$) = 20 eu														
	The entropy change for	[IIT 2006]													
	[1] 100 eu	[2] 60 eu	[3] –60eu	[4] –100 eu											
Q.68	The energies of activation for forward and reverse reactions for $A_2 + B_2$ 2AB are 180 kJ m mol ⁻¹ respectively. The presence of a catalyst lowers the activation energy of both (forward and rever														
	100 kJ mol ⁻¹ . The enth	alpy change of the reacti	on $(A_2 + B_2 \rightarrow 2AB)$ in (he presence of catal	yst will be (in kJ mol-1)										
	[1] 280	[2] 20	[3] 300	[4] 120	[AIEEE 2007]										
Q.69	Assuming that water vapour is an ideal gas, the internal energy change (ΔU) when 1 mol of water is vapourised 1 bar pressure and 100 °C, (Given : Molar enthalpy of vapourisation of water at 1 bar and 373 K = 41 kJ mol ⁻¹ a R = 8.3 J mol ⁻¹ K ⁻¹) will be [AIEEE 2007]														
	[1] 37.904 kJ mol ⁻¹		[3] 4.100 kJ mol ⁻¹	[4] 3.7904 kJ m											
Q.70	In conversion of lime-		$s) \rightarrow CaO(s) + CO_2(g)$ th												
	mol ^{–1} and 160.2 J/K respectively at 298 K and 1 bar. Assuming that $_{ m AH^0}$ and $_{ m AS^0}$ do not change v														
	ture, temperature abo	ve which conversionof li	mestone to lime will be sp	ontaneous is	[AIEEE 2007]										
	[1] 845 K	[2] 1118 K	[3] 1008 K	[4] 1200 K											

Allawei Ney - U																									
Qus.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
Ans.	3	2	3	3	3	4	3	2	4	2	3	4	2	4	1	4	2	3	1	4	4	2	1	4	1
Qus.	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50
Ans.	1	3	3	3	2	1	4	3	4	2	1	3	1	1	3	3	4	2	2	4	2	2	4	2	2
Qus.	51	52	53	54	55	56	57	58	59	60	61	62	ន	64	65	66	67	68	69	70					
Ans.	1	3	1	1	3	3	1	3	3	3	4	3	4	4	2	1	2	2	1	2					

Answer Key - 3