

Q.1	A gas X at 1 atm is bubbled through a solu	ution containing a mixture	e of 1 MY ⁻ and 1 M Z ⁻ at 25°C. If
	the reduction potential of $Z > Y > X$, then	-	
	[1] Y will oxidize X and not Z	[2] Y will oxidize Z and	I not X
	[3] Y will oxidize both X and Z	[4] Y will reduce both >	K and Z
Q.2	Zinc displaces copper from the solution of	its salt because-	
	[1] Atomic number of zinc Is more than the	at of copper	
	[2] Zinc salt is more soluble in water than	the copper salt	
	[3] Gibbs free energy of zinc is less than t	hat of copper	
	[4] Zinc is placed higher than copper in ele	ectrochemical series	
Q.3	In the electrochemical cell H ₂ (g) 1 atom I statements is true	H ⁺ (1 M) I I Cu ²⁺ (1 M) I	Cu(s) Which one of the following
	[1] H ₂ is cathode; Cu is anode	[2] Oxidation occurs at	Cu electrode
	[3] Reduction occurs at H ₂ electrode	[4] H ₂ is anode; Cu is	cathode
Q.4	Which of the following statements about ga	Ivanic cell is incorrect	
	[1] Anode is positive		N
	[2] Oxidation occurs at the electrode with lo	ower reduction potential	
	[3] Cathode is positive		
	[4] Reduction occurs at cathode		
Q.5	One of the following is false for Hg		
	[1] It can evolve hydrogen from H ₂ S	[2] It is a metal	
	[3] It has high specific heat	[4] It is less reactive th	an hydrogen
Q.6	When a lead storage battery is discharged		
	[1] SO ₂ is evolved	[2] Lead sulphate is co	nsumed
	[3] Lead is formed	[4] Sulphuric acid is co	onsumed
Q.7	The values of the standard oxidation potent		
	$Zn \rightarrow Zn^{2+} + 2e^{-}$, $E^{\circ} = + 0.762 V$		
	$\label{eq:Cu} \mbox{Cu} \rightarrow \mbox{Cu}^{2+} + 2 e^{-} \; , \qquad \mbox{E}^{0} = - \; 0.345 \; \mbox{V}$	$\label{eq:Ag} Ag \rightarrow Ag^{+} + e^{-} ,$	$E^{\circ} = -0.800 V$
	Which one of the following is most easily r		
		[3] Cu ²⁺	[4] Ag ⁺¹
Q.8	The reaction $Zn^{2+} + 2e^- \rightarrow Zn$ has a stand		
	[1] Zn can't replace hydrogen from acids		
		[4] Zn ²⁺ is a reducing a	-
Q.9	KCI cannot be used as a salt bridge for the	e cell Cu(s) I CuSO ₄ (aq)	II AgNO ₃ I Ag(s) because
	[1] CuCl ₂ gets precipitated	[2] Cl ₂ gas is evolved	
	[3] AgCI gets precipitated	[4] None of the above	
Q.10	Of the following metals that cannot be obtain		-
• • •	[1] Ag and Mg [2] Ag and Al	[3] Mg and Al	[4] Cu and Cr
Q.11	A solution of sodium sulphate in water is elecand anode are respectively		
	[1] H ₂ , O ₂ [2] O ₂ , H ₂		[4] O ₂ , SO ₂
Q.12	2H ⁺ (aq) + 2e ⁻ \rightarrow H ₂ (g). Standard electrod		
	[1] 0 [2] +1	[3] –1	[4] None of these

[1] Cl ⁻ is oxidized at anode[2] Cl ⁻ is reduced at anode[3] Cl ⁻ is reduced at cathode[4] Cl ⁻ is neither reduced nor oxidized[3] Cl ⁻ is reduced at cathode[4] Cl ⁻ is neither reduced nor oxidized[3] Cl ⁻ is reduced at cathode[4] Cl ⁻ is neither reduced nor oxidized[3] decreases on dilution slightly[2] dese not change on dilution[3] decreases on dilution[4] depends on density of electrolyte(3] the fall of the following is a poor conductor of electricity[4] KOH(1) CH_2COONa[2] C_2h_2CH[3] NaCl[4] KOH(3) the neither following reaction occurs at the cathode[1] 2OH ⁻ → H ₂ O + O + 2e ⁻ [2] Ag → Ag ⁺ + e ⁻ [3] Fe ²⁺ → Fe ³⁺ + e ⁻ [4] Cu ²⁺ + 2e ⁻ → Cu(3) The art of electroplating was given by[1] Faraday[2] Cl ⁻ II[1] Faraday[2] Cl ⁻ II[3] Thomas Graham[4] Darnell(4) The standard reduction potentials of 4 elements are given below. Which of the following will be the most suitable reducing agent[3] I[4] IV(2.1) E ² value of Mg ²⁺ I Mg, Fe ²⁺ I Fe and Zn ²⁺ I Zn are -2.37 V, -0.44 V and -0.76 V respectively. The correct statement is[3] I Cl ⁻ Cu ²⁺ (1] Mg oxidizes Fe[2] Zn oxidizes. Fe[3] Zn reduces Mg[4] Zn reduces Fe ²⁺ (3] E ² Cu ²⁺ Cu = E ² (Ag ⁺ , Ag)[2] Fe'(Ag ⁺ , Ag)[2] Fe'(Ag ⁺ , Ag)[2] Fe'(Ag ⁺ , Ag)(3] E ² Cu ²⁺ Cu = E ² (Ag ⁺ , Ag)[2] Fe'(Ag ⁺ , Ag)[4] None of these(4) Du ² V = Va ² (Ag ⁺ , Ag)[2] Fe'(Ag ⁺ , Ag)[2] Fe'(Ag ⁺ , Ag)[3] Cu ² V = Cu = [3] Zn<	Q.13	In the electrolysis of N	laCl					
Q.14The conductivity of strong electrolyte[1] increases on dilution[2] does not change on dilution[3] decreases on dilution[4] depends on density of electrolyteQ.15Which of the following is a poor conductor of electricity[1] CH ₃ COONa[2] C ₂ H ₅ OH[3] NaCl[4] KOHQ.16The most durable metal plating on iron to protect against corrosion is[1] nckel plating[2] copper plating[3] It plating[4] zinc platingQ.17Which one of the following reaction occurs at the cathode[1] 2OH → H ₂ O + O + 2e [−] [2] Ag → Ag ⁺ + e [−] [3] Fe ²⁺ → Fe ³⁺ + e [−] [4] Cu ²⁺ + 2e [−] → CuQ.18The art of electroplating was given by[1] Faraday[2] Edison[3] Thomas Graham[4] DanfellQ.19The standard reduction potentials of 4 elements are given below. Which of the following will be the most suitable reducing agentI = - 3.04 ∨II = - 1.90 ∨[1] Mg oxidizes Fe[2] Zn oxidizes. Fe[3] In glaue of Mg ²⁺ I Mg, Fe ²⁺ I Fe and Zn ²⁺ I Zn are (2.3) V, - 0.44 V and - 0.76 V respectively. The correct statement is[1] Mg oxidizes Fe[2] Zn oxidizes. Fe[3] Thomas Graham[4] NoneQ.21Silver from silver nitrate is deposited by corper because[1] Fe ⁰ (Cu ²⁺ , Cu) < E ⁰ (Ag ⁺ , Ag)[2] E ⁰ (Ag ⁺ , Ag) < E ⁰ (Cu ²⁺ , Cu)[3] Fe ⁰ (Cu ²⁺ , Cu) < E ⁰ (Ag ⁺ , Ag)[2] E ⁰ (Ag ⁺ , Ag) < E ⁰ (Cu ²⁺ , Cu)[3] Fe ⁰ (Cu ²⁺ , Cu) < E ⁰ (Ag ⁺ , Ag)[2] E ⁰ (Ag ⁺ , Ag) < E ⁰ (Cu ²⁺ , Cu)[3] Fe ⁰ (Cu ²⁺ , Cu) <		[1] CI ⁻ is oxidized at	anode	[2] Cl ⁻ is reduced at a	Inode			
[1] increases on dilution[2] does not change on dilution[3] decreases on dilution[4] depends on density of electrolyte(3.15) Which of the following is a poor conductor of electricity[1] CH ₂ COONa[1] CH ₂ COONa[2] C ₂ H ₂ OH[3] NaCl[4] Increases on dilution[2] C ₂ H ₂ OH(3) NaCl[4] KOH(3.16) The most durable metal plating on iron to protect against corrosion is[1] nickel plating[2] copper plating(3) tin plating[4] zinc plating(3) The most durable metal plating on iron to protect against corrosion is[1] nickel plating[2] copper plating(3) The most durable metal plating on iron to protect against corrosion is[1] nickel plating[2] copper plating(3) The most durable metal plating on iron to protect against corrosion is[1] nickel plating[2] copper plating(3) The mast durable metal plating on iron to protect against corrosion is[1] The ataday[2] Edison[3] Thomas Graham[4] Daniell(4) The ataday[2] Edison[3] Thomas Graham[4] Daniell(1) Hill[2] H[3] 1[4] IV(2) E ⁶ value of Mg ²⁺ 1 Mg, Fe ²⁺ 1 Fe and Zn ²⁺ 1 Zn are -2.37 V, -0.44 V and -0.76 V respectively. The correct statement is[1] Mg oxidizes Fe[2] no xidizes. Fe [3] Zn reduces Mg[1] Mg oxidizes Fe[2] no xidizes. Fe [3] Zn reduces Mg[2] Fe ²⁺ Cu ²⁺ , Cu) = E ⁶ (Ag ²⁺ , Ag)[2] E ²⁺ (Ag ²⁺ , Ag) < E ⁶ (Cu ²⁺ , Cu)[3] E ⁶ (Cu ²⁺ , Cu) = E ⁶ (Ag ⁴⁺ , Ag)[2] E ²⁺ (Ag ⁴⁺ , Ag) < E ⁶ (Cu ²⁺ , Cu		[3] Cl ⁻ is reduced at	cathode	[4] Cl ⁻ is neither reduced nor oxidized				
[3] decreases on dilution[4] depends on density of electrolyteQ.15Which of the following is a poor conductor of electricity [1] CH ₂ COONa[2] C_2H_0OH [3] NaCl[4] KOHQ.16The most durable metal plating on iron to protect against corrosion is [1] nickel plating[2] copper plating[3] tin plating[4] zinc platingQ.17Which one of the following reaction occurs at the cathode [1] 2OH ⁻ \rightarrow H ₂ O + O + 2e ⁻ [3] Fe ²⁺ \rightarrow Fe ³⁺ + e ⁻ [4] Cu ²⁺ + 2e ⁻ \rightarrow CuQ.18The act of electroplating was given by [1] Faraday[2] Edison[3] Thomas Graham[4] DaniellQ.19The standard reduction potentials of 4 elements are given below. Which of the following will be the most suitable reducing agent $1 = -3.04 \vee$ II = -1.90 \vee III=0 \vee IVIV = 1.90 \vee [1] IIIQ.18E ^o value of Mg ²⁺ I Mg, Fe ²⁺ I Fe and Zn ²⁺ I Zn are + 2.37 \vee , -0.44 \vee and -0.76 \vee respectively. The correct statement is[1] Mg oxidizes Fe[2] Zn oxidizes. Fe[3] Zn reduces Mg[4] Zn reduces Fe ²⁺ Q.21Silver from silver nitrate is deposited by copper because [1] Fe (Cu ²⁺ , Cu) = E ^o (Cu ²⁺ , A)[2] E ^o (Ag ⁺ , Ag)[4] None of theseQ.22The standard reduction potential values of three metallic cations, X, Y. 2 are 0.52, - 3.03 and - 1.18V respectively. The order of reduction potential values of three metallic cations, X, Y. 2 are 0.52, - 3.03 and - 1.18V respectively. The order of reduction potential values of three metallic cations, X, Y. 2 are 0.52, - 3.03 and - 1.18V respectively. The order of reduction potential values of three metallic cations, X, Y. 2 are 0.52, - 3.03 and - 1.18V respectively. The order of reduc	Q.14	The conductivity of str	ong electrolyte					
0.15 Which of the following is a poor conductor of electricity [1] CH ₃ COONa[2] C ₂ H ₅ OH[3] NaCl[4] KOH 0.16 The most durable metal plating on iron to protect against corosion is [1] nickel plating[2] copper plating[3] tin plating[4] zinc plating 0.17 Which one of the following reaction occurs at the cathode [1] 2OH ⁻ → H ₂ O + O + 2e ⁻ [3] Fe ²⁺ → Fe ³⁺ + e ⁻ [2] Ag → Ag ⁺ + e ⁻ [4] Cu ²⁺ + 2e ⁻ → Cu 0.18 The at of electroplating was given by [1] Faraday[2] Edison[3] Thomas Graham[4] Dantell 0.19 The standard reduction potentials of 4 elements are given below. Which of the following will be the most suitable reducing agent I = - 3.04 VII = - 1.90 VIII = 0.VIV = 1.90 V[1] III[2] II[3] I[4] IV 0.20 E ² value of Mg ²⁺ I Mg, Fe ²⁺ I Fe and Zn ²⁺ I Zn are f 2.37 V, - 0.44 V and - 0.76 V respectively. The correct statement is[1] Mg oxidizes Fe[2] Zn oxidizes. Fe[3] Zn reduces Mg[4] Zn reduces Fe ²⁺ 0.21 Silver from silver nitrate is deposited by corper because [1] e ⁰ (Cu ²⁺ , Cu) = E ⁰ (Ag ⁺ , Ag)[4] None of these 0.22 The standard reduction potential values of three metallic cations, X, Y. Z are 0.52, - 3.03 and - 1.18V respectively. The order of reducing power of the corresponding metals is [1] Y > Z > X[2] Cu ² - X ⁻² Z 0.23 Out of Cu, Ag, Fe and Zn, the metal which can displace all others from their salt solution is [1] Y > Z > X[2] Cu ² - X ⁻² Z[3] Z > Y > X[4] Z > X > Y 0.23 Out of Cu, Ag, Fe and Zn, the metal which can dis		[1] increases on dilut	ion slightly	[2] does not change on dilution				
[1] CH ₃ COONa [2] C ₂ H ₅ OH [3] NaCl [4] KOH Q.16 The most durable metal plating on iron to protect against corrosion is [1] nickel plating [2] copper plating [3] tin plating [4] zinc plating Q.17 Which one of the following reaction occurs at the cathode [1] 2OH ⁻ → H ₂ O + O + 2e ⁻ [2] Ag → Ag ⁺ + e ⁻ [3] Fe ²⁺ → Fe ³⁺ + e ⁻ [4] Cu ²⁺ + 2e ⁻ → Cu Q.18 The art of electroplating was given by [1] Faraday [2] Edison [3] Thomas Graham [4] Daniell Q.19 The standard reduction potentials of 4 elements are given below. Which of the following will be the most suitable reducing agent I = - 3.04 V II = - 1.90 V III=0.V IV = 1.90 V [1] III [2] [1] [3] I [4] IV Q.20 E ⁰ value of Mg ²⁺ I Mg, Fe ²⁺ I Fe and Zn ²⁺ I Zn are 2.37 V, - 0.44 V and - 0.76 V respectively. The correct statement is [1] Mg oxidizes Fe [2] Zn oxidizes. Fe [3] Zn reduces Mg [4] Zn reduces Fe ²⁺ Q.21 Silver from silven intrate is deposited by copper because [1] E ⁰ (Cu ²⁺ , Cu) < E ⁰ (Ag ⁺ , Ag) [2] E ⁰ (Ag ⁺ , Ag) < E ⁰ (Cu ²⁺ , Cu) [3] E ⁰ (Cu ²⁺ , Cu) = E ⁰ (Ag ⁺ , Ag) [4] None of these Q.22 The standard reduction potential values of three metallic cations, X, Y. Z are 0.52, - 3.03 and - 1.18V respectively. The order of reducing power of the corresponding metals is [1] Y > Z > X [2] X > Y > Z [3] Z > Y > X [4] Z > X > Y Q.23 Out of Cu, Ag, Fe and Zn, the metal which can displace all others from their salt solution is [1] Ag [2] Cu [3] Zn [4] Fe Q.24 The cell reaction Zn + Cu ²⁺ → Zn ⁺² + Cu is best represented by [1] Cu ² Cu ²⁺ (1) L ² - Zn ⁺² (2) [2] Zu/Zn ⁺² I Cu ⁺² /2Cu [3] Cu ²⁺ /Cu [1] Zn ²⁺ /2n [2] Zn/Zn ⁺² I Cu ²⁺ /2Cu [3] Cu ²⁺ /2Cu [1] Zn ²⁺ /2n [2] Zn/Zn ⁺² I Cu ²⁺ /2Cu [3] Soluble complex of Cu with AgNO ₃ [4] None Q.26 When a copper wire is placed in a solution of AgNO ₃ , the solution acquires blue colour. This is due to the formation of [1] Cu ²⁺² ions [2] Cu + ions [3] Soluble complex of Cu with AgNO ₃ [4] None Q.27 How many faraday are needed t		[3] decreases on dilu	tion	[4] depends on density	y of electrolyte			
Q.16The most durable metal plating on iron to protect against corrosion is[1] nickel plating[2] copper plating[3] tin plating[4] zinc platingQ.17Which one of the following reaction occurs at the cathode[1] 20H ⁻ → H ₂ O + O + 2e ⁻ [2] Ag → Ag ⁺ + e ⁻ [3] Fe ²⁺ → Fe ³⁺ + e ⁻ [4] Cu ²⁺ + 2e ⁻ → CuQ.18The art of electroplating was given by[1] Faraday[2] Edison[3] Thomas Graham[4] DaniellQ.19The standard reduction potentials of 4 elements are given below. Which of the following will be the most suitable reducing agent[4] I = - 1.90 V[V = 1.90 V[1] HI[2] II[3] 1[4] IVQ.20E ⁰ value of Mg ²⁺ I Mg, Fe ²⁺ I Fe and Zn ²⁺ I Zn are (2.37 V, - 0.44 V and - 0.76 V respectively. The correct statement is[3] Zn reduces Mg[4] Zn reduces Fe ²⁺ Q.21Silver from silver nitrate is deposited by copper because[1] Mg oxidizes Fe[2] Zn oxidizes. Fe[3] Zn reduces Mg[4] Zn reduces Fe ²⁺ Q.22The standard reduction potential values of three metallic cations, X, Y. Z are 0.52, - 3.03 and - 1.18V respectively. The order of reducing power of the corresponding metals is[1] Y > Z > X[2] X> Y > Z[3] Zn [4] Y > Z > XQ.23Out of Cu, Ag, Fe and Zn, the inetal which can displace all others from their salt solution is[1] Ag[2] Cu[3] Zn [4] FeQ.24The cell reaction Zn + Cu/r ² → Zn ⁺² + Cu is best represented by[1] Cu/c ⁴ [1] Art ⁴ /2n[2] Zn/Zn ⁺² 1 I Dt/Cu ⁺² [3] Cu ⁺² /Cu 1 I Zn/Zn ⁺² [2] Cu[3] Cu ⁺² /Cu 1 I Zn/Zn ⁺² [2]	Q.15	Which of the following	g is a poor conductor	of electricity				
[1] nickel plating[2] copper plating[3] tin plating[4] zinc platingQ.17Which one of the following reaction occurs at the cathode $(1] 2OH^- \rightarrow H_2O + O + 2e^-$ [2] Ag $\rightarrow Ag^+ + e^-$ [3] Fe ²⁺ \rightarrow Fe ³⁺ + e^-[4] Cu ²⁺ + 2e ⁻ \rightarrow CuQ.18The art of electroplating was given by[1] Faraday[2] Edison[3] Thomas Graham[4] DaniellQ.19The standard reduction potentials of 4 elements are given below. Which of the following will be the most suitable reducing agentI = - 3.04 VII = - 1.90 V[1] III[2] II[3] I[4] IVQ.20E ⁰ value of Mg ²⁺ I Mg, Fe ²⁺ I Fe and Zn ²⁺ I Zn are 2.37 V, - 0.44 V and - 0.76 V respectively. The correct statement is[1] Mg oxidizes Fe[2] Zn oxidizes. Fe[3] Ker from silver nitrate is deposited by copper because[1] Fe' (Cu ²⁺ , Cu) $\in E^0(Ag^+, Ag)$ [3] E ⁰ (Cu ²⁺ , Cu) $\in E^0(Ag^+, Ag)$ [3] E ⁰ (Cu ²⁺ , Cu) $\in E^0(Ag^+, Ag)$ [3] Z > Y > X[4] Z > X > YQ.21C.23Out of Cu, Ag. Fe and Zn, the metal which c and displace all others[1] Ag[2] X > Y > Z[3] Z > Y > X[4] FeQ.24Cu ²⁺ Cu U I Zn/Zn ⁺² [4] Puth ⁺² I I Cu ^{+2/Cu} [3] Cu ^{+2/Cu} I Zn/Zn ⁺² [4] Puth ⁺² I I Cu ^{+2/Cu} [3] Cu ^{+2/Cu} I I Zn/Zn ⁺² [4] Puth ⁺² I I Cu ^{+2/Cu} [3] Cu ^{+2/Cu} I I Zn/Zn ⁺² [4] Puth ⁺² I I Cu ^{+2/Cu} [3] Cu ^{+2/Cu} I I Zn/Zn ⁺² [4] Puth ⁺² I I Cu ^{+2/Cu}		[1] CH ₃ COONa	[2] C ₂ H ₅ OH	[3] NaCl	[4] KOH			
Q.17Which one of the following reaction occurs at the cathode[1] $2OH^- \rightarrow H_2O + O + 2e^-$ [2] $Ag \rightarrow Ag^+ + e^-$ [3] $Fe^{2+} \rightarrow Fe^{3+} + e^-$ [4] $Cu^{2+} + 2e^- \rightarrow Cu$ Q.18The art of electroplating was given by[1] Faraday[2] Edison[3] Thomas Graham[4] DaniellQ.19The standard reduction potentials of 4 elements are given below. Which of the following will be the most suitable reducing agent $I = -3.04 \vee$ $II = -1.90 \vee$ $I = -3.04 \vee$ $II = -1.90 \vee$ [1] III[2] II[3] 1[4] IVQ.20E° value of $Mg^{2+} I Mg$, $Fe^{2+} I Fe and Zn^{2+} I Zn areE^{-2}, Cu) E^{-2} (Cu)[3] E° (Cu2+, Cu) < E°(Ag^+, Ag)[4] Mg oxidizes Fe[2] Zn oxidizes. Fe[3] E° (Cu2+, Cu) < E°(Ag^+, Ag)[4] None of these(2.21[3] E° (Cu2+, Cu) < E°(Ag^+, Ag)[4] None of these(2.22)[4] Ev (Cu2+, Cu) < E°(Ag^+, Ag)[5] E° (Cu2+, Cu) < E° (Ag^+, Ag)[6] I Y > Z > X[7] Y > Z > X[7] Y > Z > X[8] Z N > Y > X[9] Cu Cu2+, Cu + Zn2+ > Zn2+2 + Cu is best represented by[1] Cu/Cu2+1 I Zn2/Zn[3] Cu *2/Cu[3] Zn[4] Fe(2.23)(24) The cell reaction Zn + Cu2+ > Zn2+2 + Cu is best represented by[1] Cu/Cu2+1 I Zn2/Zn[3] Cu *2/Cu[3] Cu *2/Cu[3] Cu *2/Cu[3] Cu *2/Cu[3] Cu *2/Cu[3] Cu *2/Cu[3] Cu $	Q.16	The most durable me	tal plating on iron to p	protect against corrosion	is			
[1] 20H ⁻ → H ₂ O + O + 2e ⁻ [2] Ag → Ag ⁺ + e ⁻ [3] Fe ²⁺ → Fe ³⁺ + e ⁻ [4] Cu ²⁺ + 2e ⁻ → Cu Q.18 The art of electroplating was given by [1] Faraday [2] Edison [3] Thomas Graham [4] Daniell Q.19 The standard reduction potentials of 4 elements are given below. Which of the following will be the most suitable reducing agent I = - 3.04 V II = - 1.90 V III=0.V IV = 1.90 V [1] III [2] II [3] I [4] IV Q.20 E ^o value of Mg ²⁺ I Mg, Fe ²⁺ I Fe and Zn ²⁺ I Zn are 2.37 V, - 0.44 V and - 0.76 V respectively. The correct statement is [1] Mg oxidizes Fe [2] Zn oxidizes. Fe [3] Zn reduces Mg [4] Zn reduces Fe ²⁺ Q.21 Silver from silver nitrate is deposited by copper because [1] E ^o (Cu ²⁺ , Cu) = E ^o (Ag ⁺ , Ag) [2] E ^o (Ag ⁺ , Ag) < E ^o (Cu ²⁺ , Cu) [3] E ^o (Cu ²⁺ , Cu) = E ^o (Ag ⁺ , Ag) [4] None of these Q.22 The standard reduction potential values of three metallic cations, X, Y. Z are 0.52, - 3.03 and - 1.18V respectively. The order of reducing power of the corresponding metals is [1] Y > Z > X [2] X > Y > Z [3] Z > Y > X [4] Z > X > Y Q.23 Out of Cu, Ag, Fe and Zn, the metal which can displace all others from their salt solution is [1] Ag [2] Cu [3] Zn [4] Fe Q.24 The cell reaction Zn + Cu ⁺² → Zn ⁺² + Cu is best represented by [1] Cu/Cu ⁺² I Zn ⁺² Zn [2] X > Y > Z [4] Pt/Zn ⁺² I Cu ⁺² /Cu [3] Cu ⁺² /Cu Zn ⁺² Zn [2] Zn/Zn ⁺² I Pt/Cu ⁺² Q.25 Stronger is cyldizing agent, greater is the [1] Standard reduction potential [2] Standard oxidation potential [3] Ibnic nature [4] None Q.26 When a copper wire is placed in a solution of AgNO ₃ , the solution acquires blue colour. This is due to the formation of [1] Cu ^{4/2} Ions [2] Cu + ions [3] Soluble complex of Cu with AgNO ₃ [4] None Q.27 How many faraday are needed to reduce a mole of MnO ₄ ⁻ to Mn ²⁺ [1] 4 [2] 5 [3] 3 [4] 2 Q.28 Which one of the following will not conduct electricity [1] Crystalline NaCl [2] CuSO ₄ solution		[1] nickel plating	[2] copper plating	[3] tin plating	[4] zinc plating			
[3] $Fe^{2+} \rightarrow Fe^{3+} + e^-$ [4] $Cu^{2+} + 2e^- \rightarrow Cu$ Q.18The art of electroplating was given by [1] Faraday[2] Edison[3] Thomas Graham[4] DaniellQ.19The standard reduction potentials of 4 elements are given below. Which of the following will be the most suitable reducing agent $I = -3.04 V$ II = -1.90 VIII=0.VIV = 1.90 V[1] III[2] II[3] I[4] IVQ.20E ^o value of Mg ²⁺ I Mg, Fe ²⁺ I Fe and Zn ²⁺ I Zn are + 2.37 V, - 0.44 V and - 0.76 V respectively. The correct statement is (1] Mg oxidizes Fe[2] Zn oxidizes. Fe[3] Zn reduces Mg[4] Zn reduces Fe ²⁺ Q.21Silver from silver nitrate is deposited by copper because [1] E ^o (Cu ²⁺ , Cu) < E ^o (Ag ⁺ , Ag)[2] E ^o (Ag ⁺ , Ag) < E ^o (Cu ²⁺ , Cu)[3] E ^o (Cu ²⁺ , Cu) < E ^o (Ag ⁺ , Ag)[4] Se ^o (Cu ²⁺ , Cu)[3] E ^o (Cu ²⁺ , Cu) < E ^o (Ag ⁺ , Ag)[4] Se ^o Three metallic cations, X, Y. Z are 0.52, - 3.03 and - 1.18V respectively. The order of reducing power of the corresponding metals is [1] Y > Z > X[2] X > Y > Z[3] Zn [4] Z > X > YQ.23Otto Gu, Ag, Fe and Zn, the metal which can displace all others from their salt solution is [1] Ag[2] Zn/Zn ⁺² + Cu is best represented by [1] Cu/Cu ⁺² / IZn ⁺² /2n[2] Zn/Zn ⁺² + I Lu ⁺² /Cu[3] Cu ⁺² /(Cu 1] Zn ⁺² /2n[2] Zn/Zn ⁺² + I Lu ⁺² /Cu[3] Ionic nature[4] None(2.25Stronger is oxidizing agent, greater is the [1] Standard reduction potential [3] Ionic nature[2] Cu + ions[3] Soluble complex of Cu with AgNO3[4] None(2.26When a copper wire is placed in a solution of $AgNO_3$, the s	Q.17	Which one of the follo	owing reaction occurs	at the cathode	\sim			
Q.18The art of electroplating was given by [1] Faraday[2] Edison[3] Thomas Graham[4] DaniellQ.19The standard reduction potentials of 4 elements are given below. Which of the following will be the most suitable reducing agentIII = - 1.90 VIII=0.VIV = 1.90 V[1] III[2] II[3] I[4] IVQ.20E° value of Mg ²⁺ I Mg, Fe ²⁺ I Fe and Zn ²⁺ I Zn are - 2.37 V, - 0.44 V and - 0.76 V respectively. The correct statement is[1] Mg oxidizes Fe[2] Zn oxidizes. Fe[3] Zn reduces Mg[4] Zn reduces Fe ²⁺ [3] E° (Cu ²⁺ , Cu) < E°(Ag ⁺ , Ag)[2] E°(Ag ⁺ , Ag) < E° (Cu ²⁺ , Cu)[3] E° (Cu ²⁺ , Cu) < E°(Ag ⁺ , Ag)[4] None of these[4] Du sepectively. The order of reducing power of the corresponding metals is[1] Y > Z > X[2] X × Y > Z[3] Z × Y > X[4] J > X × Y[4] X > X > YQ.23Out of Cu, Ag, Fe and Zn, the metal which can displace all others from their salt solution is [1] Ag[1] Ag[2] Cu[3] Zn[4] PtiZnt ²⁻¹ I Cu ^{1/2} /Cu[3] Cu ^{1/2} /Cu Zn/Znt ²⁻² [4] Standard reduction potential[4] PtiZnt ²⁻¹ I Cu ^{1/2} /Cu[3] Cu ^{1/2} /Cu Zn/Znt ²⁻² [4] Standard reduction potential[5] Stronger is oxidizing agent, greater is the [1] Standard reduction potential[6] J folio nature[4] None[7] Qu ^{1/2} i ons[2] Cu + ions[3] Soluble complex of Cu with AgNO3[4] None[8] A[2] 5[9] Soluble complex of Cu with AgNO3[9] Y = 5[9] Soluble complex of Cu with A								
[1] Faraday [2] Edison [3] Thomas Graham [4] Daniell Q.19 The standard reduction potentials of 4 elements are given below. Which of the following will be the most suitable reducing agent I = -3.04 V I = -1.90 V II=0.V V = 1.90 V [1] II [2] I [3] I [4] V Q.20 E ^o value of Mg ²⁺ I Mg, Fe ²⁺ I Fe and Zn ²⁺ I Zn are + 2.37 V, - 0.44 V and - 0.76 V respectively. The correct statement is [1] Mg oxidizes Fe [2] Zn oxidizes. Fe [3] Zn reduces Mg [4] Zn reduces Fe ²⁺ Q.21 Silver from silver nitrate is deposited by copper because [1] E ^o (Cu ²⁺ , Cu) < E ^o (Ag ⁺ , Ag) [2] E ^o (Ag ⁺ , Ag) < E ^o (Cu ²⁺ , Cu) [3] E ^o (Cu ²⁺ , Cu) = E ^o (Ag ⁺ , Ag) [4] None of these Q.22 The standard reduction potential values of three metallic cations, X, Y. Z are 0.52, - 3.03 and - 1.18V respectively. The order of reducing power of the corresponding metals is [1] Y > Z > X [2] X > Y > Z [3] Z > Y > X [4] Z > X > Y Q.23 Out of Cu, Ag, Fe and Zn, the metal which can displace all others from their salt solution is [1] Ag [2] Cu [3] Zn [4] Fe Q.24 The cell reaction Zn + Cu ⁺² \rightarrow Zn ⁺² + Cu is best represented by [1] Cu/Cu ⁺² I I Zn ² Zn [2] Zn/Zn ⁺² I I Pt/Cu ⁺² Q.25 Stronger is oxidizing agent, greater is the [1] Standard reduction potential [2] Standard oxidation potential [3] Ionic nature [4] None Q.26 When a copper wire is placed in a solution of AgNO ₃ , the solution acquires blue colour. This is due to the formation of [1] Cu ⁺² ions [2] Cu with AgNO ₃ [4] None Q.26 Which one of the following will not conduct electricity [1] A [2] 5 [3] 3 [4] 2 Q.28 Which one of the following will not conduct electricity [1] Crystalline NaCl [2] CuSO ₄ solution		$[3] \operatorname{Fe}^{2+} \to \operatorname{Fe}^{3+} + e^{-1}$	-	$[4] \operatorname{Cu}^{2+} + 2e^- \to \operatorname{Cu}$				
Q.19The standard reduction potentials of 4 elements are given below. Which of the following will be the most suitable reducing agent $I = -3.04 \vee$ $II = -1.90 \vee$ $III = 0.10 \vee$ $IV = 1.90 \vee$ $II = -3.04 \vee$ $II = -1.90 \vee$ $III = 0.10 \vee$ $IV = 1.90 \vee$ $II IIII$ $III = -1.90 \vee$ $III = -1.90 \vee$ $III = -1.90 \vee$ $II IIII$ $III = -1.90 \vee$ $III = -1.90 \vee$ $III = -1.90 \vee$ $III IIII$ $III = -1.90 \vee$ $III = -1.90 \vee$ $III = -1.90 \vee$ $III IIII$ $III IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII$	Q.18	The art of electroplation	ng was given by		C			
suitable reducing agent I = -3.04 V $II = -1.90 V$ $III = 0.V$ $IV = 1.90 V$ $IV = 1.90 V$ $III = -3.04 V$ $II = -1.90 V$ $III = -1.90 V$ $IV = 1.90 V$ $III = -1.90 V$ $III = -1.90 V$ $IV = 1.90 V$ $IV = 1.90$								
	Q.19			ents are given below. Wh	nich of the following will be the most			
Q.20E° value of Mg²+ I Mg, Fe²+ I Fe and Zn²+ I Zn are - 2.37 V, - 0.44 V and - 0.76 V respectively. The correct statement is[1] Mg oxidizes Fe[2] Zn oxidizes. Fe[3] Zn reduces Mg[4] Zn reduces Fe²+Q.21Silver from silver nitrate is deposited by copper because[1] E° (Cu²+, Cu) < E°(Ag⁺, Ag)[2] E°(Ag⁺, Ag) < E° (Cu²+, Cu)[3] E° (Cu²+, Cu) = E° (Ag⁺, Ag)[2] E°(Ag⁺, Ag) < E° (Cu²+, Cu)[3] E° (Cu²+, Cu) = E° (Ag⁺, Ag)[4] None of theseQ.22The standard reduction potential values of three metallic cations, X, Y. Z are 0.52, - 3.03 and - 1.18V respectively. The order of reducing power of the corresponding metals is[1] Y > Z > X[2] X > Y > Z[3] Zn[4] Z > X > Y[2] Cu[3] Zn[4] FeQ.23Out of Cu, Ag, Fe and Zn, the metal which can displace all others from their salt solution is[1] Ag[2] Cu[1] Ag[2] Cu[3] Zn[4] FeQ.24The cell reaction Zn + Cu²² → Zn²² + Cu is best represented by[1] Cu/Cu²² I I Zn²²/Cu[2] Zn/Zn²² I I Cu²²/Cu[3] Cu²²/Cu I Zn²²/Cu[2] Zn/Zn²² I I Cu²²/Cu[3] Cu²²/Cu I Zn²² = Zn²²[4] PtIZn²² I I Pt/Cu²²Q.25Stronger is oxidizing agent, greater is the[1] Standard reduction potential[2] Sudard oxidation potential[3] Soluble complex of Cu with AgNO3[4] NoneQ.26When a copper wire is placed in a solution of AgNO3, the solution acquires blue colour. This is due to the formation of[1] Cu²² ions[2] Cu + ions[3] Soluble complex of Cu with AgNO3[4] NoneQ.26Which one of the following will not		I = - 3.04 V	II = - 1.90 V	III=0.V	IV = 1.90 V			
correct statement is [1] Mg oxidizes Fe [2] Zn oxidizes. Fe [3] Zn reduces Mg [4] Zn reduces Fe ²⁺ Q.21 Silver from silver nitrate is deposited by copper because [1] E ^o (Cu ²⁺ , Cu) $< Eo(Ag+, Ag)$ [2] E ^o (Ag ⁺ , Ag) <[2] C ^o (Ag ⁺ , Ag) <[2] Cu ²⁺ , Cu) [3] E ^o (Cu ²⁺ , Cu) $= Eo (Ag+, Ag)$ [4] None of these Q.22 The standard reduction potential values of three metallic cations, X, Y. Z are 0.52, - 3.03 and - 1.18V respectively. The order of reducing power of the corresponding metals is [1] Y > Z > X [2] X > Y > Z [3] Z > Y > X [4] Z > X > Y Q.23 Out of Cu, Ag, Fe and Zn, the metal which can displace all others from their salt solution is [1] Ag [2] Cu [3] Zn [4] Fe Q.24 The cell reaction Zn + Cu ⁺² \rightarrow Zn ⁺² + Cu is best represented by [1] Cu/Cu ⁺² I I Zn ⁺² /Zn [2] Zn/Zn ⁺² I I Cu ⁺² /Cu [3] Cu ⁺² /Cu I Zn ⁺² /Zn [2] Zn/Zn ⁺² I I Pt/Cu ⁺² Q.25 Stronger is oxidizing agent, greater is the [1] Standard reduction potential [2] Standard oxidation potential [3] Ionio nature [4] None Q.26 When a copper wire is placed in a solution of AgNO ₃ , the solution acquires blue colour. This is due to the formation of [1] Cu ⁺² ions [2] Cu + ions [3] Soluble complex of Cu with AgNO ₃ [4] None Q.27 How many faraday are needed to reduce a mole of MnO ₄ ⁻ to Mn ²⁺ [1] 4 [2] 5 [3] 3 [4] 2 Q.28 Which one of the following will not conduct electricity [1] Crystalline NaCl [2] CuSO ₄ solution		[1]	[2] II	[3]	[4] IV			
Q.21Silver from silver nitrate is deposited by copper because [1] E° (Cu ²⁺ , Cu) < $E^{\circ}(Ag^{+}, Ag)$ [2] $E^{\circ}(Ag^{+}, Ag) < E^{\circ}$ (Cu ²⁺ , Cu) [3] E° (Cu ²⁺ , Cu) = E° (Ag ⁺ , Ag)[4] None of theseQ.22The standard reduction potential values of three metallic cations, X, Y. Z are 0.52, - 3.03 and - 1.18V respectively. The order of reducing power of the corresponding metals is [1] $Y > Z > X$ [2] $X > Y > Z$ [3] $Z > Y > X$ [4] $Z > X > Y$ Q.23Out of Cu, Ag, Fe and Zn, the metal which can displace all others from their salt solution is [1] Ag[2] Cu[3] Zn[4] FeQ.24The cell reaction Zn + Cu ⁺² \rightarrow Zn ⁺² + Cu is best represented by [1] Cu/Cu ⁺² I I Zn ⁺² /Zn[2] Zn/Zn ⁺² I I Cu ⁺² /Cu[3] Cu ⁺² /Cu I I Zn ⁺² /Zn[2] Zn/Zn ⁺² I I Cu ⁺² /Cu[3] Cu ⁺² /Cu I I Zn ^{+2/2} [4] PtIZn ⁺² I I Pt/Cu ⁺² Q.25Stronger is oxidizing agent, greater is the [1] Standard reduction potential [3] Ionic nature[2] Cu + ions [3] Soluble complex of Cu with AgNO3 [4] NoneQ.26When a copper wire is placed in a solution of [1] Cu ⁺² ions [3] Soluble complex of Cu with AgNO3 [4] None[4] NoneQ.27How many faraday are needed to reduce a mole of MnO4 - to Mn2+ [1] 4[2] 5[3] 3[4] 2Q.28Which one of the following will not conduct electricity [1] Crystalline NaCl[2] CuSO4 solution[4] 2	Q.20	-	g, Fe ²⁺ I Fe and Zn ²⁻	+ I Zn are - 2.37 V, - 0.4	4 V and - 0.76 V respectively. The			
[1] E^o (Cu^{2+} , Cu) < E^o (Ag^+ , Ag)[2] E^o (Ag^+ , Ag) < E^o (Cu^{2+} , Cu)[3] E^o (Cu^{2+} , Cu) = E^o (Ag^+ , Ag)[4] None of these Q.22 The standard reduction potential values of three metallic cations, X, Y. Z are 0.52, - 3.03 and - 1.18V respectively. The order of reducing power of the corresponding metals is[1] $Y > Z > X$ [2] $X > Y > Z$ [3] $Z > Y > X$ [4] $Z > X > Y$ Q.23 Out of Cu, Ag, Fe and Zn, the metal which can displace all others from their salt solution is[1] Ag[2] Cu[3] Zn[4] Fe Q.24 The cell reaction Zn + $Cu^{+2} \rightarrow Zn^{+2} + Cu$ is best represented by[1] $Cu/Cu^{+2} I Zn^{+2}/Zn$ [2] $Zn/Zn^{+2} I Cu^{+2}/Cu$ [3] $Cu^{+2}/Cu I Zn/Zn^{+2}$ [4] PtIZn^{+2} I Pt/Cu^{+2} Q.25 Stronger is oxidizing agent, greater is the[1] Standard reduction potential[2] Standard oxidation potential[3] lonic nature[4] None Q.26 When a copper wire is placed in a solution of AgNO ₃ , the solution acquires blue colour. This is due to the formation of[1] Cu^{+2} ions[2] Cu + ions[3] Soluble complex of Cu with $AgNO_3$ [4] None Q.27 How many faraday are needed to reduce a mole of MnO_4^{-1} to Mn^{2+} [1] 4[2] 5[3] 3[4] 2 Q.28 Which one of the following will not conduct electricity[1] Crystalline NaCl[2] CuSO ₄ solution		[1] Mg oxidizes Fe	[2] Zn oxidizes. Fe	[3] Zn reduces Mg	[4] Zn reduces Fe ²⁺			
[3] $E^o (Cu^{2+}, Cu) = E^o (Ag^+, Ag)$ [4] None of these Q.22 The standard reduction potential values of three metallic cations, X, Y. Z are 0.52, - 3.03 and - 1.18V respectively. The order of reducing power of the corresponding metals is [1] Y > Z > X[2] X > Y > Z[3] Z > Y > X[4] Z > X > Y Q.23 Out of Cu, Ag, Fe and Zn, the metal which can displace all others from their salt solution is [1] Ag[2] Cu[3] Zn[4] Fe Q.24 The cell reaction Zn + Cu ⁺² \rightarrow Zn ⁺² + Cu is best represented by [1] Cu/Cu ⁺² 1 Zn ⁺² /Zn[2] Zn/Zn ⁺² 1 Cu ⁺² /Cu[3] Cu ⁺² /Cu 1 Zn/Zn ⁺² [4] PtIZn ⁺² 1 Pt/Cu ⁺² Q.25 Stronger is oxidizing agent, greater is the [1] Standard reduction potential [3] lonic nature[2] Standard oxidation potential [4] None Q.26 When a copper wire is placed in a solution of AgNO3, the solution acquires blue colour. This is due to the formation of [1] Cu ⁺² ions [3] Soluble complex of Cu with AgNO3 [4] None[4] None Q.27 How many faraday are needed to reduce a mole of MnO4 ⁻ to Mn2+ [1] 4[2] 5[3] 3[4] 2 Q.28 Which one of the following will not conduct electricity [1] Crystalline NaCl[2] CuSO4 solution[4] 2	Q.21							
Q.22The standard reduction potential values of three metallic cations, X, Y. Z are 0.52, - 3.03 and - 1.18V respectively. The order of reducing power of the corresponding metals is [1] Y > Z > X[2] X > Y > Z[3] Z > Y > X[4] Z > X > YQ.23Out of Cu, Ag, Fe and Zn, the metal which can displace all others from their salt solution is [1] Ag[2] Cu[3] Zn[4] FeQ.24The cell reaction Zn + Cu ⁺² \rightarrow Zn ⁺² + Cu is best represented by [1] Cu/Cu ⁺² 11 Zn ⁺² /Zn[2] Zn/Zn ⁺² 1 I Cu ⁺² /Cu [3] Cu ⁺² /Cu 1 Zn/Zn ⁺² [4] PtIZn ⁺² I Cu ⁺² /Cu [3] Cu ⁺² /Cu 1 Zn/Zn ⁺² Q.25Stronger is oxidizing agent, greater is the [1] Standard reduction potential [3] lonic nature[2] Standard oxidation potential [4] NoneQ.26When a copper wire is placed in a solution of AgNO3, the solution acquires blue colour. This is due to the formation of [1] Cu ⁺² ions [3] Soluble complex of Cu with AgNO3 [4] None[4] NoneQ.27How many faraday are needed to reduce a mole of MnO4 ⁻ to Mn ²⁺ [1] 4[2] 5[3] 3[4] 2Q.28Which one of the following will not conduct electricity [1] Crystalline NaCl[2] CuSO4 solution					Cu ²⁺ , Cu)			
respectively. The order of reducing power of the corresponding metals is[1] Y > Z > X[2] X > Y > Z[3] Z > Y > X[4] Z > X > YQ.23Out of Cu, Ag, Fe and Zn, the metal which can displace all others from their salt solution is[1] Ag[2] Cu[3] Zn[4] FeQ.24The cell reaction Zn + Cu ⁺² \rightarrow Zn ⁺² + Cu is best represented by[1] Cu/Cu ⁺² I Zn ⁺² /Zn[2] Zn/Zn ⁺² I Cu ⁺² /Cu[3] Cu ⁺² /Cu I Zn/Zn ⁺² [4] PtIZn ⁺² I Pt/Cu ⁺² Q.25Stronger is oxidizing agent, greater is the[1] Standard reduction potential[2] Standard oxidation potential[3] lonic nature[4] NoneQ.26When a copper wire is placed in a solution of AgNO ₃ , the solution acquires blue colour. This is due to the formation of[1] Cu ⁺² ions[2] Cu + ions[3] Soluble complex of Cu with AgNO ₃ [4] NoneQ.27How many faraday are needed to reduce a mole of MnO ₄ ⁻ to Mn ²⁺ [1] 4[2] 5[3] 3[4] 2Q.28Which one of the following will not conduct electricity[1] Crystalline NaCl[2] CuSO ₄ solution	0.22				V Z aro 0.52 2.02 and 1.19\/			
[1] $Y > Z > X$ [2] $X > Y > Z$ [3] $Z > Y > X$ [4] $Z > X > Y$ Q.23Out of Cu, Ag, Fe and Zn, the metal which can displace all others from their salt solution is [1] Ag[2] Cu[3] Zn[4] FeQ.24The cell reaction $Zn + Cu^{+2} \rightarrow Zn^{+2} + Cu$ is best represented by [1] $Cu/Cu^{+2} Zn^{+2}/Zn $ [2] $Zn/Zn^{+2} Cu^{+2}/Cu $ [3] $Cu^{+2}/Cu Zn/Zn^{+2} $ [4] $Pt Zn^{+2} Pt/Cu^{+2}$ Q.25Stronger is oxidizing agent, greater is the [1] Standard reduction potential [3] lonic nature[2] Standard oxidation potential [4] NoneQ.26When a copper wire is placed in a solution of AgNO3, the solution acquires blue colour. This is due to the formation of [1] Cu^{+2} ions[2] $Cu + ions$ [3] Soluble complex of Cu with $AgNO3$ [4] NoneQ.27How many faraday are needed to reduce a mole of MnO_4^- to Mn^{2+} [1] 4 [2] 5 [3] 3 [4] 2 Q.28Which one of the following will not conduct electricity [1] Crystalline NaCl[2] $CuSO_4$ solution	Q.22							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								
Q.24The cell reaction $Zn + Cu^{+2} \rightarrow Zn^{+2} + Cu$ is best represented by [1] $Cu/Cu^{+2} Zn^{+2}/Zn$ [2] $Zn/Zn^{+2} Cu^{+2}/Cu$ [3] $Cu^{+2}/Cu Zn/Zn^{+2}$ [4] $Pt Zn^{+2} Pt/Cu^{+2}$ Q.25Stronger is oxidizing agent, greater is the [1] Standard reduction potential[2] Standard oxidation potential[3] lonic nature[4] NoneQ.26When a copper wire is placed in a solution of AgNO3, the solution acquires blue colour. This is due to the formation of [1] Cu^{+2} ions[2] Cu + ions[3] Soluble complex of Cu with AgNO3[4] NoneQ.27How many faraday are needed to reduce a mole of MnO_4^- to Mn^{2+} [1] 4[2] 5[1] Crystalline NaCl[2] CuSO4 solution	Q.23	Out of Cu, Ag, Fe an	d Zn, the metal which	n can displace all others	from their salt solution is			
$ \begin{bmatrix} 1 \end{bmatrix} Cu/Cu^{+2} 1] Zn^{+2}/Zn & [2] Zn/Zn^{+2} 1 Cu^{+2}/Cu \\ [3] Cu^{+2}/Cu 1] Zn/Zn^{+2} & [4] PtIZn^{+2} 1 Pt/Cu^{+2} \\ \hline \end{tabular} $					[4] Fe			
 [3] Cu⁺²/Cu Zn/Zn⁺² [4] PtlZn⁺² Pt/Cu⁺² Q.25 Stronger is oxidizing agent, greater is the [1] Standard reduction potential [2] Standard oxidation potential [3] Ionic nature [4] None Q.26 When a copper wire is placed in a solution of AgNO₃, the solution acquires blue colour. This is due to the formation of [1] Cu⁺² ions [2] Cu + ions [3] Soluble complex of Cu with AgNO₃ [4] None Q.27 How many faraday are needed to reduce a mole of MnO₄⁻ to Mn²⁺ [1] 4 [2] 5 [3] 3 [4] 2 Q.28 Which one of the following will not conduct electricity [1] Crystalline NaCl [2] CuSO₄ solution 	Q.24							
 Q.25 Stronger is oxidizing agent, greater is the [1] Standard reduction potential [2] Standard oxidation potential [3] Ionic nature [4] None Q.26 When a copper wire is placed in a solution of AgNO₃, the solution acquires blue colour. This is due to the formation of [1] Cu⁺² ions [2] Cu + ions [3] Soluble complex of Cu with AgNO₃ [4] None Q.27 How many faraday are needed to reduce a mole of MnO₄⁻ to Mn²⁺ [1] 4 [2] 5 [3] 3 [4] 2 Q.28 Which one of the following will not conduct electricity [1] Crystalline NaCl [2] CuSO₄ solution 					I			
[1] Standard reduction potential [2] Standard oxidation potential [3] Ionic nature [4] None Q.26 When a copper wire is placed in a solution of AgNO3, the solution acquires blue colour. This is due to the formation of [1] Cu ⁺² ions [2] Cu + ions [3] Soluble complex of Cu with AgNO3 [4] None Q.27 How many faraday are needed to reduce a mole of MnO4 ⁻ to Mn ²⁺ [1] 4 [2] 5 [3] 3 Q.28 Which one of the following will not conduct electricity [1] Crystalline NaCl [2] CuSO4 solution	0.25							
 [3] Ionic nature [4] None Q.26 When a copper wire is placed in a solution of AgNO₃, the solution acquires blue colour. This is due to the formation of [1] Cu⁺² ions [2] Cu + ions [3] Soluble complex of Cu with AgNO₃ [4] None Q.27 How many faraday are needed to reduce a mole of MnO₄⁻ to Mn²⁺ [1] 4 [2] 5 [3] 3 [4] 2 Q.28 Which one of the following will not conduct electricity [1] Crystalline NaCl [2] CuSO₄ solution 	Q.20			[2] Standard oxidation	potential			
the formation of [2] Cu + ions [1] Cu ⁺² ions [2] Cu + ions [3] Soluble complex of Cu with AgNO3 [4] None Q.27 How many faraday are needed to reduce a mole of MnO4 ⁻ to Mn ²⁺ [1] 4 [2] 5 [3] 3 Q.28 Which one of the following will not conduct electricity [4] Crystalline NaCl					P o contrast			
[1] Cu^{+2} ions[2] $Cu + ions$ [3] Soluble complex of Cu with $AgNO_3$ [4] NoneQ.27How many faraday are needed to reduce a mole of MnO_4^- to Mn^{2+} [1] 4[2] 5[3] 3Q.28Which one of the following will not conduct electricity[1] Crystalline NaCl[2] $CuSO_4$ solution	Q.26		s placed in a solution	of $AgNO_3$, the solution a	acquires blue colour. This is due to			
 Q.27 How many faraday are needed to reduce a mole of MnO₄⁻ to Mn²⁺ [1] 4 [2] 5 [3] 3 [4] 2 Q.28 Which one of the following will not conduct electricity [1] Crystalline NaCl [2] CuSO₄ solution 				[2] Cu + ions				
[1] 4 [2] 5 [3] 3 [4] 2 Q.28 Which one of the following will not conduct electricity [2] CuSO ₄ solution		[3] Soluble complex of	of Cu with AgNO ₃	[4] None				
Q.28 Which one of the following will not conduct electricity [1] Crystalline NaCl [2] CuSO ₄ solution	Q.27	How many faraday ar	e needed to reduce a	a mole of MnO ₄ ⁻ to Mn ²⁴	-			
[1] Crystalline NaCl [2] CuSO ₄ solution	• • • =				[4] 2			
	Q.28		wing will not conduct					
					a defects			
				tal mach crystal having	1 4515613			

Q.29	The relationship between equivalent condu solution is	activity (Λ), specific condu	uctivity (K) and normality (xN) of a
	[1] K = $\frac{1000 \times x}{\Lambda}$ [2] $\Lambda = \frac{1000 \times K}{x}$	$[3] \Lambda = \frac{K}{1000 \times x}$	$[4] \frac{\Lambda}{1000 \times x}$
Q.30	The cell constant is the product of resistan	ce and	
	[1] conductance	[2] molar conductance	
	[3] specific conductance	[4] specific resistance	
Q.31	The cell reaction for the cell $Zn + Zn^{2+}$ (1.	0M) Cd ²⁺ (1.0 M) Cd	is given by -
	[1] Cd \rightarrow Cd ²⁺ + 2e ⁻	$[2] Zn^{2+} \rightarrow Zn - 2e^{-}$	
	[3] Cd + Zn ²⁺ \rightarrow Zn + Cd ²⁺	$ \begin{array}{l} \mbox{[2] } Zn^{2+} \rightarrow Zn - 2e^{-} \\ \mbox{[4] } Zn + Cd^{2+} \rightarrow Zn^{2+} \end{array} \end{array} $	+ Cd
Q.32	The cell reaction Zn + 2Ag ⁺ \rightarrow Zn ²⁺ + Ag	g is best represented by	
	[1] Ag I Ag ⁺ I Zn I Zn ²⁺	[2] Zn I Zn ²⁺ I I Ag ⁺ I	Ag
	[3] 2Ag Ag ⁺ Zn Zn ²⁺	[4] Zn I Zn ²⁺ I I 2Ag I	Ag ⁺
Q.33	Normal hydrogen electrode (N.H. E.) has b	een assigned as potentia	l of
	[1] 0 volt [2] 1 volt	[3] 10 volt	[4] 100 volt.
Q.34	$E_0 = \frac{RT}{nF}$ In K_{eq} . This is called -		S
	[1] Gibb's equation	[2] Gibb's - Helmholtz	equation
	[3] Nernst's equation	[4] van der Waals equa	ation
Q.35	When electric current is passed through a c cathode and the negative ions towards the		
	[1] The positive and negative ions will move	e towards the anode	
	[2] The positive ions will start moving towa	rds the anode, the negat	ive ions will stop moving
	[3] The negative ions will continue to move	towards the anode and	the positive ions will stop moving
	[4] The positive and negative ions will start	moving randomly	
Q.36	The number of electrons required, to deposit aluminium chloride will be (where N is Avog	•	im (at. wt. = 27) from a solution of
	[1] 1N [2] 2N	. [3] 3N	[4] 4N
Q.37	Which of the following is displaced by Fe	-	
	(a) Ag (b) Hg	(c) Zn	(d) Na
	[1] a, c [2] a, b	[3] b. c	[4] b, d
Q.38	Nernst equation is related with		
	[1] The electrode potential and concentrati	on of ions in the solution	
	[2] Equilibrium constant and concentration	of ions	
	[3] Free energy change and E.M.F. of the	cell	
_	[4] None		
Q.39	Which is responsible for electrical conduct		oride
	[1] Free electrons	[2] Free ions	
0.40	[3] Free molecules	[4] Atoms of sodium an	
Q.40	A standard hydrogen electrode has zero ele		ntial is assumed to be zero
	[1] Hydrogen is easiest to oxidise[3] Hydrogen atom has only one electron		
		[+] Hydrogen is the ligh	

Standard reduction potentials at 25° C of Li⁺ I Li, Ba²⁺ I Ba, Na⁺ I Na and Mg²⁺ I Mg are -3.05, -2.90, Q.41 -2.71 and - 2.37 volt respectively. Which one of the following is the strongest oxidising agent [1] Na⁺ [2] Li⁺ [3] Ba²⁺ [4] Ma²⁺ Q.42 When a solution of an electrolyte is heated the conductance of the solution -[1] Increases because of the electrolyte conducts better [2] Decreases because of the increased heat [3] Decreases because of the dissociation of the electrolyte is suppressed [4] Increases because the electrolyte is dissociated more Q.43 Which of the following aqueous solutions will conduct an electric current quite well [3] Pure water [1] Sugar [2] Glycerol [4] HCI Q.44 The unit of electric charge is equal to [1] Faraday / Avogadro number [2] Faraday x Avogadro number [3] Avogadro number/Faraday [4] None of these Q.45 Solid NaCI is a bad conductor of electricity because [1] Solid NaCl is covalent [2] In solid state there are no ions [3] In solid NaCl, there is no migration of ions [4] In solid NaCl, there are no electrons Water is nonelectrolyte but conducts electricity on dissolving a small amount of Q.46 [1] NaCl [2] Sugar [3] Acetone [4] Oxygen Q.47 A conductance cell was filled with a 0.02 M KCI solution which has a specific conductance of 2.768x10⁻³ ohm⁻¹ cm⁻¹. If its resistance is 82.4 ohm at 25°C, the cell constant is $[2] 0.2281 \text{ cm}^{-1}$. $[3] 0.2821 \text{ cm}^{-1}$ [1] 0.2182 cm⁻¹ [4] 0.2381 cm⁻¹ The resistance of 1 N solution of acetic acid is 250 ohm when measured in a cell of cell constant Q.48 1.15 cm⁻¹. The equivalent conductance (in Ohm⁻¹ cm² equiv⁻¹) of 1 N acetic acid is [1] 4.6 [2] 9.2 [3] 18.4 [4] 0.023 Q.49 The degree of dissociation of an electrolyte does not depends on [2] Catalytic action [1] Nature of electrolyte [3] Dilution [4] Temperature Q.50 The cathodic reaction in electrolysis of dilute sulphuric acid with platinum electrode is [1] Oxidation [2] Reduction [3] Both oxidation and reduction [4] Neutralization

															L.										
Qus.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
Ans.	1	4	4	1	1	4	4	2	3	3	1	1	1	1	2	4	4	1	3	4	1	1	3	2	1
Qus.	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50
Ans.	1	2	1	2	3	4	2	1	3	4	3	2	1	2	2	4	4	1	1	3	1	2	1	2	2

Answer Key

and CI_2 at anode. The electrolytic solution is	
[1] Water [2] H_2SO_4 [3] Aqueous NaCl [4] Aqueous CuCl ₂	
Q.2 During electrolysis all ions move	
[1] In the same direction [2] Toward oppositely charged electrodes	
[3] Do not move [4] None of the above	
Q.3 Which is an electrolyte	
[1] AgNO ₃ solution [2] Ethanol [3] Mercury [4] Sugar solution	
Q.4 In an electrolytic cell current flows from	
[1] Cathode to anode in outer circuit [2] Anode to cathode outside the cell	
[3] Cathode to anode inside the cell [4] None	
Q.5 During electrolysis of fused NaOH, which of the following ions move towards anode	
[1] H ⁺ [2] OH ⁻ [3] Na ⁺ [4] None	
Q.6 The element easiest to reduce is	
[1] Fe [2] Cu [3] Ag [4] Sn	
Q.7 A cell in which electric current is produced by an oxidation reduction process is called	
[1] Voltaic cell [2] Standard cell [3] Reversible cell [4] Concentration cell	
Q.8 The reference electrode is made from	
[1] CuSO ₄ [2] ZnCl ₂ [3] HgCl ₂ [4] Hg ₂ Cl ₂	
Q.9 Arrange the following in the order of their decreasing electrode potentials: Mg, K, Ba, Ca	
[1] K, Ba, Ca, Mg [2] Ba, Ca, K, Mg .[3] Ca, Mg, K, Ba [4] Mg, Ca, Ba, K	
Q.10 Cathodic standard reduction potential minus anodic standard reduction potential is equal to	
[1] Faraday [2] Coulomb [3] Cell potential [4] Ampere	
Q.11 If the electrode potential of four elements P, Q, X, Y are 1.46 V, -0.36 V, 0.00 V and -1.24 V respectities the maximum reactivity is shown by -	vely,
[1] P [2] Q [3] X [4] Y	
Q.12 The standard electrode potential of four elements A, B, C, D are - 3.05, - 1.66, - 0.40, + 0.80 V. high reactivity will be shown by	The
[1] A [2] B [3] C [4] D	
Q.13 The oxidation potential of Mg and AI are + 2.37 and + 1.66 V. The Mg in chemical reactions	
[1] Will be replaced by Al [2] Will replace Al	
[3] Will not be able to replace AI [4] None of these	
Q.14 Electrolysis of salt solution is due to the formation of	
[1] Ions [2] Electrons [3] Acids [4] Oxides	
Q.15 In aqueous solution, strong electrolytes ionize	
[1] Almost completely [2] About 5% [3] About 20% [4] Incompletely	
Q.16 During electrolysis of fused NaCI the reaction that occurs at anode is	
[1] Cl ⁻ ions are oxidized [2] Na ⁺ ions are oxidized	
[3] Cl ⁻ ions are reduced [4] Na ⁺ ions are reduced	
Q.17 Electrolysis of an aqueous solution of NaOH between platinum electrodes yields	
[1] H ₂ at cathode only [2] O ₂ at anode only	
[3] H_2 at cathode, O_2 at anode [4] H_2 at anode, O_2 at cathode	

Exercise # 2

Q.18	Faraday's laws of electrolysis are	e related to the	
	[1] Molecular mass of the electr	olyte [2] Equivalent wei	ght of the electrolyte
	[3] Atomic weight of the cation/a	anion [4] Atomic numbe	r of the cation/anion
Q.19	If m represents mass of a substa electricity is passed then,	ance (equivalent weight E) con	nsumed or produced when quantity Q of
	[1] m ∝ Q [2] m ∝	(1/Q) [3] m ∝ (I/E)	[4] m ∝ Q.E.
Q.20	The unit of electrochemical equiv	alent is	
	[1] Gram [2] Gram	Ampere [3] Gram/Coulomb	[4] Coulomb/Gram
Q.21	The electric charge for electrode	deposition of 1 g equivalent o	f a substance is
	[1] 96500 coulombs per second	[2] One ampere p	er second
	[3] One ampere for one hour	[4] Charge in Fara	adays on one mole of electrons
Q.22	The number of moles of Faraday	s needed to reduce a mole of	Fe ³⁺ to Fe ²⁺ are
	[1] 1 [2] 2	[3] 3	[4] 5
Q.23	Which of the following energy of	changes occur in galvanic cell	<u>-</u>
	[1] Electrical energy \rightarrow Chemica	I energy [2] Chemical ener	$r_{ m gy} ightarrow { m Electrical Energy}$
	[3] Chemical energy \rightarrow Internal e	energy [4] Internal energy	y ightarrow Electrical energy
Q.24	The single electrode potential E of	0.1 M solution of M^+ ions $[E^0 = -2$	2.36 V] is
	[1] + 2.41 [2] - 2.41		[4] + 4.82
Q.25			$1 \text{ Ni} = -0.25 \text{ V}. \text{ E}^{\circ} \text{ for Au}^{3+} \text{ I Au} = 1.50 \text{ V}) \text{ is}$
	[1] 1.25 V [2] - 4.0 V		[4] - 1.75 V
Q.26			$r Cr^{3+}$, $Cr = -0.74 V \& Co^{2+}$, $Co = -0.28V$)-
	[1] - 0.74 - (-0.28) = -0.46 V	[2] -0.74 + (-0.28)	
	[3] -0.28 - (-0.74) = +0.46 V	_	.74) x [3] = + 1.66 V
Q.27	-		be represented in the galvanic cell as
	[1] Ag I AgCI(s) I KCI (soln.) I AgNO	0	
	[2] Pt I H ₂ (g) I HCI(soln.) I AgNO ₃ (
	[0] D + [] (a) [] (a) [] (a - a) (b) (a - a) (a)	I AQ	
	[3] Pt I H ₂ (g) I HCI(soln.) I AgCI(s)		
0.29	[4] Pt I H ₂ (g) I KCI (soln.) I AgCI(s)	I Ag	other acidified forrig chloride are connected
Q.28	[4] Pt I $H_2(g)$ I KCI (soln.) I AgCI(s) The electrolytic cell, one containing	Ag acidified ferrous chloride and and	other acidified ferric chloride are connected
Q.28	[4] Pt I $H_2(g)$ I KCI (soln.) I AgCI(s) The electrolytic cell, one containing in series. The ratio of iron deposited be	Ag acidified ferrous chloride and and	other acidified ferric chloride are connected an electricity is passed through the cells will
Q.28	[4] Pt I $H_2(g)$ I KCI (soln.) I AgCI(s) The electrolytic cell, one containing in series. The ratio of iron deposited	Ag acidified ferrous chloride and and	
Q.28 Q.29	[4] Pt I H ₂ (g) I KCI (soln.) I AgCI(s) The electrolytic cell, one containing in series. The ratio of iron deposited be [1] $3:1$ [2] $2:1$	Ag acidified ferrous chloride and and d at cathodes in the two cells whe [3] 1 : 1	en electricity is passed through the cells will
	[4] Pt I H ₂ (g) I KCI (soln.) I AgCI(s) The electrolytic cell, one containing in series. The ratio of iron deposited be [1] $3:1$ [2] $2:1$ A certain current deposits 0.50 g of sulphate by the same current flowing	I Ag acidified ferrous chloride and and d at cathodes in the two cells whe [3] 1 : 1 hydrogen in 2 hrs. The amount o	en electricity is passed through the cells will [4] 3 : 2 f copper liberated from a solution of copper
Q.29	[4] Pt I H ₂ (g) I KCI (soln.) I AgCI(s) The electrolytic cell, one containing in series. The ratio of iron deposited be [1] $3:1$ [2] $2:1$ A certain current deposits 0.50 g of sulphate by the same current flowin [1] 31.8 g [2] 63.6 g	I Ag acidified ferrous chloride and and d at cathodes in the two cells whe [3] 1 : 1 hydrogen in 2 hrs. The amount o ng for the same time would be g [3] 15.9 g	en electricity is passed through the cells will [4] 3 : 2 f copper liberated from a solution of copper [4] 6.36 g
	[4] Pt I H ₂ (g) I KCI (soln.) I AgCI(s) The electrolytic cell, one containing in series. The ratio of iron deposited be [1] $3:1$ [2] $2:1$ A certain current deposits 0.50 g of sulphate by the same current flowin [1] 31.8 g [2] 63.6 g How long will it take for a current of	I Ag acidified ferrous chloride and and d at cathodes in the two cells whe [3] 1 : 1 hydrogen in 2 hrs. The amount o ng for the same time would be g [3] 15.9 g	en electricity is passed through the cells will [4] 3 : 2 f copper liberated from a solution of copper
Q.29	[4] Pt I H ₂ (g) I KCI (soln.) I AgCI(s) The electrolytic cell, one containing in series. The ratio of iron deposited be [1] $3:1$ [2] $2:1$ A certain current deposits 0.50 g of sulphate by the same current flowin [1] 31.8 g [2] 63.6 g How long will it take for a current of oxygen 8)	I Ag acidified ferrous chloride and and d at cathodes in the two cells whe [3] 1 : 1 hydrogen in 2 hrs. The amount o ng for the same time would be g [3] 15.9 g 3 amperes to decompose 36 g of	[4] 3 : 2 f copper liberated from a solution of copper [4] 6.36 g f water. (Eq. wt. of hydrogen is 1 and that of
Q.29 Q.30	 [4] Pt I H₂(g) I KCI (soln.) I AgCI(s) The electrolytic cell, one containing in series. The ratio of iron deposited be [1] 3 : 1 [2] 2 : 1 A certain current deposits 0.50 g of sulphate by the same current flowin [1] 31.8 g [2] 63.6 g How long will it take for a current of oxygen 8) [1] 36 hrs [2] 18 hrs 	I Ag acidified ferrous chloride and and d at cathodes in the two cells whe [3] 1 : 1 hydrogen in 2 hrs. The amount o ng for the same time would be [3] 15.9 g 3 amperes to decompose 36 g of [3] 9 hrs	[4] 3 : 2 f copper liberated from a solution of copper [4] 6.36 g f water. (Eq. wt. of hydrogen is 1 and that of [4] 4.5 hrs
Q.29	[4] Pt I H ₂ (g) I KCI (soln.) I AgCI(s) The electrolytic cell, one containing in series. The ratio of iron deposited be [1] 3 : 1 [2] 2 : 1 A certain current deposits 0.50 g of sulphate by the same current flowin [1] 31.8 g [2] 63.6 g How long will it take for a current of oxygen 8) [1] 36 hrs [2] 18 hrs For a reaction A (s) + 2B ⁺ \rightarrow A ²⁺	[3] 1 : 1 (3] 1 : 1 (3] 1 : 1 (3] 1 : 1 (4) Addression the two cells when (3] 1 : 1 (5) Addression 2 hrs. The amount of (7) Addression 2 hrs. (7) Addression 2 hrs. (7) Addression 2 hrs (7) Addressio	[4] 3 : 2 f copper liberated from a solution of copper [4] 6.36 g f water. (Eq. wt. of hydrogen is 1 and that of [4] 4.5 hrs be 10 ¹² . The E ^o _{cell} is .
Q.29 Q.30 Q.31	[4] Pt I H ₂ (g) I KCI (soln.) I AgCI(s) The electrolytic cell, one containing in series. The ratio of iron deposited be [1] 3 : 1 [2] 2 : 1 A certain current deposits 0.50 g of sulphate by the same current flowin [1] 31.8 g [2] 63.6 g How long will it take for a current of oxygen 8) [1] 36 hrs [2] 18 hrs For a reaction A (s) + 2B ⁺ \rightarrow A ²⁺ - [1] 36 hours [2] 18 how	I Ag acidified ferrous chloride and and d at cathodes in the two cells whe [3] 1 : 1 hydrogen in 2 hrs. The amount o ng for the same time would be [3] 15.9 g 3 amperes to decompose 36 g of [3] 9 hrs + 2B K_c has been found to urs [3] 9 hours	[4] 3 : 2 f copper liberated from a solution of copper [4] 6.36 g f water. (Eq. wt. of hydrogen is 1 and that of [4] 4.5 hrs
Q.29 Q.30	[4] Pt I H ₂ (g) I KCI (soln.) I AgCI(s) The electrolytic cell, one containing in series. The ratio of iron deposited be [1] 3 : 1 [2] 2 : 1 A certain current deposits 0.50 g of sulphate by the same current flowin [1] 31.8 g [2] 63.6 g How long will it take for a current of oxygen 8) [1] 36 hrs [2] 18 hrs For a reaction A (s) + 2B ⁺ \rightarrow A ²⁺ - [1] 36 hours [2] 18 hours	I Ag acidified ferrous chloride and and d at cathodes in the two cells when [3] 1 : 1 hydrogen in 2 hrs. The amount of ng for the same time would be [3] 15.9 g 3 amperes to decompose 36 g of [3] 9 hrs + 2B K_c has been found to urs [3] 9 hours electrode at 298 K is	[4] 3 : 2 f copper liberated from a solution of copper [4] 6.36 g f water. (Eq. wt. of hydrogen is 1 and that of [4] 4.5 hrs be 10 ¹² . The E ^o _{cell} is . [4] 4.5 hours
Q.29 Q.30 Q.31 Q.32	[4] Pt I H ₂ (g) I KCI (soln.) I AgCI(s) The electrolytic cell, one containing in series. The ratio of iron deposited be [1] 3 : 1 [2] 2 : 1 A certain current deposits 0.50 g of sulphate by the same current flowin [1] 31.8 g [2] 63.6 g How long will it take for a current of oxygen 8) [1] 36 hrs [2] 18 hrs For a reaction A (s) + 2B ⁺ \rightarrow A ²⁺ - [1] 36 hours [2] 18 hou Standard electrode potential NHE 6 [1] 0.05 V [2] 0.1 V	I Ag acidified ferrous chloride and and d at cathodes in the two cells when [3] 1 : 1 hydrogen in 2 hrs. The amount of ng for the same time would be [3] 15.9 g 3 amperes to decompose 36 g of [3] 9 hrs + 2B K _c has been found to urs [3] 9 hours electrode at 298 K is [3] 0.00 V	en electricity is passed through the cells will [4] 3 : 2 f copper liberated from a solution of copper [4] 6.36 g f water. (Eq. wt. of hydrogen is 1 and that of [4] 4.5 hrs be 10^{12} . The E ^o _{cell} is . [4] 4.5 hours [4] 0.11 V
Q.29 Q.30 Q.31	[4] Pt I H ₂ (g) I KCI (soln.) I AgCI(s) The electrolytic cell, one containing in series. The ratio of iron deposited be [1] 3 : 1 [2] 2 : 1 A certain current deposits 0.50 g of sulphate by the same current flowin [1] 31.8 g [2] 63.6 g How long will it take for a current of oxygen 8) [1] 36 hrs [2] 18 hrs For a reaction A (s) + 2B ⁺ \rightarrow A ²⁺ - [1] 36 hours [2] 18 hours Standard electrode potential NHE of [1] 0.05 V [2] 0.1 V The quantity of electricity needed to	I Ag acidified ferrous chloride and and d at cathodes in the two cells when [3] 1 : 1 hydrogen in 2 hrs. The amount of ng for the same time would be [3] 15.9 g 3 amperes to decompose 36 g of [3] 9 hrs + 2B K _c has been found to urs [3] 9 hours electrode at 298 K is [3] 0.00 V	en electricity is passed through the cells will [4] 3 : 2 f copper liberated from a solution of copper [4] 6.36 g f water. (Eq. wt. of hydrogen is 1 and that of [4] 4.5 hrs be 10^{12} . The E ^o _{cell} is . [4] 4.5 hours [4] 0.11 V an element is

Q.34	From the following E ^o	value of half cells		
	(i) A + e \rightarrow A ⁻ ; E ^o = -	-8.24 V	(ii) B^- + e $\rightarrow B^{2-}$; E^0 =	+ 1.25 V
	(iii) C ⁻ + 2e \rightarrow C ³⁻ ;E	° = -1.25 V	(iv) D + 2e \rightarrow D ^{2–} ; E ^o	= + .68 V
	What combination of	two half cells would res	ult in a cell with the largest	potential
	[1] (ii) & (iii)	[2] (ii) & (iv)	[3] (i) & (iii)	[4] (i) & (Iv)
Q.35	-	s 2.8 V, E ^o for ½F ₂ + e ⁻		
	[1] 2.8 V	[2] 1.4 V	[3] –2.8 V	[4] –1:4 V
Q.36			n electrode at pH = 10 will b	
0.27	[1] 0.59 V	[2] - 0.59 V	[3] 0.059 V	[4] - 0.059 V
Q.37	charge on the metal of			al with atomic mass 106.4 g mol ⁻¹ The
	[1] + 4	[2] + 3	[3] + 2	[4] + 1
Q.38			-	nnected in series containing Ag ⁺ , Ca ²⁺ s are liberated at the electrodes is –
	[1] 1 : 2 : 3	[2] 3 : 2 : 1	[3] 6 : 3 : 2	[4] 3 : 4 : 2
Q.39	How many Coulomb c half an hour during ele		ed when 100 mA current is	passed through a solution of AgNO ₃ for
	[1] 108	[2] 180	[3] 1800	[4] 18000
Q.40	On passing 3 ampere	current for 50 minute, 7	1.8 g of metal deposits. The	e equivalent weight of metal
	[1] 20.5	[2] 25.8	[3] 19.3	[4] 30.7
Q.41	E^{0}_{RP} for Fe ⁺² /Fe a Fe ⁺² + Sn \rightarrow Sn ⁺² + I	nd Sn ⁺² /Sn are –0.4 ⁻ e is	4 and -0.14 volt respe	ectively. The standard emf for cell
	[1] + 0.30 V	[2] –0.58 V	[3] + 0.58 V	[4] –0.30 V
Q.42	The hydrogen electro [1] 0.177 V	de is dipped in a solutic [2] - 0.177 V		uction potential of half cell would ::Je [4] 0.059 V
Q.43	The standard reduction electrode potential of		and Cu ²⁺ /Cu + are 0.337 a	and 0.153 V respectively. The standard
	[1] 0.184 V	[2] 0.827 V	[3] 0.521 V	[4] 0.490 V
Q.44	The solution of nickel	sulphate in which nicke	el rod is dipped is diluted to	o 10 times. The potential of nickel
	[1] Decreases by 60 r	nV	[2] Increases by 30 m	V
	[3] Decreases by 30 r	m V	[4] Decreases by 60 V	
Q.45	The standard reduction	on potentials, E ^o , for the	half reactions are	
	$Zn^{2-} + 2e^- \rightarrow E^0 = -$	0.76V		
	$Fe^{2-} + 2e^- \rightarrow E^0 = -$	0.41 V		
	The EMF for the cell r	eaction		
	Fe^{2-} + Zn \rightarrow Zn ²⁺ + F	eis		
	[1] - 0.35 V	[2] + 0.35 V	[3] + 1.17 V	[4] - 1.17 V
Q.46				are - 0.44 and $- 0.14$ volt respectively.
4.10	For the cell reaction:			
		²⁺ the standard emf is		
	[1] + 0.30 V	[2] -0.58 V	[3] + 0.58 V	[4] <i>-</i> 0.30V
	[1] 1 0.00 V			[1] 0.007

Q.47	For the electrochemical cell, M I M ⁺ I X ⁻ I X, E ^o (M ⁺ can deduce that	⁺ /M) = 0.44 V and E ^o (X / X ⁻) = 0.33 V. From this data, one
	[1] M + X \rightarrow M ⁺ + X ⁻ is the spontaneous reaction	[2] $M^+ + X^- \rightarrow M + X$ is the spontaneous reaction
	[3] E _{cell} = 0.77 V	[4] None
Q.48	The values of $\Lambda^{\infty}_{ m eq}$ for NH $_4$ Cl, NaOH and NaCl are r	respectively 149.74, 248.1 and 126.4 $ohm^{-1}cm^{2}equi^{-1}$
	The value of Λ^{∞}_{eq} in NH ₄ OH is	
	[1] 371.44 [2] :	271.44
	[3] 71.44 [4]	It cannot be calculated from the data given
Q.49	The equivalent conductance of 0.001 M acetic acid conductance is 250 hm^{-1} cm ² eq ⁻¹ . What is its de	d is 50 ohm ⁻¹ cm ² etc. The maximum value of equivalent egree of ionization
	[1] 0.2% [2] 2% [3]	20 % [4] Some other value
Q.50	What weight of copper will be deposited by passing	2 faradays of electricity through a cupric salt
	[1] 2.0 g [2] 3.175 g [3]	63.5 g [4] 127.0 g
Q.51	The electrochemical equivalent of silver is 0.00111 8 an aqueous silver nitrate solution for 200 seconds, t	g. When an electric current of 0.5 ampere is passed through the amount of silver deposited is
	[1] 1.118 g [2] 0.1118 g [3]	5.590 g [4] 0.5590 g
Q.52	A current of 9.65 ampere flowing for 10 minutes de mass of the metal is	eposits 3.0 g of the metal which is monovalent the atomic
	[1] 10 [2] 50 [3]	30 [4] 96.5
Q.53	When 96500 coulomb of electricity is passed three deposited will be	rough a copper sulphate solution, the amount of copper
	[1] 0.25 mol (2.) 0.50 mol [3]	1.00 mol [4] 2;00 mol
Q.54	The e.m.f. of the cell in which the following reaction found to be 0.5105 V at 298 K. The standard e.m.f.	$n Zn(s) + Ni^{2+}(a = 1.0)$ $Zn^{2+}(a = 10) + Ni(s)$ occurs, is of the cell is
	[1] 0.5400 [2] 0.4810 V [3]	0.5696 V [4] -0.5105 V
Q.55	The number of coulombs required for the deposition	of 107.870 g of silver is
	[1] 96,500 [2] 48,250 [3]	1,93,000 [4] 10,000
Q.56	When $E^{\circ}_{Ag}+_{Ag} = 0.8$ volt and $E^{\circ}_{Zn}^{2+}_{Zn} = -0.76$ volt	t, which of the following is correct
	[1] Ag ⁺ can be reduced by H ₂ [2].	Ag can oxidise H ₂ into H ⁺
	[3] Zn^{2+} can be reduced by H ₂ [4].	Ag can reduce Zn ²⁺ ion
Q.57	At 298 K, the standard reduction potentials for the for	ollowing half reactions are given as :
	$Zn^{2+}(aq) + 2e^{-} \rightarrow Zn^{2+}(s); -0.762,$ Cr^{3}	$^{3+}(aq) + 3e^- \rightarrow Cr(s); -0.740$
	$2H^+(aq) + 2e^- \rightarrow H_2(g); 0.00,$ Fe ³	³⁺ (aq) + $e^- \rightarrow Fe^{2+}$ (aq) ; + 0.770
	The strongest reducing agent is	
	[1] Zn (s) [2] H ₂ (g) [3]	Cr (s) [4] Fe ²⁺ (aq)
Q.58	The two electrodes of platinum fitted in a conductar each electrode is 0.75 cm ² . The cell constant is	nce cell are 1.5 cm apart while the area of cross section of
	[1] 0.2 cm^{-1} [2] 0.5 cm^{-1} [3]	0.125 cm ⁻¹ [4] 2.0 cm ⁻¹
Q.59	Which of the following will increase the voltage of the	ne cell Sn (s) + 2Ag ⁺ (aq) \rightarrow Sn ²⁺ (aq) + 2 Ag (s)
	[1] Increase in the concentration of Sn^{2+} ions [2]	Increase in the concentration of Ag ⁺ ions
	[3] Increase in the size of silver rod [4]	None

Q.60		uction potentials, E ^o for the mf for the cell reaction Fe ²		= Zn ²⁺ + 2e, E ^o = 0.76 V, Fe = Fe ²⁺ + 2e,					
	[1] – 0.35 V	[2] + 0.35 V	[3] + 1.17 V	[4] – 1.17 V					
Q.61	At 20°C, the standard oxidation potential of Zn and Ag in water are								
	Zn (s) \rightarrow Zn ²⁺ (aq) + 2e ⁻ ; E ^o = 0.76 V, Ag (s) \rightarrow Ag ⁺ (aq) + e ⁻ ; E ^o = -0.80 V								
	Which of the follow	ving reaction actually takes	place						
	[1] Zn ²⁺ (aq) + 2 A	Ag (s) \rightarrow 2 Ag + (aq) + Zn (s) [2] Zn (s) + 2Ag ⁺ (aq)	\rightarrow Zn ²⁺ (aq) + 2 Ag (s)					
	[3] Zn ²⁺ (aq) + 2 A	$Ag (aq) \rightarrow Zn (s) + Ag (s)$	[4] Zn (s) + Ag (s) \rightarrow 2	Zn ²⁺ (aq) + Ag (aq)					
Q.62	The standard elect potential of the cel	•	and Ag ⁺ /Ag are –0.763 V a	and + 0.799 V respectively. The standard					
	[1] 1.56 V	[2] 0.036 V	[3] -1.562 V	[4] 0.799 V					
Q.63		of a cell is Mg(s) + Cu ²⁺ (aq and + 0.34 V respectively. T		the standard reduction potentials of Mg					
	[1] 2.03 V	[2] -2.03 V	[3] + 2.71 V	[4] -2.71 ∨					
Q.64	What weight of co	pper will be deposited by p	assing 2 Faradays of elec	ctricity through a solution of cupric salt -					
	[1] 31.75 g	[2] 63.5 g	[3] 20.0 g	(4) 40.0 g					
Q.65		ic current into a solution o tomic weight of M is 65. Th		reaction at the cathode takes place as: etal is					
	[1] 65	(2) 32.5	[3] 130	, [4] 200					
Q.66	The amount of ele atom of Cu is	ectricity that should be pass	sed through CuSO ₄ solut	tion with Cu electrodes to deposit 0.1 g					
	[1] 9650 coulombs	[2] 96500 coulombs	s [3] 19300 coulombs	[4] 193000 coulombs					
Q.67	A current of 0.5 a equivalent weight of		ugh AgNO ₃ solution for	193 sec. deposited 0.108g of Ag. The					
	[1] 108	[2] 54	[3] 5.4	[4] 10.8					
Q.68	electrolyzed by usi	ing inert electrodes. The va	lue of reduction potentials	NO_3 , $Hg_2(NO_3)_2$, Mg $(NO_3)_2$ is being are Ag/Ag ⁺ = + 0.80, 2Hg/Hg ₂ ²⁺ = 0.79, quence of deposition of metals on the					
	[1] Ag, Mg Hg, Cu	[2] Ag, Hg, Cu	[3] Cu, Hg, Ag, Mg	[4] Mg, Cu, Hg, Ag					
Q.69		ampere is passed through /t. of Cu = 63.5, Faraday =	7	inutes 20 seconds. The amount of Cu					
	[1] 6.35 g	[2] 0.635 g	[3] 0.325 g	[4] 3.175 g					
Q.70		iberates 0.504 g of H_2 in 2 the same time in CuSO ₄ s		of copper can be liberated by the same					
	[1] 31.8 g	[2] 15.9 g	[3] 12.7 g	[4] 63.5 g					
		[] - 3	1-1 3						
			wer Key						
	1 2 3 4 5 3 2 1 2 2	6 7 8 9 10 11 3 1 4 4 3 4		17 18 19 20 21 22 23 24 25 3 2 1 3 4 1 2 2 3					
	26 27 28 29 30	31 32 33 34 35 36	37 38 39 40 41 4	42 43 44 45 46 47 48 49 50					
-	3 3 4 3 1 51 52 53 54 55	1 3 2 1 1 2 56 57 58 59 60 61		2 3 3 2 4 2 2 3 3 67 68 69 70					
	2 2 2 2 1	1 1 4 2 2 2		1 2 3 2					

Г		
Lxercise	#	3

				0	
Q.1	Which of the followi	ng is not true about e.n	n.f. of a cell		[AIIMS 94]
	[1] It is maximum vo	Itage obtainable from t	he cell		
	[2] It is responsible f	for the flow of steady c	urrent in the cell		
	[3] Work calculated	from it is not the maxir	num work obtainable	from the cell	
	[4] It is the potential	difference between two	o electrode when no a	current is flowing in circ	uit
Q.2	The standard reduct	tion potentials for the fo	ollowing half - cell read	ctions are	[BHU 95]
		$E^{\circ} = 0.76 \text{ V}$; Fe \rightarrow Fe	-		
		ell reaction Fe ²⁺ + Zn —			
	[1] <i>–</i> 0.32V		[3] + 1.20 V	[4] –1.20 V	~
Q.3		d E ^o = -0.76 V then hal			
	Zn^{2+} (aq) + $2e^- \rightarrow Z$		·		[BHU 95]
	[1] 0.789V		[3] - 0.698 V	[4] 0.698 V	
Q.4				sulphate for 40 minute	es then the amount o
	deposited zinc on ca				[CPMT 96]
	[1] 40.65gm	[2] 4.065 gm	[3] 0.4056 gm 🌢	[4] 65.04 gm	
Q.5	When 0.04 faraday of	of electricity is passed th	nrough a solution of C	aSO_4 , then the weight c	of Ca ⁺² metal deposited
	at the cathode is -		\sim		[BHU 96]
	[1] 0.2 g	[2] 0.4 g	[3] 0.6 g	[4] 0.8 g	
Q.6	Aluminium is obtaine	ed at cathode when the	molten mixture of Na	$_3$ AIF ₆ and AI $_2$ O $_3$ is elec	trolyzed the compound
	obtained at anode w	vill be-	2		[RPET 96]
	[1] O ₂	[2] OF ₂	[3] F ₂	[4] NaF	
Q.7	The standard potent	tial of the following read	•		
		$Zn \rightarrow Zn^{+2} + 2e^{-1}$	v		
		$Fe^{+2} + 2e^- \rightarrow Fe$	e : E ₀ = - 0.41 V		
		orce (e.m.f) of the cell re	eaction		[RPET 96]
	Fe^{+2} + Zn \rightarrow Zn ⁺² +				
	[1] + 0.35 V	[2] –0.35 V	[3] +1.17 V	[4] –1.17 V	
Q.8		ricity required to depos	sit 0.9 g of aluminium,	when the electrode rea	action is
	$AI^{3+} + 3e^- \rightarrow AI$				[BHU 97]
	[1] 9.65 x 10 ³ C	[2] 1.93 x 10 ⁴ C	[3] 9.65 x 10 ⁴ C	[4] 4.34 x 10 ⁴ C	
Q.9		0,	0	many grams of copper	can be liberated by the
	same current flowing	g for the same time in c	copper sulphate soluti	on-	[AIIMS 98]
	[1]12.7g	[2] 16.0 g	[3] 31.8 9	[4] 63.5 9	
Q.10	•			cm ⁻¹ . The resistance of	-
		ature was found to be 5			[AIIMS 98]
_	[1] 0.0616 cm ⁻¹		[3] 6.16 cm ⁻¹		
Q.11		of chlorine evolved, wh	nen 2A of current is pa	assed for 30 minutes in	
	of NaCl -				[BHU 98]
	[1] 1.32g	[2] 4.56 g	[3] 9.81 g	[4] 12.6 g	

ELECTROCHEMISTRY

				E	
Q.12	If conductivity & relative	e conductivity are equa	I then all constants	s will be	[RPET 99]
	[1] 1	[2] 0	[3] 0.33	[4] 0.40	
Q.13	0.5 Faraday current flo	ws in 1 mole NaCl. How	w many gms CI wil	l be produced	[RPET 99]
	[1] 71 gm	[2] 35.5	[3] 77.5 gm	[4] 17.75 gm	
Q.14	In a cell oxidation & rec	luction are occurring si	multaneously, whe	en would be e.m.f.	[RPET 99]
	[1] + ion	[2] - ion	[3] zero	[4] constant	
Q.15	Process of Galvanizati	on is present in which r	metal		[RPET 99]
	[1] Cu	[2] Zn	[3] AI	[4] Mg	
Q.16			ons are 127 & 76	ohm ⁻¹ cm ⁻¹ eq ⁻¹ re	spectively. Equivalent
	conductance of BaCl ₂				[CPMT 2000]
	[1] 139.5	[2] 101.5	[3] 203	[4] 279	
Q.17				g ²⁺ (aq). If standard red	
	and Cu are - 2.37 and				[AFMC 2000]
0.49	[1] 2.03V	[2] – 2.03 V	[3] 2.71 V	[4] –2.71 V	[A EMC 2004]
Q.18	When a lead battery di	scharges, which of the			[AFMC 2001]
	[1] Pb is formed	2^{-2}		cid is consumed	
0.40	[3] $PbSO_4 \rightarrow Pb^{2+} + S$	-		$_2 \rightarrow Pb + H_2SO_4$	
Q.19	Saturated solution of K		Sait - bridge beca	use	[IIT Scr. 2001]
	[1] Velocity of K ⁺ is gre	0	0		
	 [2] Velocity of NO₃⁻ is [3] Velocities of both K 				
	[4] KNO ₃ is highly solu		the same		
Q.20	The standard cell pote		■ II Cu ²⁺ (ag) Cu g	cell is 1 10 \/	
Q.20	The maximum work ob				[MPPET 2002]
			[2] - 212.30 kilo	ioule	[
	[3] - 318.45 kilo joule	<u> </u>	[4] - 424.60 kilo		
Q.21		reactions occur at the o		charging of a lead stor	age batterv
			<u> </u>		[MPPET 2002]
	[1] $Pb^{2+} + 2e^{-} \rightarrow Pb$		[2] Pb ²⁺ + SO ₄	$^{2-} \rightarrow PbSO_{4}$	
	[1] $Pb^{2+} + 2e^- \rightarrow Pb$ [3] $Pb \rightarrow Pb^{2+} + 2e^-$			$H_2O \rightarrow PbO_2 + 4H^+ + S$	$50_2^{2-} + 2e^{-}$
Q.22	At cathode, the electro	lysis of aqueous Na ₂ S	•		[MPPMT 2002]
	[1] Na	[2] H ₂		[4] SO ₂	
Q.23	In galvanic cell the salt	bridge is used to	Ū.	-	[MPPMT 2002]
	[1] Complete the circui	t	[2] Reduce the	electrical resistance in	the cell
	[3] Separate cathode fr	om anode	[4] Carry salts f	or the chemical reaction	n
Q.24	The reference electrod				[MPPMT 2002]
	[1] ZnCl ₂	[2] CuSO ₄	[3] HgCl ₂	[4] Hg ₂ Cl ₂	
Q.25	EMF of a cell in terms	of reduction potential c	-		[AIEEE 2002]
	$[1] E = E_{left} - E_{right}$	$[2] E = E_{left} + E_{right}$	$[3] E = E_{right} -$	E_{left} [4] $E = -(E_{right} + E_{right})$	E _{left})
	ient light	.e.t ngitt			

[AIEEE 2003]

of electrons transferred in each case respectively is [1] 4, 3, 1, 5 [2] 1, 5, 3, 7 [3] 1, 3, 4, 5 [4] 3, 5, 7, 1 Q.27 Conductivity (unit Siemen's) is directly proportional to area of the vessel and the concentration of the slution in it and is inversely proportional to the length of the vessel then the unit of the constant of proportionality is [AIEEE 2002] [1] Sm mol⁻¹ [2] Sm² mol⁻¹ [3] S⁻²m²mol [4] S²m²mol⁻² Q.28 What will be the emf for the given cell Pt $|H_2(P_1)| H^+(aq) || H_2(P_2)|$ Pt [AIEEE 2002] [1] $\frac{RT}{f} \log \frac{P_1}{P_2}$ [2] $\frac{RT}{2f} \log \frac{P_1}{P_2}$ [3] $\frac{RT}{f} \log \frac{P_2}{P_1}$ [4] None of these Q.29 Which of the following reaction is possible at anode [AIEEE 2002] $[1] 2Cr^{3+} + 7H_2O \rightarrow Cr_2O_7^{2-} + 14H^+$ $[2] \operatorname{F}_2 \to 2 \operatorname{F}^ [3] \ {}^{1\!\!}_{2}\text{O}_2 + 2\text{H}^+ \to \text{H}_2\text{O}$ [4] None of these When the sample of copper with zinc impurity is to be purified by electrolysis, the appropriate electrodes are Q.30 [AIEEE 2002] Catode Anode [1] Pure zinc Pure copper [2] Impure sample Pure copper [3] Impure zinc Impure sample [4] Pure copper Impure sample Q.31 For a cell reaction involving a two-electrons change, the standrard emf of the cell is found to be 0.295V at 25°C. The equilibrium constant of the reaction at 25°C will be : [AIEEE 2003] [2] 29.5 × 10⁻² [1] 1 × 10⁻¹⁰ [3] 10 [4] 1 × 10¹⁰ Q.32 Which one of the following nitrates will leaves behing a metal on strong heating : [AIEEE 2003] [1] Ferric nitrate [2] Copper nitrate [3] Manganese nitrate [4] Silver nitrate Q.33 Sereval blocks of magnesium are fixed to the bottom of a ship to [AIEEE 2003] [1] Keep away the sharks [2] Make the ship lighter [3] Prevent action of water and salt [4] Prevent puncturing b under-sea rocks Q.34 Standard reduction electrode potentials of three metals A, B and C are respectively + 0.5V, -3.0V and -1.2 V. [AIEEE 2003] The reducing powers of these metals are [1] B > C > A [2] A > B > C[3] C > B > A [4] A > C > B Q.35 On the basis of the information available from the reaction $\frac{4}{3}$ Al + O₂ $\rightarrow \frac{2}{3}$ Al₂O₃, $\Delta G = -827$ kJmol⁻¹ of O₂, the minimum mf required to carry out an electrolysis of Al₂O₃

When KMnO₄ acts as an oxidising agent and ultimately forms [MnO₄]⁻², MnO₂, Mn₂O₃, Mn⁺² then the number

Q.26

is $(F = 96500C \text{ mol}^{-1})$ [1] 8.56 V [2] 2.14 V [3] 4.28 V [4] 6.42 V

[AIEEE 2002]

ELECTROCHEMISTRY

Q.36		is of a solution of AgNO osited in the cathode w		of charge pass through t	the electroplating bath, [AIEEE 2003]
	[1] 1.08 g	[2] 10.8 g	[3] 21.6 g	[4] 108g	
Q.37	For the redox reaction				
	Zn(s) + Cu ²⁺ (0.1M) -	→ Zn ²⁺ (1M) + Cu(s) tał	king place in a cell,	$\rm E^{o}_{cell}$ is 1.10 volt. $\rm E_{cell}$	for the cell will be
	$\left(2.303\frac{\mathrm{RT}}{\mathrm{F}}=0.0591\right)-$				[AIEEE 2003]
	[1] 2.14 volt	[2] 1.80 volt	[3] 1.07 volt	(4 0.82 volt	
Q.38	The emf of a Daniel ce	ell at 298K is E ₁ Zn Zn	SO ₄ CuSO ₄ Cu	when the concentration	of $ZnSO_4$ is 1.0 M and
		,	01M) (1.0M)		
				tionship between E ₁ ar	nd E ₂ [IIT 2003]
	[1] $E_2 = 0 \neq E_1$	[2] E ₁ > E ₂	· _		
Q.39				d, the product and its co	
	[1] K_2 MnO ₄ , Purple gr	een	[2] KMnO ₄ , Pur		[IIT 2003]
0.40	[3] Mn ₂ O ₃ , brown	flow of algotrage is from	[4] Mn ₃ O ₄ blacl		[AUMO 2002]
Q.40	•	flow of electrons is from		unada through avtarnal	[AIIMS 2003]
	[1] Cathode to anode in [3] Cathode to anode the second se			node through external s hode through internal s	
Q.41	When lead storage bat			noue through internal s	[MP PET 2003]
Q.41	[1] PbO ₂ is dissolved	ttery is charged	[2] H ₂ SO ₄ is reg	renerated	
	[3] $PbSO_4$ is deposited	d on lead electrode		sited on lead electrode	1
0.40	•				
Q.42	I he standard electrode	e potential of the half ce	ells are given below	,	[CPMT 2003]
Q.42		e potential of the half ce = -7.62 V	ells are given below	,	[CPMT 2003]
Q.42	The standard electrode $Zn^{2+} + 2e^- \rightarrow Zn$; E = $Fe^{2+} + 2e^- \rightarrow Fe$; E =	= -7.62 V	ells are given below	,	[CPMT 2003]
Q.42	$Zn^{2+} + 2e^- \rightarrow Zn$; E = Fe ²⁺ + 2e ⁻ \rightarrow Fe; E =	= -7.62 V	ells are given below		[CPMT 2003]
Q.42	$Zn^{2+} + 2e^- \rightarrow Zn$; E = Fe ²⁺ + 2e ⁻ \rightarrow Fe; E =	= -7.62 V -7.81 V	[3] –0.19 V	[4] +0.19 V	[CPMT 2003]
Q.42 Q.43	$Zn^{2+} + 2e^- \rightarrow Zn$; E = Fe ²⁺ + 2e ⁻ \rightarrow Fe; E = The emf of the cell Fe ²	= −7.62 V −7.81 V $^{2+}$ + Zn → Zn ²⁺ + Fe is [2] −1.54 V			[CPMT 2003] [CPMT 2003]
	$Zn^{2+} + 2e^{-} \rightarrow Zn$; E = Fe ²⁺ + 2e ⁻ → Fe; E = The emf of the cell Fe ² [1] 1.54 V	= −7.62 V −7.81 V ²⁺ + Zn \rightarrow Zn ²⁺ + Fe is [2] −1.54 V ong electrolyte is		[4] +0.19 V	
	$Zn^{2+} + 2e^- \rightarrow Zn$; E = Fe ²⁺ + 2e ⁻ → Fe; E = The emf of the cell Fe ² [1] 1.54 V The conductivity of street	= −7.62 V −7.81 V $^{2+}$ + Zn → Zn ²⁺ + Fe is [2] −1.54 V ong electrolyte is h slighltly	[3] -0.19 V [2] Decrease or	[4] +0.19 V	[CPMT 2003]
	$Zn^{2+} + 2e^- \rightarrow Zn$; E = Fe ²⁺ + 2e ⁻ \rightarrow Fe; E = The emf of the cell Fe ² [1] 1.54 V The conductivity of structure [1] Increase on dilution [3] Does not change w What is 'A' in the follow	= −7.62 V −7.81 V $^{2+}$ + Zn → Zn ²⁺ + Fe is [2] −1.54 V ong electrolyte is h slightly with dilution ving reaction	[3] -0.19 V [2] Decrease or	[4] +0.19 V a dilution	[CPMT 2003]
Q.43	$Zn^{2+} + 2e^- \rightarrow Zn$; E = Fe ²⁺ + 2e ⁻ \rightarrow Fe; E = The emf of the cell Fe ² [1] 1.54 V The conductivity of structure [3] Does not change w What is 'A' in the follow 2Fe ³⁺ (aq) + Sn ²⁺ (aq)	= −7.62 V −7.81 V $^{2+}$ + Zn → Zn ²⁺ + Fe is [2] −1.54 V ong electrolyte is h slightly with dilution ving reaction) → 2Fe ²⁺ (aq) + A	[3] –0.19 V [2] Decrease or [4] Depend upo	[4] +0.19 V a dilution n density of electrolytes	[CPMT 2003] s itself
Q.43 Q.44	$Zn^{2+} + 2e^- \rightarrow Zn$; E = Fe ²⁺ + 2e ⁻ \rightarrow Fe; E = The emf of the cell Fe ² [1] 1.54 V The conductivity of structure [3] Does not change w What is 'A' in the follow 2Fe ³⁺ (aq) + Sn ²⁺ (aq) [1] Sn ³⁺ (aq)	= −7.62 V −7.81 V ²⁺ + Zn → Zn ²⁺ + Fe is [2] −1.54 V ong electrolyte is h slightly with dilution ving reaction) → 2Fe ²⁺ (aq) + A [2] Sn ⁴⁺ (aq)	[3] –0.19 V [2] Decrease or [4] Depend upo [3] Sn ²⁺ (aq)	[4] +0.19 V in dilution in density of electrolytes [4] Sn	[CPMT 2003] s itself [MP PET 2003]
Q.43	$Zn^{2+} + 2e^- \rightarrow Zn$; E = Fe ²⁺ + 2e ⁻ \rightarrow Fe; E = The emf of the cell Fe ² [1] 1.54 V The conductivity of structure [3] Does not change w What is 'A' in the follow 2Fe ³⁺ (aq) + Sn ²⁺ (aq) [1] Sn ³⁺ (aq)	= −7.62 V −7.81 V $^{2+}$ + Zn → Zn ²⁺ + Fe is [2] −1.54 V ong electrolyte is h slightly with dilution ving reaction) → 2Fe ²⁺ (aq) + A [2] Sn ⁴⁺ (aq) for Cr, Mn, Fe and Co a	[3] –0.19 V [2] Decrease or [4] Depend upo [3] Sn ²⁺ (aq) re –0.41, +1.57,+ 0	[4] +0.19 V a dilution n density of electrolytes [4] Sn 9.77 and + 1.97V respec	[CPMT 2003] s itself [MP PET 2003]
Q.43 Q.44	$Zn^{2+} + 2e^- \rightarrow Zn$; E = Fe ²⁺ + 2e ⁻ \rightarrow Fe; E = The emf of the cell Fe ² [1] 1.54 V The conductivity of structure [3] Does not change w What is 'A' in the follow 2Fe ³⁺ (aq) + Sn ²⁺ (aq) [1] Sn ³⁺ (aq) The E ^o _M ³⁺ /M ²⁺ values these metals the chance [1] Co	= −7.62 V −7.81 V $^{2+}$ + Zn → Zn ²⁺ + Fe is [2] −1.54 V ong electrolyte is n slightly rith dilution ving reaction) → 2Fe ²⁺ (aq) + A [2] Sn ⁴⁺ (aq) for Cr, Mn, Fe and Co a ige in oxidation state fr [2] Mn	[3] –0.19 V [2] Decrease or [4] Depend upo [3] Sn ²⁺ (aq) are –0.41, +1.57,+ 0 om +2 to +3 is eas [3] Fe	[4] +0.19 V a dilution n density of electrolytes [4] Sn 0.77 and + 1.97V respectiest? [4] Cr	[CPMT 2003] s itself [MP PET 2003] tively. For which one of [AIEEE 2004]
Q.43 Q.44	$Zn^{2+} + 2e^- \rightarrow Zn$; E = Fe ²⁺ + 2e ⁻ → Fe; E = The emf of the cell Fe ² [1] 1.54 V The conductivity of strue [1] Increase on dilution [3] Does not change w What is 'A' in the follow 2Fe ³⁺ (aq) + Sn ²⁺ (aq) [1] Sn ³⁺ (aq) The E ^o _M 3+ _M 2+ values these metals the chan [1] Co The standard e.m.f. of constant of the reaction	= −7.62 V −7.81 V ²⁺ + Zn → Zn ²⁺ + Fe is [2] −1.54 V ong electrolyte is h slightly with dilution ving reaction) → 2Fe ²⁺ (aq) + A [2] Sn ⁴⁺ (aq) for Cr, Mn, Fe and Co a ige in oxidation state fr [2] Mn f a cell, involving one end on is (F = 96,500 C mol	[3] -0.19 V [2] Decrease or [4] Depend upo [3] $Sn^{2+}(aq)$ or -0.41, +1.57,+0 om +2 to +3 is eas [3] Fe electron change is ⁻¹ ; R = 8.31.4 JK ⁻¹	 [4] +0.19 V in dilution in density of electrolytes [4] Sn 9.77 and + 1.97V respectives [4] Cr [4] Cr found to be 0.591V at ¹ mol⁻¹) 	[CPMT 2003] s itself [MP PET 2003] tively. For which one of [AIEEE 2004]
Q.43 Q.44 Q.45	$Zn^{2+} + 2e^- \rightarrow Zn$; E = Fe ²⁺ + 2e ⁻ → Fe; E = The emf of the cell Fe ² [1] 1.54 V The conductivity of stra [1] Increase on dilution [3] Does not change w What is 'A' in the follow 2Fe ³⁺ (aq) + Sn ²⁺ (aq) [1] Sn ³⁺ (aq) The E ⁰ M ³⁺ /M ²⁺ values these metals the chan [1] Co The standard e.m.f. of	= −7.62 V −7.81 V $^{2+}$ + Zn → Zn ²⁺ + Fe is [2] −1.54 V ong electrolyte is h slightly rith dilution ving reaction) → 2Fe ²⁺ (aq) + A [2] Sn ⁴⁺ (aq) for Cr, Mn, Fe and Co a ige in oxidation state fr [2] Mn f a cell, involving one e	[3] -0.19 V [2] Decrease or [4] Depend upo [3] $Sn^{2+}(aq)$ or -0.41, +1.57,+0 om +2 to +3 is eas [3] Fe electron change is ⁻¹ ; R = 8.31.4 JK ⁻¹	 [4] +0.19 V in dilution in density of electrolytes [4] Sn 9.77 and + 1.97V respectives [4] Cr [4] Cr found to be 0.591V at ¹ mol⁻¹) 	[CPMT 2003] s itself [MP PET 2003] tively. For which one of [AIEEE 2004] 25°C. The equilibrium
Q.43 Q.44 Q.45	$Zn^{2+} + 2e^- \rightarrow Zn$; E = Fe ²⁺ + 2e ⁻ → Fe; E = The emf of the cell Fe ² [1] 1.54 V The conductivity of stra [1] Increase on dilution [3] Does not change w What is 'A' in the follow $2Fe^{3+}$ (aq) + Sn^{2+} (aq) [1] Sn^{3+} (aq) The $E^0_{M^{3+}/M^{2+}}$ values these metals the chan [1] Co The standard e.m.f. of constant of the reaction [1] 1.0 x 10 ³⁰	= −7.62 V −7.81 V ²⁺ + Zn → Zn ²⁺ + Fe is [2] −1.54 V ong electrolyte is n slightly with dilution ving reaction) → 2Fe ²⁺ (aq) + A [2] Sn ⁴⁺ (aq) for Cr, Mn, Fe and Co a ige in oxidation state fr [2] Mn f a cell, involving one e on is (F = 96,500 C mol [2] 1.0 x 10 ⁵	[3] -0.19 V [2] Decrease or [4] Depend upo [3] $Sn^{2+}(aq)$ or -0.41, +1.57,+ 0 or +2 to +3 is eas [3] Fe electron change is ⁻¹ ; R = 8.31.4 JK ⁻¹ [3] 1.0 x 10 ¹⁰	 [4] +0.19 V in dilution in density of electrolytes [4] Sn 9.77 and + 1.97V respectives [4] Cr [4] Cr found to be 0.591V at ¹ mol⁻¹) 	[CPMT 2003] s itself [MP PET 2003] stively. For which one of [AIEEE 2004] 25°C. The equilibrium [AIEEE 2004]
Q.43 Q.44 Q.45 Q.46	$Zn^{2+} + 2e^- \rightarrow Zn$; E = Fe ²⁺ + 2e ⁻ → Fe; E = The emf of the cell Fe ² [1] 1.54 V The conductivity of structure [3] Does not change w What is 'A' in the follow 2Fe ³⁺ (aq) + Sn ²⁺ (aq) [1] Sn ³⁺ (aq) The E ⁰ M ³⁺ /M ²⁺ values these metals the chant [1] Co The standard e.m.f. of constant of the reaction [1] 1.0 x 10 ³⁰ The limiting molar contents	= −7.62 V −7.81 V ²⁺ + Zn → Zn ²⁺ + Fe is [2] −1.54 V ong electrolyte is n slightly with dilution ving reaction) → 2Fe ²⁺ (aq) + A [2] Sn ⁴⁺ (aq) for Cr, Mn, Fe and Co a ige in oxidation state fr [2] Mn f a cell, involving one e on is (F = 96,500 C mol [2] 1.0 x 10 ⁵	[3] –0.19 V [2] Decrease or [4] Depend upo [3] Sn ²⁺ (aq) (are –0.41, +1.57,+ 0 (om +2 to +3 is eas [3] Fe [3] Fe [4] Electron change is [3] Fe [4] Electron change is [3] 1.0 x 10 ¹⁰	[4] +0.19 V in dilution in density of electrolytes [4] Sn 0.77 and + 1.97V respectives [4] Cr found to be 0.591V at 1 mol ⁻¹) [4] 1.0 x 10 ¹ 26, 152 and 150 Scm ² m	[CPMT 2003] s itself [MP PET 2003] tively. For which one of [AIEEE 2004] 25°C. The equilibrium [AIEEE 2004] nol ⁻¹ respectively. The
Q.43 Q.44 Q.45 Q.46	Zn ²⁺ + 2e ⁻ → Zn ; E = Fe ²⁺ + 2e ⁻ → Fe; E = The emf of the cell Fe ² [1] 1.54 V The conductivity of strue [1] Increase on dilution [3] Does not change w What is 'A' in the follow 2Fe ³⁺ (aq) + Sn ²⁺ (aq) [1] Sn ³⁺ (aq) The E ^o _M 3+ _{/M} 2+ values these metals the chan [1] Co The standard e.m.f. of constant of the reaction [1] 1.0 x 10 ³⁰ The limiting molar cond Λ° for NaBr is	= −7.62 V −7.81 V ²⁺ + Zn → Zn ²⁺ + Fe is [2] −1.54 V ong electrolyte is n slightly with dilution ving reaction) → 2Fe ²⁺ (aq) + A [2] Sn ⁴⁺ (aq) for Cr, Mn, Fe and Co a ige in oxidation state fr [2] Mn f a cell, involving one e on is (F = 96,500 C mol [2] 1.0 x 10 ⁵	[3] -0.19 V [2] Decrease or [4] Depend upo [3] $Sn^{2+}(aq)$ or -0.41, +1.57, + 0 om +2 to +3 is eas [3] Fe electron change is ⁻¹ ; R = 8.31.4 JK ⁻¹ [3] 1.0 x 10 ¹⁰ KBr and KCI are 12	[4] +0.19 V a dilution n density of electrolytes [4] Sn 0.77 and + 1.97V respectiest? [4] Cr found to be 0.591V at 1 mol ⁻¹) [4] 1.0 x 10 ¹ 26, 152 and 150 Scm ² m	[CPMT 2003] s itself [MP PET 2003] tively. For which one of [AIEEE 2004] 25°C. The equilibrium [AIEEE 2004] nol ⁻¹ respectively. The

```
ELECTROCHEMISTRY
```

Q.48	In a cell that utillses t compartment, will	the reaction Zn _(s) + 2	$2H^+(aq) \rightarrow Zn^{2+}$	(aq) + H ₂ (g) addition c	f H ₂ SO ₄ to cathode [AIEEE 2004]
	[1] increase the E and s	shift equilibrium to the	left		
	[2] lower the E and shift	t equilibrium to the righ	nt		
	[3] increase the E and s	shift equilibrium to the	right		
	[4] lower the E and shift	t equilibrium to the left			
Q.49	Consider the following E	E ^o values			[AIEEE 2004]
	$E^{o}_{Fe^{3+}/Fe^{2+}} = +0.77V$				
	$E^{o}_{Sn^{2+}/Sn} = -0.14V$				
	Under standard condition				
	$Sn_{(s)}$ + 2Fe ³⁺ (aq) \rightarrow 2F	⁻ e ²⁺ (aq) + Sn ²⁺ (aq) is			\wedge
	[1] 0.63 V	[2] 1.40	[3] 0.91 V	[4] 1.68 V	
Q.50	In a hydrogen-oxygen f	uel cell, combustion of	hydrogen occurs	to	[AIEEE 2004]
	[1] remove adsorbed ox			\sim	
	[2] create potential diffe		o electrodes		
	[3] produce high purity v	water			
	[4] generate heat				
Q.51				m Al ³⁺ solution by a cert is in solution by the san	
	[1] 44.8 L	[2] 22.4 L	[3] 11.2 L	[4] 5.6 L	
Q.52	The highest electrical c	onductivity of the follow	wing aqueous solu	tions is of	[AIEEE 2005]
	[1] 0.1 M acetic acid		[2] 0.1 M chloro		
	[3] 0.1 M fluoroacetic a		[4] 0.1 M difluor		
Q.53	-		0°C to furnish alum	inium metal (at. mass =	27 amu ; 1 Faraday =
	96.500 Coulombs). The	Al ³⁺ + $3e^- \rightarrow Al^0$			
	To prepare 5.12 kg of al		is method would r	oquiro	[AIEEE 2005]
	[1] 5.49 × 10^7 C of electron		[2] 1.83 × 10 ⁷ (
	[3] 5.49 × 10 ⁴ C of elect		[2] 1.03×10^{-10} [4] 5.49×10^{10}		
			[+] 0.+0 × 10	o of cleatholy	
0.54	Electrolyte KCI	5	DAC NaCl		
Q.54	(Scm ² mol ⁻¹) 149.9	145.0 426.2 91	.0 126.5		
	Calculate using approp	oriate molar conductar	nces of the electro	lytes listed above at infi	nite dilution in H ₂ O at
	25°C.				[AIEEE 2005]
	[1] 517.2	[2] 552.7	[3] 390.7	[4] 217.5	
Q.55	A hypothetical electrocl	hemicl cell is shown be	elow		
		$\stackrel{\Theta}{A}$ A ⁺ (xM) $_{B}^{+}$ (yM)			
	The emf measured is +	-	2		[CPMT 2006]
	[1] The cell reaction car [3] $A^+ + B \rightarrow A + B^+$		$[2] A + B^+ \rightarrow A^-$ $[4] A^+ + e^- \rightarrow A^-$		
Q.56	If $E_{Fe^{2+}/Fe}^{\circ} = -0.441 \text{ V}$ a			⁻ of the reaction	
	Will be	Fe + 2 Fe ³⁺ \rightarrow 3Fe ³	27		[CPMT 2006]
	[1] 1.212 V	[2] 0.111 V	[3] 0.330 V	[4] 1.653 V	

The molar conductivities γ°_{NaOAc} and γ°_{HCI} at infinite dilution in water at 25°C are 91.0 and 426.2 S cm²/mol Q.57 respectively. To calculate \wedge°_{HOAc} the additional value requried is [AIEEE 2006] [1] $^{\circ}_{\kappa Cl}$ [2] ^°_{NaOH} [3] ^°_{NaCl} [4] ^_{H₂O} Write-up I [Question 58 to 60] [IIT-2006] $E_0^{\text{reduction}} = 0.8 \text{ V}$ $Ag^+ + e^- \longrightarrow Ag$ $C_{6}H_{12}O_{6} + H_{2}O \longrightarrow C_{6}H_{12}O_{7} + 2H^{+} + 2e^{-} \qquad E_{\text{oxidation}}^{0} = -0.5 \text{ V}$ $[Ag(NH_{3})_{2}]^{+} + e^{-} \longrightarrow Ag + 2NH_{3} \qquad E_{\text{reduction}}^{0} = 0.3 \text{ V}$ $[Ag(NH_3)_2]^+ + e^- \longrightarrow Ag + 2NH_3$ Use $\left(\frac{F}{RT}\right) = 38.9 V^{-1}$ $\begin{array}{c} \mbox{Calculate (In K) for $C_6H_{12}O_6+2Ag^++H_2O\longrightarrow C_6H_{12}O_7+2H^++2Ag$} \\ [1] 16 & [2] 20 & [3] 19 & [4] 18 \end{array}$ Q.58 On adding NH₃ pH of solution increases to 11 then, identify the effect of pH on potential of half-cell Q.59 [2] E_{0x} decreased from E_{0x}^0 by 0.065 [1] E_{ox} increased from E_{ox}^{0} by 0.065 [3] E_{red} increased from E_{red}^0 by 0.065 [4] E_{red} decreased from E_{red}^0 by 0.065 NH₃ is used in this reaction rather than any other base.Select the wrong statement out of the following Q.60 $[1] [Ag(NH_3)_2]^+$ is a weaker oxidizing agent than Ag⁺ [2] NH₃ prevents the decomposition of gluconic acids [3] NH_3 has affected the standard reduction potential of glucose/gluconic acid electrode [4] NH_3 combines with Ag⁺ to form a complex The equivalent conductances of two strong electrolytes at infinite dilution in H₂O (where ions move freely through Q.61 a solution) at 25°C are given below: **[AIEEE 2007]** $\Lambda^{\circ}_{CH_{3}COON_{a}} = 91.0 \, \mathrm{S} \, \mathrm{cm}^{2} \, / \, \mathrm{equiv}$ $\Lambda^{\circ}_{HCl} = 426.2 \,\mathrm{S} \,\mathrm{cm}^2 / \mathrm{equiv}$ What additional information/quantity one needs to calculate Λ° of an aqueous solution of acetic acid ? [1] The limiting equivalent conductance of $H^+(\lambda^{\circ}_{H^+})$ [2] Λ° of chloroacetic acid (CICH₂COOH) [4] Λ° of CH₂COOK [3] Λ° of NaCl The cell Zn | Zn²⁺ (1M) || Cu²⁺ (1M)| Cu $\left(E_{cell}^0 = 1.10V\right)$ was allowed to be completely Q.62 discharged at 298 K. The relative concentration of $Zn^{2\ast}$ to $Cu^{2\ast}$ **[AIEEE 2007]** [1] 1037.3 [2] 9.65 × 10⁴ [3] antilog (24.08) [4] 37.3

AND SMUCHT IN CONT																									
Qus.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
Ans.	3	2	2	2	4	1	1	1	2	2	1	1	1	1	2	1	3	2	3	2	4	2	1	4	3
Qus.	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50
Ans.	3	2	2	1	4	4	4	3	1	2	2	3	2	1	4	3	1	1	2	4	3	4	3	3	4
Qus.	51	52	53	54	55	56	57	58	59	60	61	62								-		-			
Ans.	4	4	1	3	3	1	3	1	1	3	3	1													