Solved Example

Ex.1 1.82 a metal required 32.5 mL of N HCl to dissolve it. What is equivalent weight for metal?

[3] 56

Sol. ∴

Meq. of metal = Meq. of HCl or $\frac{1.82}{F} \times 1000 = 32.5 \times 1000$

E = 56

Ex.2 Calculate the amount of oxalic acid $(H_2C_2O_4, 2H_2O)$ required to obtain 250 ml of semimolar solution.

[1] 15.75 g

[2] 1.575 g

[3] 157.5 g

[4] None

Sol. Molarity of solution = $0.5 \, \text{M}$

Volume of solution = 250 ml

∴ milli mole oxalic acid = M x V (ml) = $\frac{1}{2}$ x 250 or $\frac{w}{M}$ x 1000 = 0.5 x 250

 $w = \frac{250 \times 126}{2 \times 1000} = 15.76 g$ *:*.

Ex.3 The vapour pressure of pure liquid 'A' at 310°C is 120 torr. The vapour pressure of this liquid in solution with liquid B is 72 torr. Calculate the mole fraction of 'A' in solution if the mixture obeys Raoult's law.

[1] 0.06

[2] 0.9

Sol. Given is vapour pressure of pure component 'A', $P_A^0 = 120$ torr

Partial pressure of A, $P_A = 72$ torr

Suppose its mole fraction is solution is $\mathbf{X}_{\mathbf{A}}$, then according to Raoult's law.

$$PA = P^0A \cdot xA$$

$$xA = \frac{72}{120} = 0.6$$

Ex.4 If latent heat of fusion of ice is 80 cals per g at 0°C, calculate molal depression constant for water.

[1] 18.63

[4] 0.1863

Sol. $K_f = \frac{RT_f^2}{1000l_v}$ Here R = 2 cals, $T_f = 0 + 273 = 273$ K, $l_f = 80$ cals

$$K_f = \frac{2 \times 273 \times 273}{1000 \times 80} = 1.863$$

Ex.5 Calculate the molal elevation constant of water evaporates at 100°C with the absorption of 536 calories per gm (R = 2 cals)[1] 0.519°C

[2] 0.0519°C

[3] 1.519°C

[4] 2.519°C

Molal elevation constant of the solvent. Sol

$$Kb = \frac{RT_b^2}{l_v \times 1000} = \frac{2 \times 373 \times 373}{536 \times 1000} = 0.519^{\circ}C$$

Ex.6 214.2 gram of sugar syrup contains 34.2 gram of sugar. Calculate (i) molality of the solution and (ii) mole fraction of the sugar in the syrup -

[1] 0.555m, 0.0099

[2] 0.455m, 0.0110 [3] 0.355m, 0.0199 [4] None of these

Number of moles of sugar = $\frac{34.2}{\text{mol. mass}} = \frac{34.2}{34.2} = 0.1$ (i) Mass of sugar = 34.2 gram. Sol.

Mass of water = (214.2 - 34.2) = 180 gram or $\frac{180}{1000}$ kg

Number of moles of water =
$$\frac{180}{18}$$
 = 10

Molality =
$$\frac{\text{No. of moles of sugar}}{\text{Mass of water in kg}} = \frac{0.1}{180} \times 1000 = 0.555 \text{ m}$$

(ii) Total no. of moles = 10.0 + 0.1 = 10.1

Mole fraction of sugar =
$$\frac{\text{No. of moles of sugar}}{\text{Total number of moles}} = \frac{0.1}{10.1} = 0.0099$$

Ex.7 15 gram of methyl alcohol is dissolved in 35 gram of water. What is the mass percentage of methyl alcohol in solution?

[1] 30%

[2] 50%

[3] 70%

Sol. Total mass of solution = (15 + 35) gram = 50 gram

mass percentage of methyl alcohol =
$$\frac{\text{Mass of methyl alcohol}}{\text{Mass of solution}} \times 100 = \frac{15}{50} \times 100 = 30\%$$

Ex.8 Osmotic pressure of a sugar solution at 24°C is 2.5 atmospheres. Determine the concentration of the solution in gm mole per litre.

[1] 0.0821 moles/litre

[3] 0.1025 moles/litre

[2] 1.082 moles/litre [4] 0.0827 moles/litre

Sol. Here it is given that

$$\pi = 2.5$$
 atm, T = 24 + 273 = 297A⁰, S = 0.0821 lit. atm. deg⁻¹ mol⁻¹, C = ?

$$\pi = 2.5 \text{ atm, } T = 24 + 273 = 297 \text{A}^{\circ}, \ S = 0.0821 \ \text{lit. atm. deg}^{-1} \ \text{mol}^{-1}, \ C = ?$$
 We know that
$$\pi = \text{CST} \qquad \text{or} \quad C = \frac{\pi}{\text{ST}} = \frac{2.5}{0.0821 \times 297} = 0.1025 \ \text{moles/litre}$$

Ex.9 Twenty grams of a substance were dissolved in 500 ml. of water and the osmotic pressure of the solution was found to be 600 mm of mercury at 15°C. Determine the molecular weight of the substance.

[1] 1120

[3] 1200

[4] None of these

Sol. Here it is given that

w = 20 gm; V = 500 ml. =
$$\frac{500}{1000}$$
 = 0.5 litre
 π = 600 mm = $\frac{600}{760}$ atm; T = 15 + 273 = 288°A

$$\pi = 600 \text{ mm} = \frac{600}{760} \text{ atm}$$
; $T = 15 + 273 = 288^{\circ} \text{A}$

According to Van't Hoff equation,

$$\pi V = nST$$

$$\pi V = \frac{W}{M} ST$$

$$\pi V = nST$$
 $\pi V = \frac{w}{m} ST$
 $\therefore m = \frac{wST}{\pi V} = \frac{20 \times 0.0821 \times 288 \times 760}{600 \times 0.5} = 1198$

Ex.10 0.15g of a substance dissolved in 15g of solvent boiled at a temperature higher by 0.216°C than that of the pure solvent. Calculate the molecular weight of the substance. Molal elevation constant for the solvent is 2.16°C.

[1] 216

[2] 100

[3] 178

[4] None of these

Sol. Here it is given that

$$W = 0.15 g,$$
 $\Delta T_b = 0.216^{\circ}C$
 $W = 15 g$ $K_b = 2.16^{\circ}C$

$$\Delta T_b = 0.216^{\circ}$$

$$W = 15 g$$

Substituting values in the expression,
$$m = \frac{1000 \times K_b \times w}{\Delta T_b \times W}$$
 $m = \frac{1000 \times 2.16 \times 0.15}{0.216 \times 15} = 100$

Kercise #1

Q.1	100 mL each of 0.5 N Na	OH, N/5 HCI and N/1	0 H ₂ SO ₄ are mixed to	ogether. The resulting solution will be
	[1] Acidic	[2] Neutral	[3] Alkaline	[4] None ofthese
Q.2	25 mL of 3.0 M HNO ₃ armixture would be	e mixed with 75 mL	of4.0M HNO ₃ Ifthe vol	lumes are additive, the molarity of the final
	[1] 3.25M.	[2]4.0M	[3] 3.75M	[4]3.50M
Q.3	To neutralise 20 mL of M/	1 0 NaOH, the volum	ne of M/20 HCI needed	lis
	[1] 10 mL	[2] 30 mL	[3] 40 mL	[4] 20 mL
Q.4	H ₃ PO ₄ is a tribasic acid and NaH ₂ PO ₄ (mol. wt. 120)		= :	ume of 1 M NaOH should be added to 12 g
	[1] 100 mL	[2] 300 mL	[3] 200 mL	[4] 80 mL
Q.5	The amount of KMnO ₄ re	equired to prepare 10	0 mL of 0.1 N solution i	in alkaline medium
	[1]1.58g	[2]0.52g	[3]3.16g	[4] 0.31g
Q.6	Density of water is 1 g/m	L. The concentration	of water in mol/litre is	-0,
	[1] 1000	[2]18	[3] 0.018	[4] 55.5
Q.7	How many grams of NaC	H will be needed to p	repare 250 mL of 0.1 N	M solution
	[1]1g	[2]10g	[3]4g	[4]6g
Q.8	How many grams of gluc	ose be dissolved to n	nake one litre solution	of 10% glucose
	[1]10g	[2]180g	[3]100g	[4]1.8g
Q.9	The normality of 0.3 M ph	nosphorus acid (H ₃ Po	O ₃) is	,
	[1] 0.1	[2] 0.9	[3] 0.3	[4] 0.6
Q.10	The molarity of a glucose	solution containing	36 g of glucose per 400	0 mL of the solution is
	[1] 1.0	[2] 0.5	[3] 2.0	[4] 0.05
Q.11	The maximum amount of	f BaSO ₄ precipitated	on mixing 20 mL of 0.	5 M BaCl ₂ with 20 mL of 1 M H ₂ SO ₄ is
	[1] 0.25 mole	[2] 0.5 mole	[3] 1 mole	[4] 0.01 mole
Q.12	H ₂ O ₂ solution used for ha The molecular weight of			nately 5.0 g $\mathrm{H_2O_2}$ per 100 mL of the solution. approximately
	[1] 3.0	[2]1.5	[3] 0.15	[4] 4.0
Q.13	What weight of sodium h	ydroxide is required t	o neutralise 100 mL of	f 0.1 N HCI
	[1] 4.0 g	[2] 0.04 g	[3] 0.4 g	[4] 2.0 9
Q.14	1 kg of NaOH solution co	ntains 4g of NaOH. T	he approximate conce	entration of the solution is
	[1] 0.1 molar	[2] 0.1 molal	[3] Decinormal	[4] About 0.1 N
Q.15	5.85 g of NaCl dissolved	in H ₂ O and solution i	s made upto 500 mL.	The molarity is
	[1] 0.1	[2] 0.2	[3] 1.0	[4] 0.117
Q.16	5.85 g of NaCl are dissolved	ved in 90 g of water. 7	The mole fraction of Na	aCI is
	[1] 0.1	[2] 0.01	[3] 0.2	[4] 0.0196
Q.17	To prepare 0.1 M KMnO ₄	solution in 250 mL fl	ask, the weight of KMr	nO ₄ required is
	[1] 4.80g	[2] 3.95g	[3] 39.5g	[4] 0.48 g
Q.18	The normality of 4% (wt./	vol.) NaOH is		
	[1] 0.1	[2]1.0	[3] 0.05	[4] 0.01
Q.19	The molarity of a solution	containing 23 g ethy	l alcohol in one litre is	
	[1] 0.5	[2] 1.0	[3] 2.0	[4] 3.0
Q.20	The density of NH ₄ OH so solution	olution is 0.6 g/mL. It	contains 34% by weigl	ht of NH ₄ OH. Calculate the normality of the
	[1] 4.8 N	[2] 10 N	[3] 0.5 N	[4] 5.8 N

J. 21	The volume of 0.1 M H ₂ S	SO ₄ required to neutra	alise 30 mL of 2.0 M Na	aOH IS
	[1] 100 mL	[2] 300 mL	[3] 400 mL	[4] 200 mL
Q.22	On dissolving 1 mole ear strength is	ch of the following a	cids in 1 litre water, th	ne acid which do not give a solution of 1 N
	[1] HCI	[2] HCIO ₄	[3] HNO ₃	[4] H ₃ PO ₄
Q.23	100 mL of 0.3 N HCl solu	ition were mixed with	200 mL of 0.6 N H ₂ SC	O ₄ solution. The final acidic normality is
	[1] 0.9 N	[2] 0.6 N		[3] 0.5 N [4] 0.4 N
Q.24	How much water is to be	added to dilute 10 m	L of 10 N HCl to make	it decinormal
	[1] 990 mL	[2] 1010 mL	[3] 100 mL	[4] 1000 mL
Q.25	The molality of 15% (wt.l-	vol.) solution of H ₂ SC	O ₄ of density 1.1 g/cm ³	is approximately
	[1] 1.2	[2] 1.4	[3] 1.8	[4] 1.6
Q.26	1.5 litre of a solution of a normality 5. The value of	-	tres of 2M HCl are mi	xed together. The resultant solution had a
	[1] 6	[2]10	[3] 8	[4] 4
Q.27	45g of acid of mol. wt. 90	neutralised by 200 r	nL of 5N caustic potas	h. The basicity of the acid is
	[1] 1	[2] 2	[3] 3	[4] 4
Q.28	10 mL of concentrated H	₂ SO ₄ (18M) is diluted	d to one litre. The appr	oximate strength of the dilute acid is
	[1]18M	[2] 180M	[3]O.18M	[4]1.8M
Q.29	Equal volumes of 0.1 M A	AgNO ₃ and 0.2 M Na(CI are mixed. The cond	centration of NO_3^- ions in the mixture will be
	[1] 0.1 M	[2] 0.05 M	[3] 0.2 M	[4] 0.15 M
Q.30	A 5M solution of H_2SO_4	is diluted from one litr	e to a volume of 10 litr	e. The normality ofthis solution is
	[1] 1N	[2] 2N	[3] 0.5N	[4] 5N
Q.31	$2.3 \text{ g of C}_2\text{H}_5\text{OH (mol. w}$			molarity of the solution is
	[1] 0.01		[3] 0.05	[4] 2.0
Q.32	Molecular weight of oxalic of NaOH is	c acid is 126. The wei	ght of oxalic acid requi	red to neutralise 1000 mL of normal solutior
	[1] 126g	[2] 63g	[3] 6.3g	[4] 12.6g
Q.33	The number of moles pre	esent in 2 litre of 0.5 N	// NaOH is	
	[1] 2	[2] 1	[3] 0.1	[4] 0.5
Q.34	The weight of solute pres		- '	
	[1] 2.45g	[2] 4.9g	[3] 1.96g	[4] 3.92 g
Q.35	The volume of 0.25 M H ₃			
	[1] 1.32 mL	[2] 13.2 mL	[3] 26.4 mL	[4] 2.0 mL
Q.36	The nature of mixture ob			
	[1] Acidic	[2] Basic	[3] Neutral	[4] Amphoteric
Q.37	The solution A and Bare no change in volume, the			of A are mixed with 25 ml of B and there is
	[1] 0.15M	[2] 0.18M	[3] 0.12M	[4] 0.30M
Q.38	The number of milli equiv	valents contained in 0	0.5 litre of 0.2 N solution	n is
	[1] 0.1	[2]100	[3]0.01	(4}1.0
Q.39	If 250 mL of a solution co	ontains 24.5g H ₂ SO ₄	the molarity and norma	ality respectively are
	[1] 1M, 2N	[2] 1M,0.5M	[3] 0.5M, 1N	[4] 2M,1N
Q.40	The normality of 1 % (wt.	- '	/	
	(1) 0.02	[2] 0.2	[3] 0.1	[4] 1

Q.41	The concentration of so	olution containing 0.5 m	ole H ₃ PO ₄ dissolved i	in 500 g water
	[1] 1m	[2]1M	[3] 1N	[4] 0.5M
Q.42	In a flask at a certain te	mperature there are 2	g H ₂ and 8g O ₂ . The r	mole fraction of O_2 in the given mixture is -
	[1] 0.2	[2] 1	[3] 2	[4] 0.1
Q.43	3.0 molal NaOH solution	on has a density of 1.11	0 g/ml. The molarity of	of the solution is
	[1] 2.9732	[2] 3.05	[3] 3.64	[4] 3.0504
Q.44	The solution having low	est molar concentration	n is	
	[1] 1.0 N HCI	$[2] 0.4 \text{ N H}_2 \text{SO}_4$	[3] 0.1 N Na ₂ CO ₃	[4] None
Q.45	An aqueous solution of molecular weight of ure			olution has a density of 1.052 g/cm ³ . If the
	[1] 0.2	[2] 0.192	[3] 0.064	[4] 1.2
Q.46	A solution contains one	mole of alcohol and fou	ur moles of water. Wha	t are the mole fractions of water and alcoho
	[1] 1/4, 4/1	[2] 4/1,1/4	[3] 4/5,1/5	[4] 1/5, 4/5
Q.47	The amount of anhydro	ous Na ₂ CO ₃ present in	250 mL of 0.25 M solu	ution is
	[1] 6.625 g	[2] 6.0 g	[3] 66.25 g	[4] 6.225 g
Q.48	The mole fraction of Na	CI in a solution contain	ing 1 mole of NaCl in	1000 g of water is
	[1] 0.0177	[2] 0.001	[3] 0.5	[4] 0.244
Q.49	In the aqueous solution	of sulphuric acid the n	nole fraction of water i	s 0.85. The molality ofthe solution is
	[1] 8.9m	[2] 0.19m	[3] 9.8m	[4] 15m
Q.50	An example of colligative			
	[1] Freezing point	[2] Boiling point	[3] Vapour pressure	[4] Osmotic pressure
Q.51	Which of the following is	s not a colligative prope	erties	
	[1] ΔT _f	$[2] \pi$	[3] ΔT_{b}	[4] K _b
Q.52	If P ₀ and P are the vapo of the solvent and solute	e respectively, then		ectively and n ₁ and n ₂ are the mole fractions
	[1] $P_s = P_0 n_1$	[2] $P_s = P_0 n_2$	[3] $P_0 = P_s n_2$	[4] $P_s = P_0 (n_1/n_2)$
Q.53	If P ₀ and P _s , are the va solvent and solute resp		nt and its solution resp	pectively. N ₁ and N ₂ are the mole fraction o
	[1] $P_s = P_0/N_2$	150	[2] $P_0 - P_s = P_0 N_2$	
	[3] $P_s = P_0 N_2$	X	$[4] (P_0 - P_s) / P_s = N$	$I_1 / (N_1 + N_2)$
Q.54	Vapour pressure of a so	olvent containing nonvo	latile solute is	
	[1] More than the vapou	ir pressure of a solvent	[2] Less than the vap	our pressure of solvent
	[3] Equal to the vapour	pressure of solvent	[4] None	
Q.55	A substance will be del	iquescent if its vapour p	oressure is	
	[1] Equal to the atmosp	heric pressure.	[2] Equal to that of w	ater vapour in the air
	[3] Greater than that of	water vapour in the air	[4] Lesser than that of	of water vapours in the air
Q.56	The relative lowering in			
	[1] $\propto X_{solute}$	[3] $\propto \frac{1}{X_{\text{solute}}}$	[3] = X _{solute}	[4] ∝ m
Q.57	The boiling point of C ₆ H will show highest vapou			65°C, 184°C and 212°C respectively. Which
	[1] C ₆ H ₆	[2] CH ₃ OH	$[3] C_6 H_5 NH_2$	$[4] C_6 H_5 NO_2$
Q.58	The vapour pressure of	fa dilute solution of a so	olute is not influenced	by
	[1] Temperature of solu	tion	[2] Melting point of se	olute
	[3] Mole fraction of solu	ite	[4] Degree of dissoci	ation of solute

Q.59	The lowering of vapour pressure of a solvent by	the addition .of a non-volatile solute to it, is directly proportional to
	[1] The strength of the solution	[2] The nature of the solute in the solution
	[3] The atmospheric pressure	[4] All
Q.60	An aqueous solution of methanol in water has	vapour pressure
	[1] Equal to that of water	[2] Equal to that of methanol
	[3] More than that of water	[4] Less than that of water
Q.61	When a substance is dissolved in a solvent, th	e vapour pressure of solvent decreases. This brings
	[1] An increase in b.pt. of the solution	[2] A decrease in b.pt of a solution
	[3] An increase in f.pt of the solvent	[4] none
Q.62	Boiling point of water is defined as the tempera	ature at which
	[1] Vapour pressure of water equal to that of at	mospheric pressure
	[2] Bubbles are formed	
	[3] Steam comes out	[4] None of the above
Q.63	A solution of sulphuric acid in water exhibits	69
	[1] Negative deviations from Raoult's law	[2] Positive deviations from Raoult's law
	[3] Ideal properties	[4] The applicability of Henry's law
Q.64	Binary liquid mixtures which exhibit positive de	eviations from Raoult's law boil at temperature than the expected
	b.pt –	
	[1] Lower [2] Higher	[3] Same [4] Can't be said
Q.65	Which of the follwing is not correct for ideal so	lution
	[1] Raoults law is obeyed for entire concentration	on range and temperatures
	$[2] \Delta S_{mix} = 0$	$[3] \Delta V_{\text{mix}} = 0$
	$[4] \Delta H_{mix} = 0$	
Q.66	Which one of the following liquid,pairs shows	a positive deviation from Raoult's law
	[1] Acetone-chloroform	[2] Benzene-methanol
	[3] Water-Hydrochloric acid	[4] Water-nitric acid
Q.67	Which of the following conditions is not correct	t for ideal solution
	[1] no change in volume on mixing	[2] no change in enthalpy on mixing
	[3] it obey's Raoult's law	
	[4] Ionisation of solute should occurs to a small	
Q.68	When a crystal of the solute is introduced into	a super saturated solution of the solute
	[1] The solute dissolves	[2] The excess solute crystallises out
	[3] The solution becomes unsaturated	[4] The solution remains super saturated
Q.69	An ideal solution is that which	
	[1] Shows positive deviation from Raoult's law	[2] Shows negative deviation from Raoult's law
	[3] Has no connection with Raoult's law	[4] Obeys Raoult's law
Q.70	1000 gram aqueous solution of CaCO ₃ contain	ns 10 gram of carbonate. Concentration of solution is
	[1] 10ppm [2] 100ppm	[3] 1000ppm [4] 10,000 ppm
Q.71	Solute when dissolved in water	
	[1] Increases the vapour pressure of water	[2] Decreases the boiling point of water
	[3] Decreases the freezing point of water	[4] All of the above
Q.72	Solutions distilled without change in compositi	on at a temperature are called
	[1] Amorphous	[2] Azeotropic mixture
	[3] Ideal solution	[4] Super saturated solution

Q.73	Which pair shows a contra	action in volume on r	mixing along with evol	ution of heat
	[1] CHCl ₃ + C ₆ H ₆	[2] H ₂ O + HCI	[3] $H_2O + HNO_3$	[4] All
Q.74	Azeotropic mixture of wat	er and HCI boils at	381.5 K. By distilling the	ne mixture it is possible to obtain
	[1] Pure HCI only		[2] Pure water only	
	[3] Neither HCI nor water		[4] Both water and H	C! in pure state
Q.75	Which does not influence	the solubility of a so	olid in a liquid solvent	
	[1] Nature of solute	[2] Nature of solven	t [3] Temperature	[4] Pressure
Q.76	Which solution will show r	naximum elevation i	in b.pt	
	[1] 0.1 M KCI	[2] 0.1 M BaCl ₂	[3] 0.1 M FeCl ₃	[4] 0.1 M Fe ₂ (SO ₄) ₃
Q.77	The elevation of boiling po	oint method is used fo	or the determination of	f molecular weight of
	[1] Non-volatile and solubl	e solute	[2] Non-volatile and i	nsoluble solute
	[3] Volatile and soluble so	lute	[4] Volatile and insol	uble solute
Q.78	Which statement is correct	t for the boiling poin	t of solvent containing	a dissolved solid substance
	[1] Boiling point of the liqu	id is depressed	[2] Boiling point of th	e liquid is elevated
	[3] There is no effect on th	e boiling point	[4] The change depe	ends upon the polarity of the liquid
Q.79	In cold countries, ethylene	e glycol is added to v	water in the radiators o	of cars during winters. It results in
	[1] Lowering in boiling poin	nt	[2] Reducing viscosi	ty
	[3] Reducing specific heat	t	[4] Lowering in freez	ing point
Q.80	Which of the following 0.1	M aqueous solution	s will have the lowest	freezing point
	[1] Potassium sulphate	[2] Sodium chloride	[3] Urea	[4] Glucose
Q.81	Beckmann thermometers	are used to measure	e	
	[1] Boiling point of solution		[2] Freezing point of	solution
	[3] Elevation in boiling poi	nt or depression in fr	reezing point	
	[4] Any temperature			
Q.82			anhydrous is made to	clear snow on the roads. This causes
	[1] A lowering in f. pt of wa		[2] A lowering in m.p	t of ice
	[3] Ice melts at the temper	rature of atmospher	e present at that time	
	[4] All			
Q.83	The molal elevation/depre		•	
		[2] Nature of solute		[4] ∆H solution
Q.84	The correct relation ship be same molar concentration		ooints of very dilute sol	utions of $AICI_3$ (t ₁) and $CaCI_2$ (t ₂) having the
	[1] $t_1 = t_2$	[2] $t_1 > t_2$	[3] $t_2 > t_1$	[4] $t_2 \ge t_1$
Q.85	The passing of particles th	rough semipermeab	ole membrane is called	I
	[1] Osmosis	[2] Electrodialysis	[3] Electrophrosis	[4] Electroplating
Q.86	From the colligative prope & polymers	rties of solution whicl	h one is the best metho	od for the determination of mol. wt of proteins
	[1] Osmotic pressure		[2] Lowering in V.P.	
	[3] Lowering in freezing po	pint	[4] Elevation in B.Pt	
Q.87	In the case of osmosis, so	lvent molecules mov	ve from	
	[1] Higher vapour pressure	to lower vapour pre	ssure	
	[2] Higher concentration to	o lower concentration	n	
	[3] Lower vapour pressure	to higher vapour pre	essure	
	[4] Higher osmotic pressu	re to lower osmotic	pressure	

Q.88 Osmotic pressure of non aqueous solution is measured by [1] Berkeley and Hartley method [2] Pfeffer's method [3] Morse and Frazer method [4] Townend's method Q.89 As a result of osmosis, the volume of the concentrated solution [1] Gradually decreases [2] Gradually increases [3] Suddenly increases [4] none Q.90 The osmotic pressure of a solution of benzoic acid dissolved in benzene is less than expected because [1] Benzoic acid is an organic solute [2] Benzene is a non-polar solvent [3] Benzoic acid dissociates in benzene [4] Benzoic acid gets associated in benzene Q.91 The spontaneous movement of solute particles from a more concentrated solution to less concentrated solution is called [3] Plasmolysis [4] Fusion [1] Osmosis [2] Diffusion Q.92 If mole fraction of the solvent in a solution decreases then [1] Vapour pressure of solution increases [2] b.pt decreases [3] Osmotic pressure increases [4] All are correct Q.93 Assuming each salt to be 90% dissociated which of the following will have highest osmotic pressure-[1] Decinormal Al₂(SO₄)₃ [2] Decinormal BaCl₂ [3] Decinormal Na₂SO₄ [4] A solution obtained by mixing equal volumes of [2] and [3] and filtering Q.94 Two solutions have different osmotic pressures. The solution of higher osmotic pressure is called [2] Hypotonic solution [1] Isotonic solution [4] Hypertonic solution [3] Isotopic solution Q.95 Blood is isotonic with [3] 30% NaCI [1] 0.16 M NaCI [2] Conc.NaCI [4] 50% NaCI Q.96 Which one of the following pairs of solution can we expect to be isotonic at the same temperature [1] 0.1 M urea and 0.1 M NaCI [2] 0.1 M urea and 0.2 M MgCl₂ [3] 0.1 M NaCl and 0.1 M Na₂SO [4] 0.1 M Ca(NO_3)₂ and 0.1 M Na_2SO_4 Q.97 0.5 M solution of urea is isotonic with [1] 0.5 M NaCl solution [2] 0.5 M sugar solution [3] 0.5 M BaCl₂ solution [4] 0.5 M solution benzoic acid in benzene **Q.98** Which salt may show the same value of vant Hoff factor (i) as that of K_4 Fe(CN)₆ in very dilute solution state [2] NaCl $[1] Al_2(SO_4)_3$ $[3] AI(NO_3)_3$ [4] Na₂SO₄

Q.99 Which compound corresponds vant Hoff factor (i)to be equal to 2 in dilute solution

Q.100 In which of the following, the vant Hoff factor (i) is equal to one

[1] K_2SO_4

[1] NaCl [2] KNO₃ [3] Urea [4] All

[2] NaHSO₄

Answer Key

[3] Sugar

[4] MgSO₄

Qus.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
Ans.	3	3	3	3	1	4	1	3	4	2	4	2	3	2	2	4	2	2	1	4	2	4	3	1	4
Qus.	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50
Ans.	2	2	3	2	1	2	2	2	3	4	1	3	2	1	2	1	1	1	3	2	3	1	1	3	4
Qus.	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75
Ans.	4	1	2	2	4	3	2	2	1	3	1	1	1	1	2	2	4	2	4	4	3	2	4	3	4
Qus.	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100
Ans.	4	1	2	4	1	3	4	1	2	1	1	1	4	2	4	2	3	1	4	1	4	2	1	4	3

Exercise # 2

Q.1	A molal solution is or	ne that contains one	mole of a solute in		
	[1] 1000 gm of the so	olution	[2] 1000 c.c. of tl	he solution	
	[3] 1000 c.c of the so	lvent	[4] 1000 gm of th	ne solvent	
Q.2	In which mode of exp	pression the conc. of	a solution remains in	ndependent of temp	
	[1] Molarity	[2] Normality	[3] Formality	[4] Molality	
Q.3	The volume strength	of .1.5N H ₂ O ₂ solution	on is		
	[1] 4.8	[2] 8.4	[3] 3.0	[4] 8.0	
Q.4	The volume strength	of H ₂ O ₂ solution is 1	0. What does it mea	n	
	[1] At S.T.P. 10gm so	olution of H ₂ O ₂ gives	10ml. of O ₂		
	[2] At S.T.P. 1gm equ	ivalent of H ₂ O ₂ give	s 10ml. of O ₂		
	[3] At ST.P. 10 litre so	olution of H ₂ O ₂ gives	10ml . of O ₂		
	[4] At S.T.P. 1ml solu	tion of H ₂ O ₂ gives 1	0ml . of O ₂	-0,	
Q.5	What is the volume o	f 0.5M HCI required t	to neutralize 25ml of	0.25M Na ₂ CO ₃ solution	
	[1] 12.5ml	[2] 25ml	[3]37.5 ml	[4] 50ml	
Q.6	If 5.85 gm. of NaCl a	re dissolved in 90gm	s.of water the mole fr	raction of NaCl is	
	[1] 0.1	[2] 0.01	[3] 0.02	[4] 0.2	
Q.7	Findtheweignt of H ₂ S	SO ₄ in I200ml of a so	lution of 0.2N strengt	th	
	[1] 7.76g	[2] 9.76g	[3] 11.76g	[4] 13.76gm	
Q.8	What weight of Na ₂ C	O_3 of 95% purity wo	uld be required to ne	utralize 45.6 ml of 0.235N acid	
	[1] 0.3978 g	[2] 0.4978 g	[3] 0.5978 g	[4] 0.6978 g	
Q.9	What is the strength	in g per litre of a solu	tion of $\rm H_2SO_4$ 12 ml	of which neutralized 15ml of N/10 NaOH solution	n
	[1] 3.125 g/l	[2] 4.125 g/l	[3] 5.125 g/l	[4] 6.125 g/l	
Q.10		lity of the resulting s	olution made by add	ding 2 drops (0.1 ml) of 0.1 N. H_2SO_4 in 1 litre	of
	distilled water	rol 40=3	[0] 40-4	14140-5	
0 44	[1] 10 ⁻²	[2] 10 ⁻³	[3] 10 ⁻⁴	[4] 10 ⁻⁵	
Q.11	normality of H ₂ SO ₄	30°C and 0.20 atmo	spnere is neutralize	d by 134ml of a solution of H ₂ SO ₄ Calculate th	ıe
	[1] 0.12	[2] 0.22	[3] 0.32	[4] 0.42	
Q.12	What weight of HNO	₃ is required to make		to be used as an oxidising agent in the. reaction	n:
	$3 \text{ Cu} + 8 \text{ HNO}_3 \rightarrow 30$ [1] 63gm	[2] 21 gm	[3] 42 gm	[4] 84gm	
O 13				lution in alkaline medium is	
Q.13	[1] 1.58 gram	[2] 3.16 gram	[3] 0.52 gram	[4] 0.31 gram	
0 14				aqueous solution of glucose it is said to be	
Q. 1 T	[1] 39.2 gram	[2] 1.1 molal	[3] 0.5 molal	[4] 0.1 molal	
Q 15				re 100 ml of 0.1 normal solution (equivalent weig	ht
Q.10	= 392)	io arrimornam ocipita	te is needed to propa	re 100 mil of 0.1 mormal solution (equivalent weig	
	[1] 39.2 gram	[2] 3.92 gram	[3] 1.96 gram	[4] 19.6 gram	
Q.16	The normality of 10%	(weight/volume) ace	etic acid is		
	[1] 1N	[2] 10N	[4] 0.83 N		
Q.17	How much water is n	needed to dilute 10 m	of 10 N HCI to mak	e it exactly decinormal (0.1 N)	
	[1] 990 ml	[2] 1000 ml	[3] 1010 ml	[4] 100 ml	

Q.18	4.0 gram of caustic sod	a is dissolved in 100	c.c. of solution. The	normality of solution is
	[1] 1	[2] 0.1	[3] 0.5	[4] 4.0
Q.19	What is the molarity of I	H ₂ SO ₄ solution that I	has a density of 1.84	gm/cc at 35°C and contains 98% by weight
	[1] 4.18M	[2] 8.14M	[3] 18.4M	[4] 18M
Q.20	In order to prepare 100	cm ³ of 0.250 M bariu	ım chloride solution tl	ne amount of BaCl ₂ .2H ₂ O re quired will be
	[1] 0.250 moles	[2] 0.0025 moles	[3] 2.5 moles	[4] 6.1 gram of BaCl ₂ .2H ₂ O
Q.21	25 mL of 3 M HCl we approximately	ere added to 75 mL	of 0.05 M HCl. The	e molarity of HCI in the resulting solution is
	[1] 0.055 M	[2] 0.35 M	[3] 0.787 M	[4] 3.05 M
Q.22	0.2 moles of HCl and 0.1	$molesofCaCl_2were$	dissolved in water to h	nave 500 ml of solution, the molarity of CI ⁻ ions is
	[1] 0.04 M	[2] 0.8 M	[3] 0.4 M	[4] 0.08 M
Q.23	When 5.0 gram of BaCl	₂ is dissolved in wate	er to have 10 ⁶ gram o	f solution. The concentration of solution is
	[1] 2.5 ppm	[2] 5 ppm	[3] 5M	[4] 5 gm L ⁻¹
Q.24	The number of iodine a	toms present in 40 m	L solution of its 0.1 N	A solution -
	[1] 4.81 x 10 ²¹	[2] 24.08 x 10 ²¹	[3] 0.408 x 10 ²³	[4] 6.02 x 10 ²²
Q.25	To a 4L of 0.2 M solution	n of NaOH, 2L of 0.5	M NaOH are added.	The molarity of resulting solution is
	[1] 0.9M	[2] 0.3M	[3] 1.8M	[4] 0.18M
Q.26	A molal solution is one	that contain one mol	e of a solute in	
	[1] 1000 gram of the sol	vent	[2] One litre of the s	olvent
	[3] One litre of the solut	ion	[4] 22.4litres of the s	olution
Q.27	10 gram of glucose are	dissolved in 150 grai	m of water. The mass	s% of glucose is
	[1] 5%	[2] 6.25%	[3] 93.75%	[4]15%
Q.28	If 100 ml of 1.0 M NaOh	H solution is diluted to	o 1.0 L, the resulting	solution contains
	[1] 1 mole of NaOH		[2] 0.1 mole of NaO	Н
	[3] 10.0 mole of NaOH		[4] 0.05 mole of Na	DH
Q.29	An aqueous solution of to 1.05. The molality of		rith molecular mass 6	60 contains 6 g in 500 ml and has density equal
	[1] 1.25	[2] 0.19	[3] 0.25	[4] 0.30
Q.30	Out of molarity (M), mol	ality (m), formality (F) and mole fraction (x	t) those independent of temperature are
	[1] M,m	[2] F, x	[3] m,x	[4] M,x
Q.31	One among the following	ng is an incorrect stat	ement	
	[1] Molality of a solution	is dependent on the	temperature	
	[2] Molarity of a solution	is dependent on the	temperature	
	[3] Normality of 0.5 M a	queous solution of H	₂ C ₂ O ₄ .2H ₂ O is 1 N	
	[4] Molality of a, solution	relates moles of sol	ute and mass of solv	ent
Q.32	Molality of the solution i	S		
	[1] The number of moles	s ofthe dissolved per	kilogram of solvent	
	[2] The number of gram	mole of the solute di	issolved per ml of the	solution
	[3] The nu'mber of gram	s of solute dissolved	per kilogram of solve	nt
	[4] The number of mole	s of solute dissolved	per litre of the solutio	n
Q.33	Molarity of a solutions re	elates the		
	[1] Moles of solute and	solvent	[2] Moles of solute a	and mass of solution
	[3] VolumeOf solute and	l volume of solvent	[4] Volume of solution	on and moles of solute

Q.34	The number of moles	of solute per kg of	r solvent is called		
	[1] Mole fraction of so	lute	[2] Normality		
	[3] Molarity		[4] Molality		
Q.35	The units of mole frac	tion of a compour	nd in solution are - "		
	[1] mol kg ⁻¹	[2] mollitre ⁻¹	[3]g litre ⁻¹	[4] None ofthes	se
Q.36	The hardness of water	r is usually expre	ssed in		
	(1) ppm	[2] g/litre	[3] Mol/litre	[4] None	
Q.37	The term standard so	lution is used for t	he solutions whose		
	[1] Normality is known	n [2] Molarity is	known[3] Strength is k	nown [4] A	All
Q.38	A molar solution repre	esents a solution o	of molarity equal to		
	[1] 1	[2] 2	[3] 3	[4] None	
Q.39	5 mL of N HCI, 20 mL normality of the result		d 30 mL of N/3 HNO ₃ a	re mixed together a	nd volume made one litre. The
	[1] N/5	[2] N/10	[3] N/20	[4] N/40	
Q.40	What will be the norm	ality of a solution	obtained by mixing 0.4	5 Nand 0.60 N Na	OH in the ratio 2 : 1 by volume -
	[1] 0.4N	[2] 0.5N	[3] 1.05N	[4] 0.15N	
Q.41	1000 g aqueous solut	ion of CaCO ₃ cor	ntains 10 g of calcium c	arbonate. Concent	ration of solution is
	[1] 10 ppm	[2] 100 ppm	[3] 1000 ppm 🦠	[4] 10000 ppm	
Q.42	1.0 g of pure calcium of the HCI solution is given		und to require 50 mL of	dilute HCI for comp	olete reactions. The strength of
	[1] 4N	[2] 2N	[3] 0.4N	[4] 0.2 N	
Q.43	The normality of 10%	(weight/volume)	acetic acid is		
	[1] 1N	[2] 10N	[3] 1.7N	[4] 0.83N	
Q.44	Cryoscopic constant	of a liquid is			
	[1] Decrease in freezi	ng point when 1 g	ram of solute is dissolv	ed per kg of the so	vent
	[2] Decrease in the fre	eezing point wher	1 mole of solute is dis	solved per kg of the	solvent
	[3] Is the elevation for	1 molar solution			
	[4] Is a factor used for	calculation of ele	vation in boiling point		
Q.45	If the vapour pressure have	of solutions of tw	o liquids are less than t	hose expected fron	n ideal solution they are said to
	[1] Negative deviation	from ideal behavio	our		
	[2] Positive deviations	from ideal behavi	our		
	[3] Ideal behaviour				
	[4] Positive deviation f	or lower cone. and	d negative deviations fo	or higher concentrat	ion
Q.46	The osmotic pressure	ofthe solution ha	ving concentration 0.05	5 M	
	[1] Increases with incr	ease in temperat	ure		
	[2] Does not change v	vith change in tem	nperature		
	[3] Decreases with inc	crease in tempera	ture		
	[4] Initially decreases	and then increas	es with rise in tempera	ture	
Q.47	Pure water freezes at 3.55°C. The K _f for ber		n place but a 0.374 m s	olution of tetra chlor	roethane in benzene freezes at

[1] $5.08 \text{ K. kg mol}^{-1}$ [2] $508 \text{ K kg mol}^{-1}$ [3] $0.508 \text{ K kg mol}^{-1}$ [4] $50.8 ^{\circ}\text{C kg mol}^{-1}$

Q.48	At certain Hill-station p solution of urea will be		.725°C. If K _b for wate	er is 0.513°C kg mol ⁻¹ . The boiling point of 0.69 m
	[1] 100.079°C	[2] 103°C	[3] 1 00. 359°C	[4] Un predictable
Q.49	The freezing point of a	a 0.05 molal solution	of a non-electrolyte	in water is- $(K_f = 1.86^{\circ}C/mol)$
	[1] -1.86 °C	[2] -0.93 °C	[3] -0.093°C	[4] 0.93°C
Q.50	The freezing point of	I molal NaCl solution	assuming NaCl to I	be 100% dissociated in water is
	[1] -1.86°C	[2] -3.72°C	[3]+1.86°C	[4] +3.72°C
Q.51	The molar freezing po			342 gm of cane sugar ($C_{12}H_{22}O_{11}$) is dissolved in
	[1] -1.86 °C	[2] 1.86°C	[3] -3.92 °c	[4] 2.42°C
Q.52	• .			an increase of pressure acting on them. However when the pressure is increased. This is because
	[1] ice is less dense th	nan water		[2] pressure generate heat
	[3] the chemical bond	s break under pressu	re	[4] ice is not a true solid
Q.53	A binary solution of. e	thanol and n-heptane	e is an example of	. 0
	[1] Ideal solution.		[2] Non ideal solu	ution with +ve deviation
	[3] Nonideal solution v	vith –ve deviation	[4] Un predictable	e behaviour
Q.54	At low concentrations equal osmotic pressu		quimolal solutions u	under a given set of experimental conditions have
	[1] All solutions		[2] Solutions of n	on-electrolyte only
	[3] Solution of electrol	yte only	[4] None of these	
Q.55	A thermometer which o	can be used only for a	ccurate measuremen	nt of small differences in temperature is known as a
	[1] Beckmann thermo	meter	[2] Contact therm	nometer
	[3] Clinical thermomet	er	[4] Platinum resis	stance thermometer
Q.56	10 gram of solute with in boiling point. The va		•	olved in 100 gram solvent to show 0.3°C elevation e
	[1] 10	[2] 3	[3] 0.3	[4] Unpredictable
Q.57	If the observed and t dissociation of NaCl is		mass of NaCl is fo	ound to be 31.80 and 58.50, then the degree o
	[1] 83.96%	[2] 8.39%	[3] 90%	[4] 100%
Q.58	When mango is place	d in dilute aqueous s	olution of hydrochlo	oride acid, it
	[1] Shrinks	[2] Swells	[3] Bursts	[4] Nothing happens
Q.59	In certain solvent, phe	enol dimerizes to the	extent of 60%. Its ob	oserved molecular mass in that solvent should be
	[1] > 94	[2] = 94	[3] < 94	[4] Unpredictable
Q.60	A 5.8% solution of Na	CI has vapour pressu	ire closest to	
	[1] 5.8 % solution of u	rea	[2] 2 m solution of	of glucose
	[3] 1 m solution of ure	a	[4] 5.8 % solution	n of glucose
Q.61	Equal volume of 1 M u	irea and 1 M glucose	are mixed. The mix	ture will have
	[1] Same osmotic pre	ssure	[2] Lower osmotic	c pressure
	[3] Higher osmotic pre	essure	[4] None ofthese	
Q.62	Depression in freezing	g point of solution of e	electrolytes are gene	erally
	[1] Lower			[2] Higher than what should be normally
	[3] Low or high depend	ding upon nature of e	lectrolyte	[4] What it should be normally

	[1] The lowering of vapour pressure is equal	to the mole fraction o	of the solute
	[2] The relative lowering of vapour pressure i	s equal to the mole fr	action ofthe solute
	[3] The relative lowering of vapour pressure i	s proportional to the a	amount of solute in solution
	[4] The vapour pressure of the solution is equ	ual to the mole fractio	on of the solvent
Q.64	An azeotropic solution of two liquids has boil	ling point lower than	either of them when it
	[1] Shows a negative deviation from Raoult's	law	
	[2] Shows no deviation from Raoult's law		
	[3] Shows positive deviation from Raoult's law	W	
	[4] Is saturated		
Q.65	The molal elevation constant is the ratio of th	ne elevation in BP to	
	[1] Molarity	[2] Molality	
	[3] Mole fraction of solute	[4] Mole fraction of s	solvent
Q.66	The osmotic pressure of solution increases in	f	\sim
	[1] Temperature is decreased		[2] Solution constant is increased
	[3] Number of solute molecules are increase	d	[4] Volume is increased
Q.67	A 5% solution of cane sugar is isotonic with	0.877 % of X. The mo	olecular weight of substance X is
	[1] 58.98 [2] 119.96	[3] 95.58	[4] 126.98
Q.68	A 0.01 M solution of glucose in water freez temperature	es at -0.0186 °C. A	0.01 M solution of KCI in water is freezes at
	[1] higher than - 0.0186°C	[2] O°C	
	[3] 0.0186 °C	[4] lower than -0.01	86 °C
Q.69	The osmotic pressure of 0.2 molar solution of	of urea at 300 K (R =	0.082 litre atm mol ⁻¹ K ⁻¹) is
	[1] 4.92atm [2] 1atm	[3] 0.25atm	[4] 27atm
Q.70	A liquid is in equilibrium with its vapour at its equal	boiling point. On the	average the molecules in the two phase have
	[1] Inter-molecular forces	[2] Potential energy	
	[3] Total energy	[4] Kinetic energy	
Q.71	The hard shell of an egg is dissolved in acetic NaCl	acid and then egg.wa	as subsequently placed in saturated solutiol'Joi
	[1] The egg will shrink	[2] The egg will become	ome harder
	[3] The egg will swell	[4] No change in the	e size of egg
Q.72	All form ideal solutions except		
	[1] C_2H_5Br and C_2H_5I	[2] C ₆ H ₅ Cl and C ₆ H	₅ Br
	[3] C_6H_6 and C_6H_5 . CH_3	[4] C_2H_5I and C_2H_5C	OH
Q.73	The substance A when dissolved in solvent factor will be	B shows the molecu	llar mass corresponding to A ₃ . The vant Hoffs
	[1] 1 [2] 2	[3] 3	[4] 1/3
Q.74	Which statement is incorrect about osmotic p	oressure (π), volume	(V) and temperature (T)
	. 1		
	[1] $\pi \propto \frac{1}{V}$ if T is constant	[2] $\pi \propto T$ if V is cons	stant
	[3] $\pi \propto V$ if T is the constant	[4] π V is constant if	f T is constant

Q.63 For dilute solution Raoult's law states that

Q.75 Blood cells retain their normal shapes in solutions which are

[1] isotonic to blood

[2] isomotic to blood

[3] hypertonic to blood

[4] equinormal to blood

Q.76 The process of osmosis was first discovered by

[1] Nollet

[2] Pfeffer

[3] Traube

[4] Dutrochet

Q.77 The osmotic pressure of a dilute solution is given by

[1] $P = P_0 X$

[2] $\pi V = nRT$

[3] $\Delta P = P_0 N_2$ [4] $\frac{\Delta P}{P_0} = \frac{P_0 - P}{P_0}$

Q.78 Osmotic pressure of a solution increased by

- [1] Decreasing the temperature
- [2] Increasing the volume
- [3] Increasing the number of molecules of the solute
- [4] None of the above

Q.79 The solution having same osmotic pressure are called

[1] Equivalent solutions

[2] Ideal solutions

[3] Equimolar solutions

[4] Isotonic solutions

Q.80 A property which depends primarily on the number of molecules of a system and not on their nature is known to be

[1] Constitutive

[2] Additive

[3] Colligative

[4] None ofthe above

Q.81 Which of the following molecular diffuse through a cell membrane

[1] Fructose

[2] Glycogen

[3] Haemoglobin

[4] Catalase

Q.82 The osmotic pressure of equimolar solutions of urea, BaCl₂ and AICl₃ will be in the order

[1] AICI₃ > BaCI₂ > Urea

[2] BaCl₂ > AlCl₃ > Urea

[3] Urea> BaCl₂ > AICl₃

[4] BaCl₂ > Urea > AlCl₃

Q.83 Which of the following is a colligative property

[1] Change in free energy.

[2] Dipole moment

[3] Heatofvapourisaiton [4] Osmotic pressure

Q.84 Which of the following statements is correct for the boiling point of solvent containing a dissolved solid substance-

[1] Boiling point of the liquid is depressed

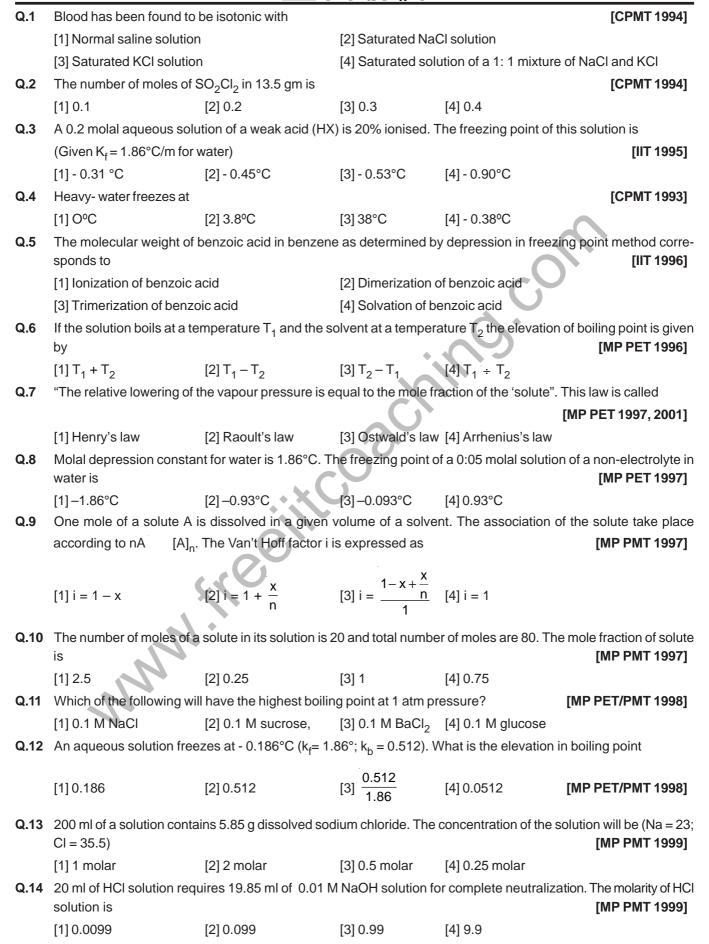
[2] Boiling point of the liquid is elevated

[3] There is no effect on the boiling point

[4] The change depends upon the polarity of the liquid

Q.85 Which of the following condition is not satisfied by an ideal solution is

[1] $\Delta H_{\text{mixing}} = 0$


[2] $\Delta V_{\text{mixing}} = 0$

[3] Raoult's law is obeyed

[4] Formation of an azeotropic mixture

Answer Key

Qus.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
Ans.	4	4	2	4	2	3	3	3	4	4	1	3	3	4	2	3	1	1	3	4	3	2	2	1	2
Qus.	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50
Ans.	1	2	2	2	3	1	1	4	4	4	1	4	1	4	2	4	3	3	2	1	1	1	1	3	2
Qus.	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75
Ans.	1	4	2	2	1	3	1	1	1	2	1	3	2	3	2	3	1	4	1	4	1	4	4	3	1
Qus.	76	77	78	79	80	81	82	83	84	85															
Ans.	1	2	3	4	3	1	1	4	2	4															

Q.15	How many grams of	[MP PMT 1999]										
	[1] 40 gms	[2] 4 gms	[3] 16 gms	[4] 12.2 gms								
Q.16	The normality of 0.3	3 M phosphorus acid (H ₃ PO	₃) is		[IIT 1999; AIIMS 2000]							
	[1] 0.1	[2] 0.9	[3] 0.3	[4] 0.6								
Q.17	In the depression o	f freezing point experiment i	it is found that the		[IIT 1999]							
	[1] Vapour pressure	e of the solution is less than	that of pure solven	t								
	[2] Vapour pressure of the solution is more than that of pure solvent											
	[3] Only solute molecules solidlfy at the freezing point											
	[4] Only solvent mo	elecules solidify at the freezi	ng point	,								
Q.18	The rise in the boiling elevation constant of	olvent in 0.1°C. The molal [CPMT 1999]										
	[1] 0.01 K/m	[2] 0.1 K/m	[3] 1 K/m	[4] 10 K/m								
Q.19	The osmotic pressu	ure of 1 m solution at 27°C is	S		[CPMT 1999]							
	[1] 2.46 atm	[2] 24.6 atm	[3] 1.21 atm	[4] 12.1 atm								
2.20	If one mole of a sub	ostance is pr:esent in 1 kg o	f solvent. then	*	[CPMT 1996]							
	[1] It shows molar o	oncentration	[2] It shows mola									
	[3] It shows normal	ity	[4] It shows stre	ength gm/ gm								
).21	Van't Hoff factor of	Ca(NO ₃) ₂ is			[CPMT 1997]							
	[1] I	[2] 2	[3] 3	[4] 4								
).22	• .	water (100°C) becomes 10 ar weight of solute is (K _b for	V // FV	of a nonvolatile solu	te is dissolved in 200 ml of [AIIMS 1998]							
	[1] 12.2 g/mol	[2] 15.4 g/mol	[3] 17.3 g/mol	[4] 20.4 g/mol								
1.23	With 63 gm of oxali	ic acid how many litres of $\frac{1}{10}$	solution can be p	orepared	[Rajasthan PET 1999]							
	[1] 100 litre	[2] 10 litre	[3] 1 litre	[4] 1000 litre								
24		HCl will be present in 150m			[Rajasthan PET 1999]							
	[1] 2.136 gm				[Najastilaii FET 1999]							
25		[2] 5.70 gm re lowering caused by the a	[3] 8.50 gm	[4] 3.65 gm	mass = 342) to 1000 a of							
(.25	water if the vapour	[RPET 1999]										
	[1] 1.25 mm Hg	[2] 0.125 mm Hg	[3] 1.15 mm Hg	[4] 00.12 mm Hg								
.26		ing is a colligative property			[AIIMS 1999]							
	[1] Viscosity	[2] Surface tension	[3] Refractive in	dex [4] Osmotic pre								
.27		ing does not show positive d			[MP PMT 2000]							
	[1] Benzene-Chloro											
	[3] Benzene-Ethano		[2] Benzene-Ace	bon tetrachloride								
.28	A mixture has 18g v mixture)	vater and 414g ethanol. The	mole fraction of wat	ter in mixture is (ass	ume ideal behaviour of the [MP PMT 2000]							
	[1] 0.1	[2] 0.4	[3] 0.7	[4] 0.9								
2.29		rre of a solvent A is 0.80 atmosphere of a solvent A is 0.80 atm. What is mole			s added to this solvent its [MP PMT 2000, 01]							
	[1] 0.25	[2] 0.50	(e) 0.75	[4] 0.90								

Q.30	A solution of T molal col	icentration of a solute w	ili nave maximum	bolling point eleva	ation when the solvent is					
	[1] Ethyl alcohol	[2] Acetone	[3] Benzene	[4] Chloroform	[MP PMT 2000]					
Q.31		solution was found to b		•	ol. mass = 58) at 298K. The eight of the solute is (vapour [CPMT 2001; CBSE 2001]					
	[1] 25.24	[2] 35.24	[3] 45.24	[4] 55.24						
Q.32	What is molarity of a so	lution of HCI which cont	ains 49% by weigl	ht of solute and w	hose specific gravity is 1.41					
	[1] 15.25	[2] 16.75	[3] 18.92	[4] 20.08	[CPMT 2001; CBSE 2001]					
Q.33	Which of the following d	oes not show negative d	eviation from Rao	ult's law	[MP PMT 2001]					
	[1] Acetone-Chloroform		[2] Acetone-Ben	nzene						
	[3] Chloroform-Ether		[4] Chloroform-B	Benzene						
Q.34	171 g of cane sugar (C ₁	₂ H ₂₂ O ₁₁) is dissolved in	1 litre of water. Th	he molarity of the	solution is [MP PMT 2001]					
	[1] 2.0 M	[2] 1.0 M	[3] 0.5 M	[4] 0.25 M	O *					
Q.35	What is the molarity of H	I ₂ SO ₄ solution, that has	a density 1.84 gm/	cc at 35°C and co	ontains solute 98% by weight					
	[1] 4.18 M	[2] 8.14 M	[3] 18.4 M	[4] 18 M	[AIIMS 2001]					
Q.36	0.440 g of a substance molecular mass of the s			ne freezing point o	of benzene by 0.567°C. The [BHU 2001; CPMT 2001]					
	[1] 178.9	[2] 177.8	[3] 176.7	[4] 175.6						
Q.37		ne sugar (mol. wt. 342) i		<i>*</i>	other solution is obtained by emperature. The lowering of [CPMT 2001]					
	[1] Same as that of 2 nd	solution	[2] Nearly one-fi	ifth of the 2 nd solu	tion					
	[3] Double that of 2 nd so	olution	[4] Nearly five ti	mes that of 2 nd so	olution					
Q.38	Value of gas constant R	t is			[AIEEE 2002]					
	[1] 0.082 litre atm	[2] 0.987 cal mol ⁻¹ K ⁻	⁻¹ [3] 8.3Jmol ⁻¹ K ⁻	⁻¹ [4] 83 erg mol ^{–1}	K ⁻¹					
Q.39	Freezing point of an aqu $K_b = 0.512^{\circ}$ find the incr)°C. Elevation of b	oiling point of the s	same solution is $K_f = 1.86$ °C. [AIEEE 2002]					
	[1] 0.186°C	[2] 0.0512°C	[3] 0.092°C	[4] 0.02372°C						
Q.40	The boiling point of a so of the pure ether. The m	_	_		to be 0.1°C higher than that [MP PET 2002]					
	[1] 148	[2] 158	[3] 168	[4] 178						
Q.41	With increase of temper	ature, which of these ch	anges		[AIEEE 2002]					
	[1] Molality		[2] Weight fracti							
	[3] Fraction of solute pre	esent in water	[4] Mole fraction	[4] Mole fraction						
Q.42	In mixture A and B comp	oonents show –ve devia	tion as	[AIEEE 2002]						
	[1] $\Delta V_{\text{mix}} > 0$		$[2] \Delta H_{mix} < 0$							
	[3] A-B interaction is we	eaker than A–A and B–E	3 interaction							
	[4] A-B interaction is sti	rong than A-A and B-B	interaction							
Q.43	The vapour pressure of patm. The mole fraction of		On mixing a non-v	volatile B to A, its v	apour pressure becomes 0.6 [MP PET 2002]					
	[1] 0.150	[2] 0.25	[3] 0.50	[4] 0.75						

Q.44	which one of the stateme	ents given below conce	ming properties of	solutions, describes a colliga	ilive enect.
	[1] Boiling point of pure v	vater decreases by the a	addition of ethanol		[AIIMS 2003]
	[2] Vapour pressure of po	ure water decreases by	the addition of nitr	ric acid	
	[3] Vapour pressure of pu	ure benzene decreases	by the addition of r	naphthalene	
	[4] Boiling point of pure b	enzene increases by th	e addition of tolue	ne	
Q.45	25ml of a solution of bari	um hydroxide on titratio	n with a 0.1 molars	solution of hydrochloric acid o	gave a litre value
	of 35 ml. The molarity of	barium hydroxide soluti	on was		[AIEEE 2003]
	[1] 0.07	[2] 0.14	[3] 0.28	[4] 0.35	
Q.46	Liquids A and B form an	ideal solution			[AIEEE 2003]
	[1] The enthalpy of mixin	ig is zero	[2] The entropy of	of mixing is zero	
	[3] The free energy of mi	xing is zero			
	[4] The free energy as w	ell as the entropy of mix	ing are each zero		
Q.47	Pressure cooker reduces	s cooking time for food b	ecause		[AIEEE 2003]
	[1] Heat is more evenly of	distributed in the cooking	g space		
	[2] Boiling point of water	involved in cooking is in	creased	*	
	[3] The higher pressure i	nside the. cooker crush	es the food materi	al	
	[4] Cooking involves che	mical changes helped b	y a rise in tempera	ature	
Q.48			us solution of pho	sphorous acid (H_3PO_3) , the	
	aqueous KOH solution re	·			[AIEEE 2004]
	[1] 60 mL	[2] 20 mL	[3] 40 mL	[4] 10 mL	
Q.49	Which of the following liq	uid pairs shows a positi			[AIEEE 2004]
	[1] Acetone – Chloroform	1	[2] Benzene – m		
	[3] Water – Nitric acid		[4] Water – hydr	ochloric acid	
Q.50	Which one of the following				[AIEEE 2004]
		ns of same molality pre	epared in different	t solvents will have the sam	e freezing point
	depression	4 (2)		MDT I M' II I I	
		X \	•	= MRT, where M is the molari	ty of the solution
			1 M aqueous solut	tion of each compound is	
	BaCl ₂ > KCl > CH ₃ COO		f		ta
0.54				er a solution is proportional to i	
Q.51	1.86 and 0.512 K kg mol			mospheric pressure. If K _f and	[CPMT-2005]
					[CFW11-2003]
0.50	[1] 0.654°C	[2] -0.654°C	[3] 6.54°C	[4] –6.54°C	1,0000
Q.52		·		ressures of the pure hydrocarl ion of pentane in the vapour p	
		_			
0.50	[1] 0.200	[2] 0.549	[3] 0.786	[4] 0.478	[CPMT-2005]
Q.53				i) used for calculating the mo	
	[1] 1 + α	[2] 1 – α	[3] $1 + 2\alpha$		[AIEEE-2005]
Q.54		•	•	our pressure of benzene is 7	
		πιαι vapour pressure of t	penzene at 20°C fo	or a solution containing 78 g o	
	46 g of toluene in torr is				[AIEEE-2005]
	[1] 50	[2] 25	[3] 37.5	[4] 53.5	

Q.55 Equimolar solutions in the same solvent have [AIEEE-2005] [1] Same boiling point but different freezing point [2] Same freezing point but different boiling point [3] Same boiling and same freezing points [4] Different boiling and different freezing points **Q.56** A solution containing 10g per dm³ of urea (molecular mass = 60 g mol^{-1}) is isotonic with a 5% solution of a nonvolatile solute, The molecular mass of this nonvolatile solute is -[CPMT-2006] [1] $350g \text{ mol}^{-1}$ [2] 200g mol⁻¹ $[3] 250g \text{ mol}^{-1}$ $[4] 300g \text{ mol}^{-1}$ Q.57 1.00 g of a non-electrolyte solute (molar mass 250 g mol⁻¹) was dissolved in 51.2g of benzene. If the freezing point depression constant K_f of benzene is 5.12K kg mol⁻¹, the freezing point of benzene will be lowered by [1] 0.5 K [2] 0.2 K [3] 0.4 K [4] 0.3 K Q.58 During osmosis flow of water through a semipermeable membrane is [CPMT-2006] [1] From both sides of semipermeable membrane with unequal flow rates [2] From solution having lower concentration only [3] From solution having higher concentration only [4] From both sides of semipermeable membrane with equal flow rates Q.59 A solution of acetone in ethanol [CPMT-2006] [2] Obeys Raoult's law [1] Behave like a near ideal solution [3] Shows a negative deviation from Raoult's law [4] Shows a positive deviation from Raoult's law **Q.60** 18 g of glucose $(C_6H_{12}O_6)$ is added to 178.2g of water. The vapour pressure of water for this aqueous solution at 100°C is [AIEEE-2006] [3] 752.40 torr [1] 7.60 torr [2] 76.00 torr [4] 759.00 torr Q.61 A 5.25% solution of a substance is isotonic with a 1.5% solution of urea (molar mass = 60 g mol⁻¹) in the same solvent. If the densities of both the solutions are assumed to be equal to 1.0 g cm⁻³, molar mass of the substance will be [AIEEE-2007] [2] 210.0 g mol⁻¹ [1] 105.0 g mol⁻¹ [3] 90.0 g mol⁻¹ [4] 115.0 g mol⁻¹ 5.6t [2] 1.45 The density (in g mL⁻¹) of a 3.60 M sulphuric acid solution that is 29% H₂SO₄ (Molar mass = 98 g mol⁻¹) by mass Q.62 will be [AIEEE-2007] [1] 1.22 [3] 1.64 [4] 1.88

Answer Key

Qus.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
Ans.	1	1	2	2	2	2	2	3	3	2	3	4	3	1	2	4	1	4	2	2	3	3	2	1	2
Qus.	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50
Ans.	4	1	1	1	3	3	3	2	3	3	1	1	3	2	2	3	2	2	2	1	1	2	3	2	3
Qus.	51	52	53	54	55	56	57	58	59	60	61	62													
Ans.	2	4	3	1	3	4	3	1	4	3	2	1													