Ex.1 Calculate the distance between 111 planes in a crystal of Ca. Repeat the calculation for the 222 planes. (a = 0.556nm)

ample

 $[4] \frac{\pi}{6}$

Sol. We have,

$$d = \frac{a}{\sqrt{h^2 + k^2 + \ell^2}}$$
$$d_{111} = \frac{0.556}{\sqrt{1^2 + 1^2 + 1^2}} = 0.321 \text{ nm}$$

blved

and

...

$$d_{222} = \frac{0.556}{\sqrt{2^2 + 2^2 + 2^2}} = 0.161 \text{ nm}$$

The separation of the 111 planes is twice as great as that of the 222 planes.Ex.2 Fraction of total volume occupied by atoms in a simple cube is -

[1]
$$\frac{\pi}{2}$$
 [2] $\frac{\sqrt{3}\pi}{2}$ [3] $\frac{\sqrt{2}\pi}{6}$

Sol. In a simple cubic system, number of atoms

Packing fraction =

Volume occupied by one atom

Volume of unit cell

$$=\frac{\frac{4}{3}\pi r^{3}}{a^{3}}=\frac{\frac{4}{3}\pi r^{3}}{(2r)^{3}}=\frac{\pi}{6}$$

Ex.3 In a crystal both ions are missing from normal sites in equal number. This is an example of -

[1] F-centres [2] Interstitial defect

[3] Frenkel defect [4] Schottky defect

- **Sol.** Schottky defects are arised when one positive ion and one negative ion are missing from their respective position leaving behind a pair of holes. These are more common in ionic compounds with high coordination number and having almost similar size of cations and anions.
- Ex.4 Xenon crystallizes in face centre cubic lattice and the edge of the unit cell is 620 PM, then the radius of Xenon atom is -

Sol. For fcc lattice

$$4r = \sqrt{2} a$$
 (4) 536.94 PM
 $r = \sqrt{2} a$ (5) PM (5) PM
 $r = \frac{1}{2\sqrt{2}} x a = \frac{1}{2\sqrt{2}} x 620 PM = 219.20 PM.$
Ex.5 The edge length of cube is 400 PM. Its body diagonal would be -
[1] 500 PM [2] 693 PM [3] 600 PM [4] 566 PM
Sol. Since in body centre cubic, the body diagonal
 $= \sqrt{3} a$
 $= \sqrt{3} x 400 PM$

= 692.82 PM or say 693 PM

Ex.6 What is the simplest forkuma of a solid whose cubic unit cell has the atom A at each corner, the atom B at each face centre and C atom at the body centre [1] AB₂C $[2] A_2BC$ [3] AB₃C $[4] ABC_3$ Sol. An atom at the corner of a cube is shared among 8 unit cells. As there are 8 corners in a cube, number of corner atom [1] per unit cell = 8 x $\frac{1}{8}$ = 1. A face-centred atom in a cube is shared by two unit cells. As there are 6 faces in a cube, number of facecentred atoms [2] per unit cell = 6 x $\frac{1}{2}$ = 3. An atom in the body of the cube is not shared by other cells. : Number of atoms [3] at the body centre per unit cell = 1 Hence, the formula of the solid is AB₃C. **Ex.7** A compound alloy of glod and copper crystallizes in a cube lattice in which the gold atoms occupy the lattice points at the coruers of cube and copper atoms occupy the centres of each of the cube faces. The formula of this compound is -[3] AuCu₃ [1] AuCu [2] AuCu₂ [4] None Sol. One-eighth of each corner atom (Au) and one half of each face centered atom (Cu) are contained with in the unit cell of the compound. Thus, the number of Au atoms per unit cell = 8 x $\frac{1}{8}$ = 1 and the number of Cu atoms per unit cell = 6 x $\frac{1}{2}$ = 3. The formula of the compound is AuCu₃. Ex.8 Lithium borohydride (LiBH₄), crystallises in a orthorhombic system with 4 molecules per unit cell. The unit cell dimensions are : a = 6.81 Å, b = 4.43 Å, c = 717Å. If the molar mass of LiBH₄ is 21.76 g mol⁻¹. The density of the crystal is -[3] 1.23 g cm⁻³ [1] .668 g cm⁻³ [2] .585 g cm [4] None Sol. We know that, $\rho = \frac{ZM}{NV} = \frac{4 \times (21.76 \text{gmol}^{-1})}{(6.023 \times 10^{23} \text{mol}^{-1})(6.81 \times 4.43 \times 7.17 \times 10^{-24} \text{cm}^3)}$ $= 0.668 \text{g cm}^{-3}$ The unit cell of a metallic element of atomic mass 10⁸ and density 10.5 g/cm² is a cube with edge length of 409 Ex.9 PM. The structure of the crystal lattice is -[1] fcc [2] bcc [3] hcp [4] None $\rho = \frac{Z \times M}{N \times a^3}$ Sol. Here, M = 108, $N_A = 6.023 \times 10^{23}$ Put on these values and solving we get $a = 409 \text{ PM} = 4.09 \text{ x} 10^{-8} \text{ cm}, \rho = 10.5 \text{ g/cm}^2$ n = 4 = number of atoms per unit cell So, The structure of the crystal lattice is fcc. Ex.10 Copper metal has a face-centred cubic structure with the unit cell length equal 0.361 nm. Picturing copper ions in contact along the face diagonal. The apparent radius of a copper ion is -[2] 1.42 [3] 3.22 [4] 4.22 [1] 0.128 Sol. For a face-centred cube, we have Radius = $\frac{\sqrt{2a}}{4} = \frac{\sqrt{2} \times 0.361}{4}$ nm = 0.128.

	E	kercise #1	
Q.1	How many number of atoms are there in a c on each body diagonal of cube	cube based unit cell hav	ing one atom on each corner and two atoms
	[1] 8 [2] 6	[3] 4	[4] 9
Q.2	Each unit cell of NaCI consists of 13 chlorir	ne atoms and	
	[1] 13 Na atoms [2] 14 Na atoms	[3] 6 Na atoms	[4] 8 Na atoms
Q.3	A crystal may have one or more planes and	d one or more axes of s	symmetry but it has
	[1] Two centre of symmetry	[2] One centre of sy	mmetry
	[3] No centre of symmetry	[4] None ofthese	
Q.4	An alloy of copper, silver and gold is found t the edge centres and gold is present at boo	to have copper constitu dy centre, the alloy has	ting the C.C.P. lattice. If silver atoms occupy a formula
	[1] Cu ₄ Ag ₂ Au [2] Cu ₄ Ag ₄ Au	[3] Cu ₄ Ag ₃ Au	[4] CuAgAu
Q.5	Ice belongs to which of the following structu	ures -	
	[1] Cubic [2] Hexagonal	[3] Orthorhombic	[4] Tetragonal
Q.6	A crystal plane intercepts the three crystallo miller indices are	ographic axes at the mu	Itiples of the unit distances 3/2, 2 and 1. The
	[1] 123 [2] 321	[3] 436	[4] 643
Q.7	The density of KBr is 2.75 gm cm $^{-3}$. Length the predicted nature of the solid	h of the unit cell is 654 p	om. K = 39, Br = 80. Then what is true about
	[1] Solid has face centred cubic system with	th Z = 4.	
	[2] Solid has simple cubic system with Z =	4.	
	[3] Solid has face centred cubic system with	th Z = 1	
	[4] Solid has body centred cubic system w	$\operatorname{rith} \mathbf{Z} = 2$	
Q.8	The number of atoms/molecules contained	l in one face centred cu	bic unit cell of a mono atomic substance is -
	[1] 1 [2] 2	[3] 4	[4] 6
Q.9	The structure of sodium chloride crystal is	· · · · · · · · · · · · · · · · · · ·	
	[1] Body centred cubic lattice	[2] Face centred cul	bic lattice
	[3] Octahedral	[4] Square planar	
Q.10	A binary solid (A^+B^-) has a zinc blende st 25% tetrahedral holes. The formula of solid	tructure with B ⁻ ions co Lis	nstituting the lattice and A ⁺ ions occupying
	[1] AB [2] A ₂ B	[3] AB ₂	[4] AB ₄
Q.11	The available space occupied by spheres c	of equal size in three din	nensions in both hcp and ccp arrangements
	[1] 74% [2] 70%	[3] 60.4%	[4] 52.4%
Q.12	In cubic close packing (ccp) arrangement,	the pattern of the succe	essive layers will be designed as :
	[1] AB, AB, AB etc	[2] AB, ABC,	AB etc
	[3] ABC, ABC, ABC etc	[4] None of th	ese
Q.13	Cubic close packing arrangement is called	:	
	[1] Hexagonal close packing	[2] Face cent	red cubic
	[3] Body centred cubic	[4] None	
Q.14	In a body centred cubic cell, the atom in th	e body is shared with :	
	[1] One unit cell [2] Two unit cell	[3] Three unit	cell [4] Four unit cell
Q.15	In a solid lattice a cation has left a lattice s	ite and is located at an	intertitial position. The lattice defect is :
	[1] Interstitial defect	[2] Vacancy c	lefect
	[3] Frenkel defect	[4] Schottky of	defect

Q.16	Potassium crystallizes in	a bcc lattice, hence the	e co-ordination number	of potassium in potassium metal is :
	[1] 0	[2] 4	[3] 6	[4] 8
Q.17	A packing of 8 : 8 co-ordin	nation crystal is presen	t in the compound :	
	[1] NaCl	[2] KCI	[3] CsCl	[4] MgF ₂
Q.18	The number of atoms in 10 to:	00 gm of an FCC crysta	l with density d= 10 gm o	cm^{-3} and cell edge as 200 pm is equal
	[1] 3 × 10 ²⁵	[2] 5 × 10 ²⁴	[3] 1 × 10 ²⁵	[4] 2 × 10 ²⁵
Q.19	An element has bcc struc	ture having unit cells 1	2.08 × 10 ²³ . The numbe	er of atoms in these cell is :
	[1] 12.08 × 10 ²³	[2] 24.16 × 10 ²³	[3] 48.38 × 10 ²³	[4] 12.08 × 10 ²²
Q.20	The percentage of the vor respectively will be :	olume occupied in thre	e dimensional space fo	or the simpcubic, bcc and fcc lattices
	[1] 52%, 68%, 74%	[2] 74%, 68%, 52%	[3] 68%, 52%, 74%	[4] 52%, 74%, 68%
Q.21	A certain metal crystallise centred structure. In this t	es in a simple cubic str ransition, the density o	ructure. At a certain ten f the metal	nperature, it arranges to give a body
	[1] Decreases	[2]	Increases	0
	[3] Remain unchanged	[4]	Changes without a defin	nite pattern
Q.22	In a face centred cubic arr	angement of A & B ato	ms whose A atoms are a	at the corner of the unit cell & B atoms
	is	r the A atom is missing i	Tom one comer in unit ca	
	[1] A ₇ B ₃ [2] AE	B ₃ [3]	A ₇ B ₂₄	[4] A _{7/8} B ₃
Q.23	Which of the following ,is	not the property of solid	ds	
	[1] Solids are always crys	talline in nature [2]	Solids have good dens	ity and less compressibility
	[3] Solids diffuse very slow	vly [4]	The volume of solids is	fixed
Q.24	Crystals have vacant sites in through these defects t	s or defects in them. Wh o -	en light strikes a photog	raphic AgBr paper, silver atoms move
	[1] Form -ve images	[2]	Form tiny clumps of silv	ver atoms
	[3] Form a colour image	[4]	None of these	
Q.25	A solid has a B. C. C. structure length of the cell is	cture. If the distance of	closest approach betwe	een the two atoms is 1.73 Å. The edge
	[1] 200 pm [2] $\frac{\sqrt{3}}{\sqrt{3}}$	3 5 pm [3]	142.2 pm	[4] √2 pm
0.00	N N N N N N N N N N N N N N N N N N N	<u>-</u>		
Q.26	In a close packed array of	in spheres, the numbe	r of tetranedral noies are	5
	[1] $\frac{N}{2}$ [2] 4N	[3]	2N	[4] N
Q.27	In a face centred cubic ce	ll, an atom at the face of	centre is shared by	
	[1] 4 unit cells [2] 2 u	unit cells [3]	1 unit cell	[4] 6 unit cells
Q.28	A solid XY has NaCI struc	ture. If radius of X ⁺ is 1	00 pm. What is the radi	us. of Y ⁻ ion
	[1] 120pm [2] 130	6.6 to 241.6pm [3]	280pm	[4] Unpredictable
Q.29	Of the five ΔH values required difficult to measure is	uired to calculate a latti	ice energy using the Bo	rn - Haber cycle, the one that is most
	[1] The electron affinity of	the non - metal		
	[2] The heat of formation of	of gaseous atoms of the	e non-metal	
	[3] The ionisation energy	of the metal		
	[4] The heat of sublimation	n of metal		

Q.30	How many atoms a in each end of the	are there in a unit cell of Me unit cell and 3 completely	g which forms hexagonal c enclosed atoms within the	rystals, there being a facecentred atom unit cell
	[1] 4	[2] 6	[3] 12	[4] 8
Q.31	Na ₂ SeO ₄ and Na ₂ SeO ₄	SO ₄ are		
	[1] Isomorphous	[2] Polymorphs	[3] Alloys	[4] Ferromagnetic
Q.32	Most crystals show	v good cleavage because	their atoms, ions or molecu	ules are
	[1] Weakly bonded	ltogether	[2] Strongly bonded toget	her
	[3] Spherically syn	nmetrical	[4] Arranged in planes	
Q.33	A solid is made of t tetrahedral sites. V	two elements X and Z. The What is the formula of the o	e atoms Z are in C.C.P. arra compound	angement while atoms X occupy all the
	[1] XZ	[2] XZ ₂	[3] X ₂ Z	[4] Unpredictable
Q.34	Close packing is n	naximum in the crystal		
	[1] Simple cubic	[2] Face centred	[3] Body centred	[4] None ofthese
Q.35	The vacant space	in B.C.C. unit cell is		
	[1] 32%	[2] 10%	[3] 23%	[4]46%
Q.36	ZnS is			$\Delta \cdot$
	[1] Ionic crystal	[2] Covalent crystal	[3] Metallic crystal	[4] Vander Waals' crystal
Q.37	LiF is a/an			
	[1] Ionic crystal	[2] Metallic crystal	[3] Covalent crystal	[4] Molecular crystal
Q.38	A compound CuC	I has face centred cubic s	tructure. Its density is 3.4 g	$g cm^{-3}$. The length of unit cell is.
	[1] 5.783 A ^o	[2] 6.783 A ^o	[3] 7.783 Aº	[4] 8.783 A ^o
Q.39	A crystal of Fe ₃ O ₄	, is	20	
	[1] Paramagnetic	[2] Diamagnetic	[3] Ferromagnetic	[4] None
Q.40	A cubic crystal pos	ssesses in all elem	ents of symmetry	
	[1] 9	[2] 13	[3] 1	[4] 23
Q.41	The density of KC diffraction. The val	I is 1.9893 g cm ⁻³ and the ue of avogadro's-number o	e length of a side unit cell is alculated from these data is	s 6.29082 A as determined by X-Rays
	[1] 6.017x 10 ²³	[2] 6.023 x 10 ²³	[3] 6.03 x 10 ²³	[4] 6.017 x 10 ¹⁹
Q.42	The structure of so	odium chloride crystal is		
	[1] Body centred c	ubic lattice	[2] Face centred cubic la	ttice
	[3] Octahedral	N'	[4] Square planar	
Q.43	A solid having no c	definite shape is called		
	[1] Amorphous sol	id	[2] Crystalline solid	
	[3] Anisotropic soli	id	[4] None	
Q.44	The unit cell cube radius for chloride	length for LiCI (just like N ion is	aCI structure) is 5.14 A. As	ssuming anion-anion contact, the ionic
	[1] 1.815Aº	[2] 2.8A°	[3] 3.8Aº	[4] 4.815Aº
Q.45	Frenkel defect is n	oticed in		
	[1] AgBr	[2] ZnS	[3] Agl	[4] All
Q.46	Extremely pure sa ducingin	mples of Ge and Si are no their crystal lattice	on-conductors, but their co	nductivity increases suddenly on intro-
	[1] As	[2] B	[3] Both [1] and [2]	[4] None
Q.47	At room temperat density of sodium	ure, 'sodium crystallizes (At wt. of Na = 23) is	in a body centred cubic la	attice with $a = 4.24$ A. The theoretical
	[1] 1.002 g cm ⁻³	[2] 2.002 g cm ⁻³	[3] 3.002 g cm ⁻³	[4] None

Q.48	Schottky defect is	noticed in			
	[1] NaCl	[2] KCI	[3] Cs	CI	[4] All
Q.49	The resistance of	mercury becomes almost	zero at		
	[1] 4K	[2] 10K	[3] 20	K	[4] 25 K
Q.50	In a body centred	cubic cell an atom at the b	ody of c	centre is shared by	
	[1] 1 unit cell	[2] 4 unit cells	[3] 3 u	init cells	[4] 2 unit cells
Q.51	High thermal cond	uctivity of metals is due to	transfei	r of heat through	
	[1] Molecular collis	sions	[2] Ele	ectronic collisions	
	[3] Atomic collision	าร	[4] All		
Q.52	In a simple cubic c	ell, each atom on a corne	r is shar	ed by	
	[1] 2 unit cells	[2] One unit cell	[3] 8 u	init cells	[4] 4 unit cells
Q.53	The mass of a unit	cell of CsCI corresponds	to		
	[1] 8Cs ⁺ and ICl ⁻	[2] ICs ⁺ and $6CI^-$	[3] ICs	s ⁺ and ICI ⁻	[4] 4Cs ⁺ and 4Cl [−]
Q.54	Maximum ferroma	gnetism is found in			C
	[1] Fe	[2] Ni	[3] Co		[4] None
Q.55	The co-ordination	number of a body centred	atom is		\mathbf{O}^{\star}
	[1] 4	[2] 6	[3] 8		[4] 12
Q.56	Which is ferromagi	netic			
	[1] Ni	[2] Co	[3] Cr(О ₃	[4] All
Q.57	In a face centred c	ubic lattice the number of	nearest	neighbour for a give	en lattice point are
	[1] 6	[2] 8	[3] 12	\sim	[4] 14
Q.58	The substance wh	ich possesses zero resist	ance as	0 K	
	[1] Conductor	[2] Super conductor	[3] Ins	ulator	[4] Semiconductor
Q.59	Close packing is n	naximum in the crystal lat	tice of		
	[1] Simple cubic	[2] Face centred	[3] Bo	dy centred	[4] None
Q.60	The oxide which sl	nows transition from meta	l to insu	lation, i.e. semiconc	luctor are
_	[1]V ₂ O ₃	[2] VO ₂	[3] Ti ₂	0 ₃	[4] All
Q.61	Which is/are amor	phous solids-			
• • •	[1] Rubber	[2] Plastics	[3] Gla	ass	[4] All
Q.62	The structure of M	gO is similar to NaCI: The	co-ordir	nation number of Mg	g is
0.00	[1] 2	[2] 6	[3] 4	•	[4] 8
Q.63	In DCC Structure the	e space occupied by hard	spnere	IS :	
0.64		~ 800 [2]	Na+01-	[3] 74%	[4] 50%
Q.64	An Ionic solid A'B	nas structure similar to r	va'CI.	If the radius of A' is	100 pm. what will be the radius of B
0.05	[1] 120 pm	[2] 130.0-241.0 [[3] 280 pm	[4] Indennite
Q.00	The density of the	element is :	ructure	is 100 gm/mol. The l	engin of the edge of unit cell is 400 pm.
	[1] 10.38 gm/cm ³	[2] 5.19 gm/cm ³		[3] 7.29 am/cm ³	[4] 2.14 gm/cm ³
Q.66	Which will have the	e highest lattice energy :		[0]	[.]
	[1] LiBr	[2] LiCl		[3] Lil	[4] LiF
Q.67	X ⁺ Y ⁻ ionic compo	und keeps bcc structure.	The dist	ance between two	nearest ions is 1.73 Å. What would be
	edge length of the	unit cell ?			
	[1] 200 pm	[2] $\frac{\sqrt{3}}{\sqrt{2}}$ pm		[3] 142.2 pm	[4] √2 pm
		\mathcal{N}			

Q.68	The structure of ion 75 pm. Then evalu	nic compound A ⁺ B ⁻ is ider ite the radius of anion :	ntical to NaCl. If the edge le	ngth is 400 pm and the cation radius is
	[1] 100 pm	[2] 125 pm	[3] 250 pm	[4] 325 pm
Q.69	CsBr possesses b	cc structure. The ege leng	gth of the unit cell is 400 pr	n. Find out the interionic distance :
	[1] 346.4 pm	[2] 200 pm	[3] 300 pm	[4] 100 pm
Q.70	For bcc structure,	packing fraction and co-ore	dination number would be r	respectively :
	[1] 8, $\frac{\pi\sqrt{3}}{8}$	[2] $6, \frac{\pi\sqrt{2}}{6}$	[3] $8, \frac{\pi\sqrt{2}}{6}$	[4] None
Q.71	d ₁₁₁ plane of a uni	t cell makes intercepts on	the axes :	
	[1] Only x axis	[2] Only y axis	[3] Only z axis	[4] All the three axes
Q.72	A compound forme	ed by elements A and B cr	ystallizes in cubic structure	where A atoms are at the corners of a
	cube and B atoms	are at the face centre. The	e formula of the compound	
0.70	[1] AB ₃	[2] AB ₄	[3] AB ₂	[4] A ₂ B ₃
Q.73	I ne internal resista	ance to the flow of the liqui	IO IS CAILEO ITS	[4] Defractive index
0.74	A colid X molto oliv	[2] Sunace tension	[3] Parachore value	[4] Reflactive index
Q.74	categories does it	belong -	poor conductor or neat ar	id electricity. To which of the following
	[1] Ionic solid	[2] Covalent solid	[3] Metallic	[4] Molecular
Q.75	A drop of liquid acc	quires spherical shape		•
	[1] Because of its	viscous nature		
	[2] Because of cap	billary action		
	[3] Because surfac	ce tension tends to minimis	se the surface area	
	[4] Because of all t	he aforesaid reasons		
Q.76	In a crystal, the ato	oms are located at the pos	sition of -	
0 77	[1] Zero P.E.	[2] Infinite P.E.	[3] Minimum P.E.	[4] Maximum P.E.
Q.77				[4] AU
0.78	Graphite is an ever	[2] Glass		
Q.70	[1] Ionic solid	[2] Covalent solid	[3] Vanderwaal's crystal	[4] Metallic crystal
0.79	The oxide that is in	[2] Covalent Solid		
Q.75		[2] CoO	[3] ReO.	[4] Ti ₂ O ₂
08 Q	Amorphous solids	-	[0]11003	
4.00	[1] Possess sharp	melting points		
	[2] Undergo clean	cleavage when cut withknit	fe	
	[3] Do not undergo	clean cleavage when cut	with knife	
	[4] Possess orderly	y arrangement over long d	istances	
	S	, , , , , , , , , , , , , , , , , , , ,		

аø	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
Ans.	4	2	2	3	1	3	1	3	2	3	1	3	2	1	3	4	3	2	2	1	2	3	1	2	1
Q.B.	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50
Ans.	3	2	2	1	2	1	4	3	2	1	1	1	1	3	4	1	2	1	1	3	4	1	4	1	1
Qus.	51	52	53	54	55	56	57	58	59	60	61	62	ស	64	8	66	67	68	69	70	71	72	73	74	75
Ans.	2	3	3	1	3	4	3	2	2	4	4	2	2	2	2	4	1	2	1	1	4	1	1	4	3
Qus.	7 6	77	78	9	80																				
Ans.	3	2	2	2	3																				

Answer Key - 1

Q.1	Capillary action of	the liquid can be explaine	d on the basis of its	
	[1] Resistance to f	low	[2] Surface tension	
	[3] Heat ofvaporisa	ation	[4] Refractive index	
Q.2	Wax is an example	e of		
	[1] Ionic crystal	[2] Covalent crystal	[3] Molecular crystal	[4] Metallic crystal
Q.3	Crystals which are	e good conductor of electri	city and heat are known as	
	[1] Ionic crystals	[2] Covalence crystals	[3] Metallic crystals	[4] Molecular crystals
Q.4	lodine crystals are			
	[1] Metallic solid	[2] Ionic solid	[3] Molecular solid	[4] Covalent solid
Q.5	The amount of hea	at required to change one	gram of a liquid to into its va	apours at the boiling point is called
	[1] Enthalpy of vap	orization	[2] Heat of vaporization	
	[3] Latent heat of v	raporization	[4] All the above	O.
Q.6	During evaporation	n of liquid	•	
	[1] The temperatu	re of the liquid rises		
	[2] The temperatu	re of the liquid falls	C	
	[3] The temperatur	re ofthe liquid remains unat	ffected	
	[4] None ofthe abc	ove is correct	-0	
Q.7	Out of the four liqu	ids given below, the one ha	aving lowest vapour pressu	rre at 25° C is
	[1] Carbon tetrach	loride	[2] Benzene	
	[3] Chloroform		[4] Water	
Q.8	Which among the	following will show an isot	ropy	
	[1] Glass	[2] Barium chloride	[3] Wood	[4] Paper
Q.9	lonic salts on diss	olution in a solvent shows		
	[1] A decrease in t	the viscosity of the liquid	[2] An increase in the vis	cosity of the liquid
	[3] No affect on the	e viscosity of the liquid	[4] None	
Q.10	The elements of s	ymmetry in a crystal are		
	[1] Plane of symm	etry	[2] Axis of symmetry	
	[3] Centre of symm	netry	[4] All	
Q.11	A crystal may have	e one or more planes and	one or more axes of symm	etry but it possesses
	[1] Two centres of	symmetry	[2] One centre of symme	try
	[3] No centre of sy	rmmetry	[4] None	
Q.12	For tetrahedral co-	-ordination the radius ratio	$(r^+ r^-)$ should be	
	[1]. 0.414 - 0.732		[2] > 0.732	
	[3] 0.156 - 0.225		[4] 0.225 - 0.414	

Q.13	TiO ₂ is well know	n exa,mple of			
	[1] Triclinic system	n	[2] Tetragonal sys	tem	
	[3] Monoclinic sys	stem	[4] None		
Q.14	The ratio of catior	ns to anion in a closed	l pack tetrahedral is		
	[1] 0.414	[2] 0.225	[3] 0.02	[4] None	
Q.15	The arrangement	ABC ABCi	s referred to as		
	[1] Octahedral clo	se packing	[2] Hexagonal clos	se packing	
	[3] Tetrahedral clo	se packing	[4] Cubic close pa	cking	
Q.16	The melting point much higher than [1] The two crysta [2] The molar mas	of RbBr is 682°C, whi that of RbBr is that Is are not isomorphou ss of NaF is smaller th	le that of NaF is 988°C. Ti us nan that of RbBr	he principal reason that melting point of	f NaF is
	[3]' The internucle	ear distance, r _c + r _a is	greater for RbBr than for	NaF	
	[4] The bond in RI	Br has more covalen	t character than the bonc	l in NaF	
Q.17	A binary solid (A ⁺ radius of anion is	B ⁻) has a rock salt st	tructure. If the edge lengt	h is 400 pm and radius of cation is 75	pm the
	[1] 100pm	[2] 125pm	[3] 250 pm	[4] 325 pm	
Q.18	One among the fo	llowing is an example	of ferroelectric compoun		
0 10	[1] Quartz	[2] Lead chromate	[3] Barium titanate	e [4] Iourmaline	
Q.15	in a is the length o		one is correct relationshi	þ	
	[1] For simple cut	bic lattice, Radius of r	netal atom = $\frac{a}{2}$		
		*	15-		
	[2] For bcc lattice	, Radius of metal ato	$m = \frac{\sqrt{3a}}{4}$		
	[3] For fcc lattice.	Radius of metal atom	$h = \frac{a}{2\sqrt{2}}$		
	[4] All		_ • -		
Q.20	The most malleat	ole metals (Cu, Ag, Au	ı) have close - packing of	the type	
	[1] Hexagonal clo	se - packing	[2] Cubic close - p	packing	
0.04	[3] Body - centred	I cubic packing	[4] Malleability is r	not related to type of packing	
Q.21	I he number of at	oms present in a simp ג וכז	191 2 SILE	[/] 1	
Q.22	The radius of Ag ⁺	is 126 pm while that	of I [–] ion is 216 pm. The c	ں رہے o-ordination number of Ag in Agl is :	
	[1] 2	[2] 8	[3] 6	[4] 4	
Q.23	The number of oc	tahedral sites in a cul	bical close pack array of	S-spheres :	
	$[1] \frac{S}{2}$	[2] 2S	[3] 4S	[4] S	
Q.24	The type of crysta	al latice associated wi	ith CsCl is :		
	[1] ccp	[2] fcc	[3] bcc	[4] hcp	
Q.25	The crystal struct	ure of TICI is similar to	o that of CsCl what is the	co-ordination number of TI ^{+1:}	
	[1] 4	[2] 6	[3] 8	[4]12	

Q.26	If edge of a bcc cry of the crystal is :	vstal of an element is a	cm, M is th	e atomic mass	and N ₀ is Avogadro's nu	mber, then density
	$[1] \frac{4M}{a^3N_0}$	$[2] \frac{2N_0}{Ma^3}$		[3] $\frac{2M}{N_0 a^3}$	$[4] \frac{Ma^3}{2N_0}$	
Q.27	In which case unit	cell is not possible :				
	[1] One dimension	al lattice		[2] Two dimen	sional lattice	
	[3] Three dimensio	onal lattice		[4] None		
Q.28	An atom situated a	at the corner of a simpl	le cubic un	it cell has its co	ontribution towards the u	nit cell is :
		1		. 1		
	$[1] \frac{1}{2}$	$[2] \frac{1}{4}$		[3] $\frac{1}{8}$	[4] 1	
Q.29	Cell diagonal = $\sqrt{3}$	⁻ ³ edge shows that the	unit cell is	:		
	[1] Simple cubic	[2] Face centr	ed cubic	[3] Body centr	ed cubic [4] None of the	se
Q.30	The percentage of	f vacant space of bcc u	nit cell is :			
	[1] 32%	[2] 68%		[3] 52%	[4] 74%	
Q.31	The number of nea	arest neighbours to eac	ch sphere i	n fcc lattice will	be:	
	[1] 6	[2] 8		[3] 12	[4] 14	
Q.32	Which of the follow	ving planes will be abse	ent in a sin	nple cubic syste	m	
	[1] 100	[2] 110	[3] 11	1	[4] 200	
Q.33	The number of ato	ms/molecules containe	ed in one fa	ace centred cub	ic unit cell of a monoator	nic substance is
	[1] 4	[2] 6	[3] 8	0	[4] 12	
Q.34	In a face centred of	cubic arrangement, the	number of	atoms per unit	cell is	
	[1] 8	[2] 2	[3] 1		[4] 4	
Q.35	The maximum per	centage of available vo	plume that	can be filled in a	a face centred cubic syst	em by an atom is-
0.26	[1] 74%	[2] 68%	[3] 34	% d	[4] 26%	
Q.30	Each unit cell of N	[2] 4 No ions	ue ions an		[4] 9 No atoms	
0 37	In the unit cell of N	[2] 4 Na IONS	[5] 01	Na aloms	[4] 0 Na atoms	
Q.07	[1] 3Na ⁺ ions	[2] 6Na ⁺ ions	[3] 6 (CI [_] ions	[4] 4 NaCl units	
Q.38	The radius of the	va ⁺ is 95 pm and that o	f CI [–] ion is	181 pm. Predic	t the co-ordination numb	per of Na+
	[1] 4	[2] 6	[3] 8	- ,	[4] Unpredictable	
Q.39	The ionic radii of F	Rb ⁺ and I [−] are 1.46 and	d 2.16 A. T	he most probat	ble type of structure exhil	oited by it is
	[1] CsCl type	[2] NaCltype	[3] Zn	Stype	[4] CaF ₂ type	
Q.40	The rank of a cubi	c unit cell is 4. The type	e of cell as	;		
	[1] Body centred	[2] Face centred	[3] Pı	rimitive	[4] None	
Q.41	An element occurr in these cell will be	ing in the BCCstructure e	has 12.08	8 x 10 ²³ unit cell	s. The total number of atc	oms of the element
	[1] 24.16 x 10 ²³	[2] 36.18 x 10 ²³	[3] 6.0	04 x 10 ²³	[4] 12.08 x 10 ²³	
Q.42	The space occupie	ed by B.C.C. arrangem	ent is appr	ох		
	[1] 50%	[2] 68%	[3] 74	%	[4] 56%	
Q.43	Which is covalent	solid				
_	[1] Fe ₂ O ₃	[2] Diamond	[3] Gr	aphite	[4] All	
Q.44	TiCl has structure	similar to CsCl, the co-	ordination	number of TI+ i	5	
	[1] 4	[2] 6	[3] 10		[4] 8	

Q.45	A certain metal fl	uoride crystallises in such	a way that F atoms occupy	y simple cubic lattice sites, while metal
		2 DODY CENTRES OF NAIL THE CL		
0.46		[2] IVIF	[3] WF2	[4] IVIF ₈
Q.40			$[2] \cap [0]$	[4] Mp O
0.47	$[1] \angle IO_2$		[3] UIU ₂	[4] $[4]$ $[4]$ $[4]$ $[4]$
Q.47	Certain crystals p	froduce electric signals on a	application of pressure. The	is phenomenon is called
	[1] Pyro electricit	У		
	[3] Piezoelectrici	ty	[4] Ferrielectricity	
Q.48	Which of the follo	wing defect, if present, low	ers the density of the cryst	al
	[1] Frenkel	[2] Schottky	[3] Edge dislocation	[4] Constitution of F-centres.
Q.49	Transition metals	, when they form interstitia	I compounds, the non-meta	als (H, B, C, N) are accomodated in
	[1] Voids or holes	in cubic - packed structure	e [2] Tetrahedral voids	
	[3] Octahedral voi	ids	[4] All of these	
Q.50	A silicon solar ba	ttery makes. use of		\mathbf{C}
	[1] n- Type semic	onductor	[2] p- Type semicondl, lcte	or
	[3] Combination of	of Si doped with As and B	[4] p - n junction	CV.
Q.51	In a close pack ar	ray of N spheres, the numb	per of tetrahedral holes are	
	[1] 4N	[2] N/2	[3] 2N	[4] N
Q.52	The yellow colour	of ZnO and conducting nat	ture produced in heating is	due to
	[1] Metal excess	defects due to interstitial c	ation	
	[2] Extra positive	ions present in an interstiti	al site	
	[3] Trapped electr	rons	0	
	[4] All of these		\sim	
		• *	V	
		0		
		0		
		1.		
	C			
	1			

Answer	Key	-	2
--------	-----	---	---

Qus.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
Ans.	2	3	3	3	3	3	4	2	1	4	2	4	2	2	4	3	2	3	4	2	4	3	4	3	3
Qus.	26	27	28	29	30	31	Я	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50
Ans.	3	1	3	3	1	3	4	1	4	1	2	4	2	2	2	1	2	4	4	3	4	3	2	4	3
Qus.	51	52																							
Ans.	3	4																							

Q.1	The coordination	number of a metal cryst	allizing in a hexagonal	close packed structure	is
				[NC	ERT 1978; DT 1999]
	[1] 4	[2] 12	[3] 8	[4] 6	
Q.2	How many chlorid	le ions are there around	sodium ion in sodium	chloride crystal	
		[N	CERT 1979, 80; CPM	T 1988; SHU 1982, 87	; MP PET 1995, 99]
	[1] 3	[2] 8	[3] 4	[4] 6	
Q.3	Most crystals sho	w good cleavage becau	se their atoms. ions or	molecules are	[CSSE 1991]
	[1] Weakly bonde	d together	[2] Strongly bonde	ed together	
	[3] Spherically syr	nmetrical	[4] Arranged in pla	ines	
Q.4	The low solubility	of BaSO ₄ in water Can I	be attributed to		[CSSE 1991]
	[1] High lattice en	ergy	[2] Dissociation en	nergy	
	[3] Low lattice ene	ergy	[4] Ionic bond	0	
Q.5	In a solid lattice th	ne cation has left a lattic	e site and is located a	t an interstitial position.	the lattice defect is [AUMS 1982, 1991]
	[1] Interstitial defe	ct	[2] Valency defect		
	[3] Frenkel defect		[4] Schottky defec	rt A	
Q.6	Potassium has a l kg m ^{–3}) will be	bcc structure with neare	est neighbour distance	4.52 A. Its atomic weig	ht is 39. Its density (in [AIIMS 1991]
	[1] 454	[2] 804	[3] 852	[4] 908	
Q.7	The number of ato	oms/molecules containe	ed in one face centred o	cubic unit cell of a mono	atomic substance is
		[CPMT 1989,94; CB	SE 1989, 96; NCERT 1	1990, MP PET 1993; Ka	arnataka CET 1999]
	[1] 1	[2] 2	[3] 4	[4] 6	
Q.8	The characteristic	features of solids are			[AMU 1994]
	[1] Definite shape	*	[2] Definite size		
	[3] Definite shape	and size	[4] Definite shape,	, size and rigidity	
Q.9	In cubic closest pa	acking (ccp) structure of	NaCl, the coordination	n number of Na ⁺ ion is	[PM PET 1996]
	[1] 2	[2] 4	[3] 6	[4] 8	
Q.10	Which one of the	following is the biggest i	on		[MP PET 1993]
	[1] Al ⁺³	[2] Ba ⁺²	[3] Mg ⁺²	[4] Na+	
Q.11	A match box exhi	bits			[MP PET 1993. 95]
	[1] Cubic geometr	у	[2] Monoclinic geo	ometry	
	[3] Orthorhombic	geometry	[4] Tetragonal geo	metry	
Q.12	In the crystal of C	sCl. the nearest neighbo	ours of each Cs ion are	<u>;</u>	[MP PET 1993]
	[1] Six chloride io	ns	[2] Eight chloride i	ons	
	[3] Six Cs ions		[4] Eight Cs ions		
Q.13	Tetragonal crystal	system has the following	ng unit cell dimensions		[MP PMT 1993]
	[1] a = b = c and c	$\alpha = \beta = \gamma = 90^{\circ}$	[2] $a = b \neq c$ and c	$\alpha = \beta = \gamma = 90^{\circ}$	
	[3] a \neq b \neq c and o	$\alpha = \beta = \gamma = 90^{\circ}$	[4] $a = b \neq c$ and c	$\alpha = \beta = 90^{\circ}, \ \gamma = 120$	
Q.14	Space lattice of C	aF ₂ is			[PM PMT 1993]
	[1] Face centred of	cubic	[2] Body centred c	cubic	
	[3] Simple cubic		[4] Hexagonal clos	sed packing	
Q.15	The existence of a than two crystal s	a substance in more than tructures is called	n one solid modificatior	ns is known as or Any co [MP PMT 1]	ompound having more 993; MP PET 1999]
	[1] Polymorphism	[2] Isomorphism	[3] Allotropy	[4] Enantiomor	phism

Q.16	A compound is for comers of the cul	ormed by elements A and be and atoms B are at the	B. This crystallizes in the centre of the body. The sim [Karnataka CEE 19]	cubic structure when the st formula of the 993: CBSE 2000; K	en atoms A are the compounds is erala PMT 2002]
	[1] AB	[2] AB ₂	[3] A ₂ B	[4] AB ₄	
Q.17	Frenkel defect Is	caused due to			[MP PET 1994]
	[1] An ion missing	g from the normal lattice si	te creating a vacancy		
	[2] An extra posit	ive ion occupying an inters	stitial position in the lattice		
	[3] An extra nega	tive ion occupying an inter	stitial position in the lattice	9	
	[4] The shift of a	positive ion from its norma	llattice site to an interstitial	site	
Q.18	Crystals can be	classified into basic o	crystal habits		[MP PMT 1994]
	[1] 3	[2] 7	[3] 14	[4] 4	
Q.19	The radius of hyd similar state is	drogen atom in the ground	state is 0.53 A. The radiu	s of Li ²⁺ ion (atomic	number = 3) in the [CBSE 1995]
	[1] 1.06 A	[2] 0.265 A	[3] 0.17 A	[4] 0.53 A	
Q.20	CsBr crystal has Br ⁻ ions is	bcc structure. It has an edg	e length of 4.3Å. The short	est interionic distanc	e between Cs ⁺ and [IIT 1995)
	[1] 1.86 Å	[2] 3.72 Å	[3] 4.3 Å	[4] 7.44 Å	
Q.21	The following is r	not a function of an impurity	r present in a crystal		[MP PET 1995]
	[1] Establishing the	nermal equilibrium	[2] Having tendency to di	iffuse	
	[3] Contributing to	o scattering	[4] Introducing new elect	ronic energy levels	
Q.22	Which is not a pr	operty of solids			[MP PET 1995]
	[1] Solids are alw	ays crystalline in nature	[2] Solids have high den	sity and low compre	ssibility
	[3] The diffusion of	of solids is very slow	[4] Solids have definite ve	olume	
Q.23	Which of the follo	owing statements is correct	t for CsBr ₃		[IIT 1996]
	[1] It is a covalent	t compound	[2] It contains Cs ³⁺ and		
	[3] It contains Cs	⁺ and Br ₃ ⁻ ions	[4] It contains Cs ⁺ Br ⁻ a	nd lattice Br ₂ molec	ule
Q.24	Due to Frenkel d	efect. the density of ionic s	olids	[MP PET 199	6; MP PMT 2002]
	[1] Increases.	[2] Decreases	[3] Does not change	[4] Changes	
Q.25	How many space	e lattices are obtainable fro	m the different crystal syst	ems	
				[MP PMT 1996; N	IP PET/PMT 1998]
	[1] 7	[2] 14	[3] 32	[4] 230	
Q.26	What type of latti	ce is found in potassium c	hloride crystal		[MP PMT 1996]
	[1] Face centred	cubic	[2] Body centred cubic		
	[3] Simple cubic		[4] Simple tetragonal		
Q.27	How many molec	cules are there in the unit c	ell of sodium chloride	[MP PMT 199	6; MP PET 1997]
	[1] 2	[2] 4	[3] 6	[4] 8	
Q.28	Potassium crysta	allizes with a		[MF	P PET/PMT 1998]
	[1] Face-centred	cubic lattice	[2] Body-centred cubic la	attice	
	[3] Simple cubic	lattice	[4] Orthorhombic lattice		
Q.29	An example of a	body cube is			[AIIMS 1996]
	[1] Sodium	[2] Magnesium	[3] Zinc	[4] Copper	
Q.30	Body centered cu	ubic lattice has a coordinati	on number of	[AIIMS 199	6; MP PMT 2002]
	[1] 4	[2] 8	[3] 12	[4] 6	

Q.31	Assertion: In crys	tal lattice, the size of the	cation is larger in .a tetrahe	edral hole than in an o	ctahedral hole								
	Reason: The catio	ons occupy more space th	an anions in crystal packin	g	[AIIMS 1996]								
	[1] Both assertion	and reason are true state	ments and reason is the co	prrect explanation of a	ssertion								
	[2] Both assertion	and reason are true stater	ments and reason is not the	e correct explanation of	of assertion								
	[3] Assertion is tru	e but reason is a false sta	tement										
	[4] Both assertion	and reason are false state	ements										
Q.32	Which of the follow	ving statement(s) is(are) co	orrect		[IIT 1998]								
	(a) The coordination	on number of each type of	ion in CsCl crystal is 8										
	(b) A metal that cry	stallizes in bcc structure	has a coordination number	r of 12									
	(c) A unit cell of ar	n ionic crystal shares som	e of its ions with other unit	cells									
	(d) The length of th	ne unit cell in NaCl is 552 p	om (r _{Na+} = 95 pm r _{Cl} ⁻ = 18	1 pm)									
	Correct answer is												
	[1] a,b,c	[2] b,c,d	[3] a,c,d	[4] a,b,d									
Q.33	The number of atc	oms in 100 g of an fcc crys	stal with density d = 10 g /	cm ³ and cell edge eq	ual to 100 pm. is								
	equal to			[CBSE 1994; Karna	taka CET 2002]								
	[1] 4 x 10 ²⁵	[2] 3 x 10 ²⁵	[3] 2 X 10 ²⁵	[4] 1 x 10 ²⁵									
Q.34	Ionic solids, with S	Schottky defects: contain i	n their structure	·	[CBSE 1994]								
	 [1] Equal number of cation and anion vacancies [2] Anion vacancies and interstitial anions [3] Cation vacancies only [4] Cation vacancies and interstitial cations In the crystals of which of the following ionic compounds would you expect maximum distance between centre of cations and anions 												
0.05	[3] Cation vacancie	es only	[4] Cation vacancies a	and interstitial cations	1								
Q.35	of cations and anic	nich of the following ionic on the following ionic of the following	compounds would you expe	ect maximum distance	[CBSE 1998]								
	[1] LiF	[2] CsF	[3] Csl	[4] Lil									
Q.36	The ratio of close-	packed atoms to tetrahed	ral U holes in cubic close p	acking is [Pun	jab PMT 1998]								
	[1] 1 : 1	[2] 1 : 2	[3] 1: 3	[4] 2 : 1									
Q.37	The intermetallic c number of eight. T	ompound LiAg crystallizes he crystal class is	s in cubic lattice in which bo	oth lithium and silver h	ave coordination [CBSE 1997]								
	[1] Simple cube	0	[2] Body-centred cube										
	[3] Face-centred c	ube	[4] None of these	tetrahedral hole than in an octah I packing [A] is the correct explanation of asser is not the correct explanation of as is 8 number of 12 her unit cells $g_{1} = 181 \text{ pm}$) [4] a,b,d = 10 g / cm ³ and cell edge equal t [CBSE 1994; Karnataka [4] 1 x 10 ²⁵ [C incles and interstitial anions ancies and interstitial cations ou expect maximum distance betw [4] Lil close packing is [Punjab F [4] 2 : 1 which both lithium and silver have [4] 2 : 1 which both lithium and silver have [4] 618 pm [4] $(4] PbZrO_3$ $\alpha = \gamma = 90^\circ, \beta \neq 90^\circ$ is [A] fur [4] Nonoclinic sulphur as unit cell edge 400 pm. Then d [CBSE 1996; A] [4] 2.144 g/cm ³ [A] ft ade up of C, H and O									
Q.38	The edge length o	f body centred unit cubic o	cell is 508 pm. If the radius	of the cation is 110 pr	n.the radius of								
	the anion is				[CBSE 1998]								
	[1] 285 pm	[2] 398 pm	[3] 144 pm	[4] 618 pm									
Q.39	Which of the follow	ving is ferroelectric compo	und		[AFMC 1997]								
	[1] BaTiO ₃	[2] K ₄ [Fe(CN) ₆]	[3] Pb ₂ O ₃	[4] PbZrO ₃									
Q.40	Example of unit ce	ell with crystallographic dir	mensions a \neq b \neq c, $\alpha = \gamma$ =	= 90°, β ≠ 90° is	[AFMC 1998]								
	[1] Calcite	[2] Graphite	[3] Rhombic sulphur	[4] Monoclinic sulph	ur								
Q.41	An element (atom element is .	ic mass = 100 g/mol) hav	ing bcc structure has unit	cell edge 400 pm. The [CBSE 199]	en density of the 6; AIIMS 2002]								
	[1] 10.376 g/cm ³	[2] 5.188 g/cm ³	[3] 7.289 g/cm ³	[4] 2.144 g/cm ³									
Q.42	Which of the folloV	Ving is true for diamond			[AFMC 1997]								
	[1] Diamond is a g	ood conductor of electricit	y [2] Diamond is soft										
	[3] Diamond is a ba	ad conductor of heat	[4] Diamond is made up o	of C, H and O									

Q.43	The lustre of a me	etal is due to			[AFMC 1998]				
	[1] Its high densit	у	[2] Its high polishing						
	[3] Its chemical in	ertness	[4] Presence of free ele	ectrons					
Q.44	Sodium metal cry sodium atom	vstallizes as a' body ce	entred cubic lattice with the	cell edge 4.29 Aº.	. What is the radius of [AIIMS 1999]				
	[1] 1.857x 10 ⁻⁸ cn	า	[2] 2.371 x 10 ⁻⁷ cm						
	[3] 3.817 x 10 ⁻⁸ c	n	[4] 9.312 x 10 ⁻⁷ cm						
Q.45	Assertion (A) : C	rystalline solids have sł	nort range order.						
	Reason (R) : Amo	orphous solids have lon	g range order.		[AIIMS 1999]				
	[1] Both A and R								
	[2] Both A and R								
	[3] A is true but th	ne R is false	[4] Both A and R are fa	llse					
Q.46	If the pressure on	a NaCl structure is inc	reased, then its coordination	number will	[AFMC 2000]				
	[1] Increase	[2] Decrease	[3] Remain the same	[4] Either [2] o	r [3]				
Q.47	A pure crystalline completely disapp	substance, on being he bears. This behaviour is	eated gradually, first forms a s the characteristic of substa	turbid looking liquid nces forming	d and then the turbidity [BHU 2000]				
	[1] Isomeric cryst	als	[2] Liquid crystals						
	[3] Isomorphous'	crystals	[4] Allotropic crystals	[4] Allotropic crystals					
Q.48	In a cubic structur Yat the face centr	e of compound which is es of the cube. The mo	s made from X and Y, where > lecular formula of the compo	K atoms are at the c ound is	corners of the cube and [AIIMS 2000]				
	[1] X ₂ Y	[2] X ₃ Y	[3] XY ₂	[4] XY ₃					
Q.49	Which type of sol	id crystals will conduct	heat and electricity	[R	ajasthan PET 2000]				
	[1] Ionic	[2] Covalent	[3] Metallic	[4] Molecular					
Q.50	Ferrous oxide ha	s a cubic structure and	each edge of the unit cell is	5.0 A. Assuming	density of the oxide as				
	4.0g cm $^{-3}$, then t	he number of Fe ²⁺ and	O^{2-} ions present in each u	nit cell will be	[MP PET 2000]				
	[1] Four Fe ²⁺ and	four O ²⁻	[2] Two Fe ²⁺ and four ²						
0.54	[3] Four Fe ²⁺ and	two O ²⁻	[4] Three Fe ²⁺ and thre						
Q.51	In the Bragg's equ	iation for diffraction of X	k-rays, n represents for						
	[1] Quantum num	oer	[2] An integer	[2] An integer					
0.50	[3] Avogadro's nu	mpers	[4] MOIES		[414] 00001				
Q.52	I ne number of at	oms In. a face-centred	cubic unit cell are	[4] 0	[AMU 2000]				
0.52		[2] 5	[3] 6	[4] 2	IND DMT 2000 041				
Q.53	The number of un (41.0×40^{20})	$\frac{1010 \times 40^{22}}{100}$	13 A 5 x 40 ²³	[4] 0 5 × 40 ²⁴					
0.54	The number of c_{1}	[2] 3 X 10	$[3] 1.3 \times 10^{-5}$	[4] 0.5 X 10 ⁻¹					
Q.34				[4] 1					
0 55	Which of the follo	(D) 4 wing statements is not	true about NaCl structure	[4] 1					
Q.JJ		fcc arrangement	[2] Na ⁺ ions has coordi	nation number 4					
	[1] CI ⁻ ions has co	ordination number 6	[4] Each unit cell conta	ins 4NaCl molecu	65				
Q 56	If a non-metal is a	added to the interstitial	sites of a metal then the me	tal becomes	[DCF 2001]				
Q.00	[1] Softer	[2] ess tensile	[3] ess malleable	[4] More ductil	6				
Q.57	The number of clo	se neighbour in a body	/centred cubic lattice of iden	tical sphere is	(MP PET 2001)				
	[1] 8	[2] 6	[3] 4	[4] 2	····· · - · - • • • · 1				

Q.58	The number of eq	uidistant oppositely charge	ed ions in a sodium chloride	e crystal is	[MP PET 2001]			
	[1] 8	[2] 6	[3] 4	[4] 2				
Q.59	The arrangement	ABC ABC ABC is re	eferred as		[MP PET 2001]			
	[1] Octahedral clo	se packing	[2] Hexagonal close pack	king				
	[3] Tetragonal clos	se packing	[4] Cubic close packing					
Q.60	In CsCl structure,	the coordination number of	of Cs ⁺ is		[MP PMT 2001]			
	[1] Equal to that o	f Cl [−] , that is 6	[2] Equal to that of Cl ⁻ , th	nat is 8				
	[3] Not equal to th	at of Cl [–] that is 6	[4] Not equal to that of C	l⁻ that is 8				
Q.61	In a solid 'AB hav centered atoms al	ring the NaCI structure. 'A long one of the axes are re	A' atoms occupy the corner emoved. then the resultant	rs of the cubic unit stoichiometry of the	cell. If all the face- e solid is			
				[HT	Screening 2001]			
	[1] AB ₂	[2] A ₂ B	[4] A ₄ B ₃	[3] A ₃ B ₄				
Q.62	Assertion [1] : In a	any ionic solid (MX) with So	chottky defects, the number	of positive and neg	ative ions are same.			
	Reason (R) : Equ	al number of cation and an	ion vacancies are present	т П	Screening 2001]			
	[1] Both A and R a	are true and the R is a corr	rect explanation of the A	$\mathbf{\dot{\wedge}}$				
	[2] Both A and R a							
	[3] A is true but th	e R is false	[4] Both A and R are false	e				
	[5] A is false but t	he R is true						
Q.63	An AB ₂ type struc	ture is found in			[AIIMS 2002]			
	[1] NaCl	[2] Al ₂ O ₃	[3] CaF ₂	[4] N ₂ O				
Q.64	Schottky defect de	efines imperfection in the I	attice structure of a		[AIIMS 2002]			
	[1] Solid	[2] Liquid	[3] Gas	[4] Plasma				
Q.65	Na and Mg crysta present in the unit	Illize in BCC and FCC typ cell of their respective cry	e crystals respectively. the /stal is	en the number of a	toms of Na and Mg [AIEEE 2002]			
	[1] 4 and 2	[2] 9 and 14	[3] 14 and 9	[4] 2 and 4				
Q.66	Which one of the f	ollowing metal oxides is ar	ntiferromagnetic in nature		[MP PET 2002]			
	[1] MnO ₂	[2] TiO ₂	[3] VO ₂	[4] CrO ₂				
Q.67	Which one of the f	following crystals does not	exhibit Frenkel defect		[MP PET 2002]			
	[1] AgBr	[2] AgCl	[3] KBr	[4] ZnS				
Q.68	The interionic dis	tance for cesium chloride	crystal will be		[MP PET 2002]			
	[1] a	[2] a/2	$[3] \frac{\sqrt{3}a}{2}$	$[4] \frac{2a}{\sqrt{3}}$				
Q.69	In graphite. carbo	n atoms are joined togethe	er due to		[AFMC 2002]			
	[1] Ionic bonding		[2] Vander Waal'& forces					
	[3] Metallic bondin	ng	[4] Covalent bonding					
Q.70	Which of the follow	ving shows electrical cond	luction		[AFMC 2002]			
	[1] Sodium	[2] Potassium	[3] Diamond	[4] Graphite				
Q.71	How many unit ce	Ils are present in a cube-	shaped ideal crystal of NaC	Cl of mass 1.00 g				
	[Atomic masses:	Na = 23. Cl = 35.5]			[AIEEE 2003]			
	[1] 2.57 x 10 ²¹ un	it cells	[2] 5.14 x 10 ²¹ unit cells					
	[3] 1.28 x 10 ²¹ un	it cells	[4] 1.71 x 10 ²¹ unit cells					

Q.72	The pyknometric of kg m ⁻³ . The fraction	lensity of sodium chloride on of unoccupied sites in s	crystal is 2.165 x 10 ³ kg m⁻ sodium chloride crystal is	³ while its X-rays density is 2.178 x 10 ³ [CBSE PMT 2003]
	[1] 5.96 x 10 ⁻³	[2] 5.96	[3] 5.96 x 10 ⁻²	[4] 5.96 x 10 ⁻¹
Q.73	What is the coordi	nation number of sodium i	n Na ₂ O	[AIIMS 2003]
	[1] 6	[2] 4	[3] 8	[4] 2
Q.74	Frenkel and Schot	ttky defects are		[BHU 2003]
	[1] Nucleus defect	s [2] Non-crystal defects	[3] Crystal defects	[4] None of these
Q.75	In solid CsCl each	CI is closely packed with	how many Cs	[MP PET 2003]
	[1] 8	[2] 6	[3] 10	[4] 2
Q.76	An ionic comoiunc faces of the cube.	has a unit cell consisting The empirical formula for t	of A ions at the corners of a this compound would be	a cube and B ions on the centres of the [AIEEE 2005]
	[1] A ₂ B	[2] AB	[3] A ₃ B	[4] AB ₃
Q.77	In which of the follo	owing FCC arrangement, t	he cations occupy the alter	nate tetrahedral voids [JEE 2005]
	[1] NaCl	[2] ZnS	[3] Na ₂ O	[4] CaF ₂
Q.78	Total volume of at	oms present in a face-cen	tred cubic unit cell of a met	al is (r is atomic radius) [AIEEE 2006]
	$[1] \frac{24}{3} \pi^{3}$		[3] $\frac{16}{3}$ πr ³	[4] $\frac{20}{3}\pi r^3$

Qus.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
Ans.	2	4	4	1	3	4	3	4	3	2	3	2	2	1	1	1	4	2	3	2	1	1	3	3	2
Qus	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50
Ans.	1	2	2	1	2	4	2	1	1	3	2	2	3	1	4	2	3	4	1	4	1	2	4	3	1
Qus.	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75
Ans.	2	1	3	4	2	2	3	2	4	2	4	1	3	1	4	1	3	3	4	4	1	1	2	3	1
Qus.	76	77	78																						
Ans.	4	2	3																						