

Radical : - A charged atom or groups of atoms which participates in chemical reactions.

IDENTIFICATION OF ACIDIC RADICALS

- Group I :This group consists of radical which are detected by dilute H_2SO_4 or dilute HCI.
These are (i) Carbonate, (ii) Sulphite, (iii) Sulphide, (iv) Acetate and (v) NitriteGroup II:This group consists of radicals which are detected by concentrated H_2SO_4 .
These are (i) Chloride, (ii) Bromide, (iii) Iodide, (iv) Nitrate and (v) Oxalate
- **Group III :** The radicals which do not give any characteristic gas with dilute and concentrated H₂SO₄. These are (i) Sulphate, (ii) Phosphate, (iii) Borate and (iv) Fluoride.

(A) Observation of Dil. HCl / H_2SO_4 + little amount of substance on slow heating.

Radical	Test/Observation/Analysis	Reaction
$(1) CO_3^{-2}$	(i) Sharp bubbling of colourless gas (CO ₂)	$CaCO_3 + H_2SO_4 \to CaSO_4 + H_2O + CO_2^{\uparrow}$
(Carbonate)	(ii) Gas truns milky to lime water.	$\text{CO}_2 + \text{Ca(OH)}_2 \rightarrow \text{CaCO}_3 \downarrow \text{(Milky)} + \text{H}_2\text{O}$
	(iii) On passing excess gas through lime	$CaCO_3 + CO_2 + H_2O \rightarrow Ca(HCO_3)_2$
	water, milky colour disappears.	(soluble)
	(i) Colourless gas (SO ₂) in which very	$CaSO_3 \texttt{+} H_2 \texttt{SO}_4 \rightarrow CaSO_4 \texttt{+} H_2 \texttt{O} \texttt{+} SO_2 \uparrow$
	unpleasant smell of burnt sulphur	
(2) SO_3^{-2}	(ii) Gas turns green to moist acidic $K_2 Cr_2 O_7$	$K_2Cr_2O_7 + H_2SO_4 + 3SO_2 \rightarrow$
(Sulphite)	paper	$K_2SO_4 + Cr(SO_4)_3$ (green) + H_2O_4
	(iii) Sulphite gives white ppt. with BaCl ₂ , which is soluble in dil. HCl	$Na_2SO_3 + BaCl_2 \rightarrow 2NaCl + BaSO_3 \downarrow$
(3) S ⁻²	(i) Colourless gas with rotten egg smell (H_2S)	$CaS + H_2SO_4 \rightarrow CaSO_4 + H_2S \uparrow$
(Sulphide)	(ii) Gas turns black to lead-acetate paper	$(CH_3COO)_2Pb+H_2S\rightarrow PbS-(black) 2CH_3COOH$
	(iii) Sulphide turns violet colour to	Na ₂ S+Na ₂ [FeNO(CN) ₅]→Na ₄ [Fe(NOS)(CN) ₅
	Sodiumnitroprusside soln.	(violet)
	(i) Vinegar smell, acetate may be	$(CH_3COO)_2Ca+H_2SO_4\rightarrow 2CH_3COOH+CaSO_4$
		(Vinegar smell)
(4)CH ₃ COO ⁻	(ii) Acetate gives blood red colour with neutral	3(CH ₃ COO) ₂ Ca+2FeCl ₃
(Acetate)	FeCl ₃ soln.	$\rightarrow 2 \text{Fe}(\text{CH}_3\text{COO})_3 + 3 \text{CaCl}_2$
	(i) Red, brown NO ₂ vapour comes out.	$2KNO_2 + H_2SO_4 \rightarrow K_2SO_4 + 2HNO_2$
	Nitrite may be	$3HNO_2 \rightarrow HNO_3 + 2NO\uparrow + H_2O$
		$2NO + O_2 \rightarrow 2NO_2^{\uparrow}$
(5) NO ₂ ⁻	(i) Gas turns blue to acidic KI strach paper	$2\text{KI} + 2\text{NO}_2 \rightarrow 2\text{KNO}_2 + \text{I}_2^{\uparrow}$
(Nitrite)	•••	Starch + $I_2 \rightarrow$ blue colour
(Acetate) (5) NO ₂ ⁻	 (ii) Acetate gives blood red colour with neutral FeCl₃ soln. (i) Red, brown NO₂ vapour comes out. Nitrite may be 	$(Vinegar s $ $3(CH_3COO)_2Ca + 2FeCl_3$ $\rightarrow 2Fe(CH_3COO)_3 + 3CaCl_2$ $2KNO_2 + H_2SO_4 \rightarrow K_2SO_4 + 2HNO_2$ $3HNO_2 \rightarrow HNO_3 + 2NO^{\uparrow} + H_2O$ $2NO + O_2 \rightarrow 2NO_2^{\uparrow}$ $2KI + 2NO_2 \rightarrow 2KNO_2 + I_2^{\uparrow}$

Radical	Test/observation/Analysis	Reaction
(6) CI [–] (Chloride)	 (i) Colourless fuming gas (HCl) with fast smell (ii) Chloride gives white ppt. with AgNO₃, which is soluble in NH₄OH (iii) Chromyl chloride test (v.imp.) (a) Sodium chloride when heated with K₂Cr₂O₇ & conc. H₂SO₄ then orange red vapour of chromyl chloride CrO₂Cl₂ comes out. (b) This vapour when passed with NaOH gives yellow solution (Na₂CrO₄) (c) Acidic solution of Na₂CrO₄ gives yellow ppt. with (CH₃COO)₂ Pb 	$\begin{array}{c} 2 \text{NaCl} + \text{H}_2 \text{SO}_4 \rightarrow \text{Na}_2 \text{SO}_4 + 2 \text{HCl} \uparrow \\ \text{NaCl} + \text{AgNO}_3 \rightarrow \text{AgCl} \downarrow + \text{NaNO}_3 \\ & (\text{white}) \\ \text{AgCl} + 2 \text{NH}_4 \text{OH} \rightarrow \text{Ag}(\text{NH}_3)_2 \text{Cl} + 2 \text{H}_2 \text{O} \\ & (\text{Soluble}) \\ \end{array}$ $\begin{array}{c} 4 \text{NaCl} + \text{K}_2 \text{Cr}_2 \text{O}_7 + 3 \text{H}_2 \text{SO}_4 \rightarrow \\ 2 \text{CrO}_2 \text{Cl}_2 + 2 \text{Na}_2 \text{SO}_4 + \text{K}_2 \text{SO}_4 + 3 \text{H}_2 \text{O} \\ (\text{orange red}) \\ \text{CrO}_2 \text{Cl}_2 + 4 \text{NaOH} \rightarrow \\ \text{Na}_2 \text{CrO}_4 + 2 \text{NaCl} + 2 \text{H}_2 \text{O} \\ \text{Na}_2 \text{CrO}_4 + (\text{CH}_3 \text{COO})_2 \text{Pb} \rightarrow \\ 2 \text{CH}_3 \text{COONa} + \text{PbCrO}_4 \downarrow (\text{yellow ppt}) \end{array}$
(7) Br– (Bromide)	 (i) Brown vapour comes out of (Br₂)Br⁻ or NO₃⁻ may be (ii) Bromides gives light yellow ppt. with AgNO₃ which is partially soluble in NH₄OH. (iii) Brown vapour of Br₂ when passed with H₂O gives brown colouration wheras NO₂ vapour don't give any colour with NO₂ vapour 	$\begin{array}{l} 2\text{NaBr} + \text{H}_2\text{SO}_4 \rightarrow \text{Na}_2\text{SO}_4 + 2\text{HBr} \\ 2\text{HBr} + \text{H}_2\text{SO}_4 \rightarrow \text{Br}_2\uparrow + 2\text{H}_2\text{O} + \text{SO}_2\uparrow \\ \text{NaBr} + \text{AgNO}_3 \rightarrow \text{AgBr} \downarrow + \text{NaNO}_3 \\ & (\text{light yellow}) \end{array}$
(8) I [–] (lodide)	 (i) Dark violet fume of I₂ comes out. (ii) Gives blue colouration with starch . (iii) lodides gives yellow ppt. with AgNO₃ which is insoluble in NH₄OH (iv) lodine with chloroform gives violet coloured chloroform 	$\begin{array}{c} 2 \text{Nal} + \text{H}_2 \text{SO}_4 \rightarrow \text{Na}_2 \text{SO}_4 + 2 \text{HI} \\ 2 \text{HI} + \text{H}_2 \text{SO}_4 \rightarrow \text{I}_2 \uparrow + 2 \text{H}_2 \text{ O} + \text{SO}_2 \uparrow \\ (\text{violet}) \\ \text{I}_2 + \text{starch} \rightarrow \text{Blue colour (complex)} \\ \text{Nal} + \text{AgNO}_3 \rightarrow \text{AgI} + \text{NaNO}_3 \\ (\text{yellow}) \\ 2 \text{KI} + \text{CI}_2 (\text{water}) \rightarrow 2 \text{KCI} + \text{I}_2 \\ \text{I}_2 + \text{chloroform} \rightarrow \text{violet coloured chloroform} \end{array}$
(9) NO ₃ ⁻ (Nitrate)	(i) Brown smoke comes out (NO_2) (ii) Ring test (v. imp.) aq. solution of salt is mixed in fresh FeSO ₄ and conc. H ₂ SO ₄ is passed through corners of test tube, brown ring is formed.	$\begin{array}{c} NaNO_3 H_2SO_4 \rightarrow NaHSO_4 + HNO_3 \\ 4HNO_3 \rightarrow 2H_2O + O_2 + 4NO_2 \downarrow \\ \hline NaNO_3 + H_2SO_4 \rightarrow NaHSO_4 + HNO_3 \\ 6FeSO_4 + 2HNO_3 + 3H_2SO_4 \rightarrow \\ 3Fe_2(SO_4)_3 + 2NO + 4H_2O \\ \hline FeSO_4 + NO \rightarrow [Fe(NO)]SO_4 \\ (brown ring of nitrosoferrous sulphate) \end{array}$

(B) Observation of Conc. H_2SO_4 + little amount of substance of slow heating

Radical	Test/ observation/ Analysis	Reaction
(10) C ₂ O ₄ ⁻² (Oxalate)	(i) Colourless gas (CO + CO ₂) comes out.	$Na_2C_2O_4+H_2SO_4\rightarrow H_2O+CO+CO_2+Na_2SO_4$
	 (ii) These gases burns with blue flame on the moutn of test tube. (ii) Oxalate solution gives – 	$2CO + O_2 \rightarrow 2CO_2$
	(a) White ppt. with CaCl ₂	(a) $Na_2C_2O_4 + CaCl_2 \rightarrow CaC_2O_4 \downarrow + 2NaCl$
	(b) This ppt. is soluble in H_2SO_4	(b) CaC_2O_4 +H ₂ SO ₄ \rightarrow CaSO ₄ +H ₂ C ₂ O ₄ (V. imp.)
	(c) This ppt. decolourise KMnO ₄ soln.	(c) $2KMnO_4 + 3H_2SO_4 + 5H_2C_2O_4 \rightarrow$ $2MnSO_4 + K_2SO_4 + 8H_2O + 10CO_2$
(11) SO ₄ ⁻² (Sulphate)	Small amount of substance + conc. HNO ₃ mixtures is heated & now adding BaCl ₂ white ppt comes which is insoluble in acid or base sulphate confirmed	$\begin{array}{l} \mathrm{Na_2SO_4} + \mathrm{2HNO_3} \rightarrow \mathrm{2NaNO_3} + \mathrm{H_2SO_4} \\ \mathrm{H_2SO_4} + \mathrm{BaCl_2} \rightarrow \mathrm{BaSO_4} \downarrow + \mathrm{2HCl} \\ (\mathrm{white}) \end{array}$
(12) PO ₄ ⁻² (Phosphate	 (b) Small amount of substance + conc. HNO₃ mixture is heated & (b) Ammonium molybdate is mixed, yellow ppt. comes which confirms the presence of phosphate 	(a) $Na_3PO_4 + 3HNO_3 \rightarrow 3NaNO_3 + H_3PO_4$ (b) $H_3PO_4 + 12(NH_4)_2MoO_4 + 21HNO_3$ $\rightarrow (NH_4)_3.PO_412MoO_3 \downarrow + 12H_2O + 21NH_4NO_3$ [ammonium phosphomolybdate (yellow ppt)]
(13) BO ₃ ⁻³ (Borate)	To a small quantity of the substance (salt or mixture), add a few mL of ethyl alcohol and conc. H_2SO_4 . Stir the contents with a glass rod. Heat the test tube and bring the mouth of the test tube near the flame. The formation of green edged flame indicates the presence of borate.	$2\text{Na}_{3}\text{BO}_{3} + 3\text{H}_{2}\text{SO}_{4} \rightarrow 3\text{Na}_{2}\text{SO}_{4} + 2\text{H}_{3}\text{BO}_{3}$ $\text{H}_{3}\text{BO}_{3} + 3\text{C}_{2}\text{H}_{5}\text{OH} \rightarrow (\text{C}_{2}\text{H}_{5})_{3} \text{ BO}_{3} + 3\text{H}_{2}\text{O}$ Ethyl borate
(14) F [–] (Fluoride)	Take a small amount of the substance in a dry test tube and add an equal amount of sand. Mix the contents and add conc. H_2SO_4 Heat the contents and place a glass rod moistened with water over the mouth of the test tube. A waxy white deposite on the rod is Formed.	$\begin{array}{l} 2 \text{NaF} + \text{H}_2 \text{SO}_4 \rightarrow \text{Na}_2 \text{SO}_4 + \text{H}_2 \text{F}_2 \\ \text{SiO}_2 + 2 \text{H}_2 \text{F}_2 \rightarrow \text{SiF}_4 + 4 \text{H}_2 \text{O} \\ 3 \text{SiF}_4 + 4 \text{H}_2 \text{O} \rightarrow \text{H}_4 \text{SiO}_4 + 2 \text{H}_2 \text{SiF}_6 \\ (\text{white}) \\ \text{Fluoride is comfirm} \end{array}$

TEST OF BASIC RADICALS

Group I Redicals : Pb^{2+} , Ag^{+} , Hg_2^{2+} (ous) Group reagent : Dil HCI Group II Redicals : Hg^{2+} , Pb^{+2} , Br^{3+} , Cu^{2+} , Cd^{2+} Group II A As^{3+} , Sb^{3+} , Sn^{2+} , Sn^{4+} Group IIB Group reagent : H_2S gas in presence of dil. HCI		Group Group Radica	IIs : Ni ⁺² , Co ⁺² , Mn ⁺² , Zn ⁺² reagent : H ₂ S gas in presence of NH ₄ Cl & NH ₄ OH
Group III		Group	
Radicals :	Fe^{3+} , Al^{3+} , Cr^{3+}		II: Mg ⁺²
Group reage	ent : NH ₄ OH + NH ₄ Cl	Group	reagent : Na ₂ HPO ₄ in presence of NH ₄ OH
Group No./ Radical	Test/ observation/ Analysis		Reaction
l group /	In solution of substance mixting dil. HCl		$2 \text{HgNO}_3 + 2 \text{HCI} \rightarrow \text{HgCI}_2 \downarrow + 2 \text{HNO}_3$
Hg ⁺² ,Ag ⁺ ,Pb ⁺²	white ppt. comes out which confirms the		AgNO ₃ + HCl → AgCl ⁻ + HNO ₃
	presence of Hg ⁺ , Ag ⁺ or Pb ⁺²		$Pb(NO_3) + 2HCI \rightarrow PbCI_2 \downarrow + 2HNO_3$
Imp. PbCl ₂ is soluble in hot water (b		r (but in	soluble in cold water)
Whereas insoluble in both AgCl & HgCl ₂			CI & HgCl ₂
(1) Pb ⁺²	Pb ⁺² ion gives yellow ppt. with K_2CrO_4 &	0	PbCl ₂ +K ₂ CrO ₄ → PbCrO ₄ (yellow)↓ + 2KCl
(2) Hg ₂ ⁺²	KI soln. separately. Hg ₂ ⁺² gives black ppt. with NH_3		PbCl ₂ + 2KI → Pbl ₂ \downarrow (yellow) + 2KCl Hg ₂ Cl ₂ + 2NH ₄ OH → Hg(NH ₂)Cl + Hg \downarrow
(2) rig ₂	rig ₂ gives black ppt. with Nr ₃		$+ \operatorname{NH}_4 \operatorname{Cl} + 2\operatorname{H}_2 \operatorname{O}$
(3) Ag+	(i) AgCl is soluble in NH₄OH		$AgCl + 2NH_4OH \rightarrow [Ag(NH_3)_2]Cl + 2H_2O$
(0) Ag	(ii) Ag ⁺ ion gives yellow ppt. with Kl		Ag ⁺ + I ⁻ \rightarrow AgI \downarrow (yellow)
II group/	Passing H_2S in presence of HCI these		
Hg ⁺² ,Ag ⁺² ,Pb ⁺²	- 2		
Cd ⁺² ,Bi ⁺³ (IIA)			
As ⁺³ ,Sb ⁺³ (Sn ⁺²)			
Sn ⁺⁴ (IIB)	2		
	Yellow ppt. (CdS, As ₂ S ₃ , SnS ₂)		
	Orange ppt. (Sb ₂ S ₃)		
	Brown ppt. (SnS)		
Sb ⁺³	Black ppt.		
Sn ⁺²	(HgS, PbS, Bi ₂ S ₃ , CuS)		
Hg ⁺² , Pb ⁺² , Bi ⁺³			
Cu ⁺²			

Note : Obtained ppt. is differentiated by the reaction of $(NH_4)_2S$ which is insoluble in the ppt. obtained of IIA and soluble in II B ppt.

Radical	Test/ observation/ Analysis	Reaction
II–A group/ (4) Hg ⁺²	Adding Hg ⁺² ion white ppt. obtained which turns black	$\begin{array}{c} 2\mathrm{Hg^{+2}}+\mathrm{SnCl_2}+\mathrm{Sn^{+4}}\rightarrow\mathrm{Sn^{+4}}+\mathrm{Hg_2Cl_2}\downarrow\\ (\mathrm{white})\\ \mathrm{HgCl_2}+\mathrm{SnCl_2}\rightarrow\mathrm{SnCl_4}+2\mathrm{Hg}\downarrow\\ (\mathrm{black})\end{array}$
(5) Pb ⁺²	 (i) In solution, Pb⁺² gives white ppt. with H₂SO₄ (ii) In solution Pb⁺² ion gives yellow ppt. with K₂CrO₄ & KI 	$\begin{array}{l} Pb^{+2+H_2SO_4} \to PbSO_4 \downarrow + 2H^+ \\ (\text{white}) \\ Pb^{+2+Cr_2O_4^{-2}} \to PbCrO_4 \downarrow (\text{yellow}) \\ Pb^{+2+2l^-} \to Pbl_2 \downarrow (\text{yellow}) \end{array}$
(6) Cu ⁺²	 (i) These ion gives dark blue colour with excess NH₄OH (ii) Cu⁺² ion gives chocolate colour with K₄Fe(CN)₆ 	$\begin{array}{c} Cu^{+2} + NH_4OH \rightarrow [Cu(NH_3)_4]^{+2} + H_2O \\ (\text{dark blue colour}) \\ 2Cu^{+2} + K_4Fe(CN)_6 \rightarrow Cu_2[Fe(CN)_6] \downarrow + 4k \\ (\text{chocolate or red brown ppt.}) \end{array}$
(7) Bi ⁺³	Bi ⁺³ ion gives white ppt. while adding water In HCl soln.	$\begin{array}{l} \text{BiCl}_3 + \text{H}_2\text{O} \rightarrow \text{BiOCl} \downarrow + 2\text{HCl} \\ (\text{white bismuth oxychloride}) \\ \text{BiCl}_3 + 3\text{Na}_2\text{SnO}_2 + 6\text{NaOH} \rightarrow \\ (\text{sodium stanite}) \\ 2\text{Bi} \downarrow + 3\text{Na}_2\text{SnO}_3 + 6\text{NaCl} + 3\text{H}_2\text{O} \\ (\text{black sodium stanate}) \end{array}$
(8) Cd ⁺²	 (i) The yellow precipitate is dissolved in 50% HNO₃. To the resulting solution, NH₄OH is added slowly. A white ppt. appears which dissolve in excess of NH₄OH. (ii) When H₂S gas is passed in this solution a yellow ppt. a pears 	$\begin{array}{c} 3\text{Cds} + 8\text{HNO}_3 \rightarrow 3\text{Cd}(\text{NO}_3)_2 + 4\text{H}_2\text{O}+2\text{NO} + 3\text{S} \\ (50\%) \\ \text{Cd}(\text{NO}_3)_2 + 2\text{NH}_4\text{OH} \rightarrow 2\text{NH}_4\text{NO}_3 + \text{Cd}(\text{OH})_2 \downarrow \\ & \text{white ppt.} \\ \text{Cd}(\text{OH})_2 + 2\text{NH}_4\text{OH} + 2\text{NH}_4\text{NO}_3 \rightarrow \\ & [\text{Cd}(\text{OH}_3)_4](\text{NO}_3)_2\text{aq.} + 4\text{H}_2\text{O} \\ \text{[Cd}(\text{NH}_3)_4](\text{NO}_3)_2 + \text{H}_2\text{S} \rightarrow \\ & \text{CdS} \downarrow 2\text{NH}_4\text{NO}_3 + 2\text{NH}_3 \\ & (\text{yellow ppt.}) \end{array}$
II–B group/		() ener (() ()
(9) As ⁺³	In solution As ⁺³ ion turns yellow ppt. with ammonium molybdate and HNO ₃	As ⁺³ <u>HNO₃</u> As ⁺⁵ (as H ₃ AsO ₄) H ₃ AsO ₄ + 12(NH ₄) ₂ MoO ₄ + 21HNO ₃ → (NH ₄) ₃ AsO ₄ + 12MoO ₃ ↓ → 21NH ₄ NO ₃ + 12H ₂ O
(10) Sn ⁺²	Sn^{+2} ion in solution gives white ppt. in form of $SnCl_2$ with HgCl ₂ , which frequently turns black	$\begin{array}{l} \operatorname{SnCl}_2 + 2\operatorname{HgCl}_2 \to \operatorname{SnCl}_4 + \operatorname{HgCl}_2 \downarrow \\ \operatorname{Hg}_2\operatorname{Cl}_2 + \operatorname{SnCl}_2 \to \operatorname{SnCl}_4 + 2\operatorname{Hg} \downarrow \text{(back)} \end{array}$
(11) Sn ⁺⁴	AI turns Sn ⁺⁴ to Sn ⁺² After it Sn ⁺² is examined by HgCl ₂	$SnCl_4 + HgCl_2 \rightarrow No reaction$ $3SnCl_4 + 2Al \rightarrow 2AlCl_3 + 3SnCl_2$
(12) Sb ⁺³	On adding water in solution, Sb ⁺³ ion forms white ppt. in the form of SbCl ₃	$SbCl_3 + H_2O \to SbOCl \downarrow (white) + 2HCl$
III group/ Fe ⁺³ , Cr ⁺³ & Al ⁺³	These ion precipts in the form of hydroxide on adding NH ₄ CI & NH ₄ OH	Fe ⁺³ + 3OH [−] → Fe(OH) ₃ (red ppt.) Cr ⁺³ + 3OH [−] → Cr(OH) ₃ (green ppt.) Al ⁺³ + 3OH [−] → Al(OH) ₃ (white ppt.)
Note : In the	analysis of III group, some drops of conc. HNO ₃ a	are also added before oxidising Fe ⁺² to Fe ^{+3.}
(13) Al ⁺³	White ppt. of $AI(OH)_3$ is soluble in NaOH	Imp. $AI(OH)_3 + NaOH \rightarrow NaAIO_2 + 2H_2O$ (sodium metaaluminate)
(14) Cr ⁺³	ppt. of $Cr(OH)_3$ is soluble in NaOH + Br_2 water soln. in this soln. when $BaCl_2$ is added yellow ppt. is obtained	$\begin{array}{l} \text{Br}_2 + \text{H}_2\text{O} \rightarrow 2\text{HBr} + \text{O} \\ 2\text{Cr}(\text{OH})_3 + 4\text{NaOH} + 3\text{O} \rightarrow 2\text{Na}_2\text{CrO}_4 + 5\text{H}_2\text{O} \\ \text{Na}_2\text{CrO}_4 + \text{BaCl}_2 \rightarrow \text{BaCrO}_4 \downarrow \text{(yellow ppt.)} + 2\text{NaCl} \end{array}$

(15) Fe ⁺³	 (i) (a) Brown ppt. of Fe(OH)₃ is soluble in HCl (b) When KCNS is added in this soln. soln. blood red colouration is obtained (ii) In this soln., on adding K₄[Fe(CN)₆], prussian blue colour is obtained 	$\begin{array}{c} \operatorname{Fe}(\operatorname{OH})_3 + 3\operatorname{HCI} \to \operatorname{FeCI}_3 + 3\operatorname{H}_2\operatorname{O} \\ \operatorname{FeCI}_3 + 3\operatorname{KCNS} \to \operatorname{Fe}(\operatorname{CN})\operatorname{S}_3 + 3\operatorname{KCI} \\ (\text{ferric thiocyanate}) \\ (\text{blood red}) \\ 4\operatorname{FeCI}_3 + 3\operatorname{K}_4[\operatorname{Fe}(\operatorname{CN})_6 \to \operatorname{Fe}_4[\operatorname{Fe}(\operatorname{CN})_6]_3 + 12\operatorname{KCI} \\ (\text{ferric ferrocyanide prussian blue}) \end{array}$
IV group/ Zn ⁺² , Mn ⁺² Co ⁺² , Ni ⁺² Co ⁺² , Ni ⁺² Zn ⁺² Mn ²	These ions in presence of NH ₄ OH preciptitate on passing H ₂ S. Black (CoS, Nis) Ppt., (soluble in aqua–ragia) White (ZnS) (soluble in HCl) Pink or buff (MnS), soluble in HCl	$MCl_2 + H_2S \rightarrow MS \downarrow + 2HCI$
(16) Ni ⁺²	In presence of NH ₄ OH, Ni salt on reaction with dimethyl glyoxime (DMG) turns red ppt. of nickel dimethyl glyxoime	V. Imp. CH_3 -C=NOH + Ni Cl_2 + 2NH ₄ OH I CH_3 -C=NOH \rightarrow Nickel dimethyl glyoxime (red ppt)
(17) Co ⁺²	Cobalt salt turns blue colouration with $\rm NH_4CNS$	$CoCl_2 + 4NH_4 CNS \rightarrow$ $(NH_4)_2[Co(CNS)_4] + 2NH_4CI$ (ammonium cobalt thiocyanate) (blue colour)
(18) Zn ⁺²	In solution, Zn ⁺² ion turns white ppt. with NaOH which is soluble in excess NaOH	V. Imp $Zn^{+2} + 2NaOH \rightarrow Zn(OH)_2 \downarrow \text{(white)} + 2Na$ $Zn(OH)_2 + 2NaOH \rightarrow Na_2ZnO_2 + 2H_2O$
(19) Mn ⁺²	(a) Mn ⁺² ion gives pink ppt. with NaOH (b) On heating turns black or brown	V. Imp $Mn^{+2} + 2NaOH \rightarrow Mn(OH)_2 \downarrow + 2Na$ (Pink) $Mn(OH)_2 + O \xrightarrow{\Delta} MnO_2 + H_2O$ (brown and black)
V group/ Ba ⁺² , Sr ⁺² , Ca ⁺²	On adding $(NH_4)_2CO_3$, these precipitates in the form of carbonates.	M^{+2} + $(NH_4)_2CO_3 \rightarrow MCO_3$ + $2NH_4^+$ BaCO ₃ , CaCO ₃ , SrCO ₃ (white) soluble in CH ₃ COOH
(20) Ba ⁺²	Gives Ba^{+2} ion in solution (i) Yellow ppt. with K_2CrO_4 (ii) white ppt. with $(NH_4)_2SO_4$ (iii) white ppt. with $(NH_4)_2C_2O_4$	$\begin{array}{l} Ba^{+2+K_2CrO_4} \rightarrow BaCrO_4 \downarrow (\text{ yellow}) + 2K\\ Ba^{+2+(NH_4)_2SO_4} \rightarrow BaSO_4 \downarrow (\text{white}) + 2NH_4^+\\ Ba^{+2+(NH_4)_2C_2O_4} \rightarrow BaC_2O_4 \downarrow (\text{white}) + 2NH_4^+ \end{array}$
(21) Sr+2	Sr^{+2} ion with (i) (NH ₄) ₂ SO ₄ gives white precipitate	$Sr^{+2}(NH_4)_2SO_4 \rightarrow SrSO_4 \downarrow + 2NH_4^+$ (white ppt.)
(22) Cr ⁺²	Ca^{+2} ion gives white ppt. only with $(NH_4)_2C_2O_4$	$\begin{array}{c} Ca^{+2+(NH_4)_2C_2O_4} \rightarrow CaC_2O_4 \downarrow +2NH_4^+\\ (\text{white})\\ Sr^{+2+(NH_4)_2C_2O_4} \rightarrow SrC_2O_4 \downarrow +2NH_4^+\\ (\text{white ppt.})\end{array}$

VI Group / (23) Mg ⁺²	Mg ⁺² ion gives white ppt. with NH ₄ OH $(NH_4)_2$ HPO ₄	Mg ⁺² + (NH ₄) ₂ HPO ₄ + NH ₄ OH → MgNH ₄ PO ₄ \downarrow (white) + 2NH ₄ ⁺ + H ₂ O
Zero group/ (24)(i) (a) All ammonium salts on reacting with base like (NaOH), gives smell		(a) NH ₄ CI + NaOH → NaCI + NH ₃ $^{\uparrow}$ +H ₂ O
	of NH ₃ (b) Gas evolved (NH ₃) gives white fume with HCI	(b) $NH_3 + HCI \rightarrow NH_4CI \uparrow (white fume)$
	(c) On passing NH_3 in $Hg_2(NO_3)_2$, blakc colour is obtained	(c) $Hg_2(NO_3)_2 + 2NH_3 \rightarrow$ Hg + Hg(NH ₂)NO ₃ + NH ₄ NO ₃ (black) \rightarrow
	(b) Brown ppt. is obtained with nesseler's reagent	(d) 2K ₂ Hgl ₄ + 4KOH + NH ₄ CI → (Nesseler's reagent)
		Hg + 7KI + KCI. 3H ₂ O
		(lodide solution brown ppt.)
lodde solution brown ppt.)		

Note : The order of that is same as above Ba^{+2} , Sr^{+2} , Ca^{+2}

BORAX BEAD TEST

On heating borax the colourless glass bead fromed consists of sodium metaborate and boric anhydride.

$$Na_2B_4O_7$$
. $10H_2O \longrightarrow Na_2B_4O_7 \longrightarrow Heat \longrightarrow 2NaBO_2 + B_2O_3$
Glassy bead

On heating with a coloured salt, the glassy bead froms a coloured metaborate in oxidising flame.

 $CuSO_4 \rightarrow CuO + SO_3$ $\begin{array}{c} \text{CuO} + \text{B}_2\text{O}_3 \rightarrow \text{Cu(BO}_2)_2 \\ \text{Copper metaborate} \end{array}$ (Blue)

Metal	Oxidising - flame		Reducing - flame	
	Hot	Cold	Hot	Cold
Copper	Green	Blue	Colourless	Brown-red
Iron	Brown-yellow	Pale-yellow	Bottle green	Bottle green
Chromium	Green	Green	Green	Green
Cobalt	Blue	Blue	Blue	Blue
Nickel	Violet	Brown	Grey	Grey
nysical Appearance or inorganic salt				

S.No.	Inorganic Salt	Colour
1.	Cu ⁺²	Blue
2.	Cr ⁺³ , Cr ⁺⁶	Dark green
3.	Fe ⁺³	Green
4.	Fe ⁺²	Yellow or Brown
5.	Mn ⁺²	Light Pink
6.	Co ⁺²	Pink
7.	Ni ⁺²	Green or Blue
8.	HgO, HgI ₂ , Pb ₃ O ₄	Red
9.	Pb, Hg and Ba salts	Comparatively heavy
NN		

7.01

ACTION OF HEAT

1. Except (Na, K, Rb and Cs) all carbonates on heating decomposes to give CO_2 . Li $CO_3 \xrightarrow{\Delta} Li_2O + CO_2 \uparrow$ Mg $CO_3 \xrightarrow{\Delta}$ Mg $O + CO_2 \uparrow$

2. Generally all bicarbonates decomposes to give carbonates and CO_2 2NaHCO₃ $\xrightarrow{\Delta}$ Na₂CO₃ + H₂O + CO₂

3. Generally halides are stable on heating but some halides decomposes.

 $\begin{array}{l} 2\mathsf{FeCl}_3 & \stackrel{\Delta}{\longrightarrow} 2\mathsf{FeCl}_2 + \mathsf{Cl}_2 \\ \mathsf{MgCl}_2. \ \mathsf{6H}_2\mathsf{O} & \stackrel{\Delta}{\longrightarrow} \mathsf{MgO} + 2\mathsf{HCl} + 5\mathsf{H}_2\mathsf{O} \\ \mathsf{Hg}_2\mathsf{Cl}_2 & \stackrel{\Delta}{\longrightarrow} \mathsf{HgCl}_2 + \mathsf{Hg} \\ \mathsf{NH}_4\mathsf{Cl} & \stackrel{\Delta}{\longrightarrow} \mathsf{NH}_3 + \mathsf{HCl} \end{array}$

- 4. Nitrates decomposes on heating. $NH_4NO_3 \rightarrow N_2O + 2H_2O$ $2MnO_3 \rightarrow 2MnO_2 + O_2 \text{ (except Li)}$ $2LiNO_3 \rightarrow Li_2O + 2NO_2 + \frac{1}{2}O_2 \text{ imp.}$ $2Mg(NO_3)_2 \rightarrow 2MgO + 4NO_2 + O$ $2Cu(NO_3)_2 \rightarrow CuO + 4NO_2 + O_2 \text{ (except Hg all bivalent nitrates)}$ $Hg(NO_3)_2 \rightarrow Hg + 2NO_2 + O_2$
- 5. Silver salts on heating gives Ag.

 $\begin{array}{l} \operatorname{Ag_2CO_3} \rightarrow \ \operatorname{2Ag} + \operatorname{CO_2} + \ \frac{1}{2} \operatorname{O_2} \\ \\ \operatorname{2AgNO_3} \rightarrow \operatorname{2Ag} + \operatorname{2NO_2} + \operatorname{O_2} \end{array}$

CHARACTERISTIC FLAME COLOUR

(1) Pb \rightarrow yeallow, green	(2) Cu salt, $BO_3^{-3} \rightarrow Blue \text{ or green}$
(3) Li \rightarrow red	(4) Na \rightarrow golden red
(5) K \rightarrow violet	(6) $Rb \rightarrow boilet red$
(7) Cs \rightarrow voilet blue	(8) Ca \rightarrow brick red
(9) Sr \rightarrow krimson red	(10) Ba \rightarrow apple green

Imp. Note; (1)

(2)

Be & Mg don't give flame test

Colourless white salt dont' possess Cu, Ni, Co, Fe, Mn, Cr etc.

(3) White substances which swells are alum, borate and phosphate.

SUBLIMATION ACTION OF A SUBSTANCE AND COLOUR

White	$HgCl_2, Hg_2Cl_2, As_2O_3, Sb_2O_3$
Yellow	AICI ₃ and NH ₃ halides
Brown	HgO, Hg(NO ₃) ₂
Blue, Balck and Voilet	lodides
Black	As, Sb, Hg sulphides and iodides.