

Q.1	The pH of a solution is solution increases :	5.0. An acid is added to	it so that its pH become	s 2.0. The [H ⁺] concentration of the
	[1] 100 times	[2] 1000 times	[3] 2.5 times	[4] 10 times
Q.2	The degree of ionisation	n of 0.1 M HCN solution is	s 0.01%. The ionisation c	onstant of HCN is :
	[1] 10 ⁻⁹	[2] 10 ⁻⁷	[3] 10 ⁻³	[4] 10 ⁻⁵
Q.3	The solubility product o	f a sulphide MS is 3×10^{-10}	$^{-25}$ and that of NS 4 × 10 ⁻⁴	⁴⁰ . In the ammoniacal solution :
	[1] Only NS will precipit	ate	[2] Only MS will precipit	ate
	[3] Neither NS nor MS v	vill precipitate	[4] Both NS and MS wil	l precipitate
Q.4	The solution of NaHCO	, does not give pink colou	r with phenolphthalein. Th	ne reason is :
	[1] The solution is neutr	al	[2] Solution is acidic	
	[3] The pH of the solution	on is more than 8.0	[4] The pH of the solution	on is less than 8
Q.5	At 298 K, the solubility p $M Na_4 OH$ solution. (The	roduct of Zn(OH) ₂ in 10 ⁻¹⁴ degree of dissociation of	. What will be the concent NH₄OH is 50%) :	tration in moles L^{-1} of Zn^{2+} ions in 0.1
	[1] 4 × 10 ⁻¹²	[2] 4 × 10 ⁻¹³	[3] 4 × 10 ⁻¹⁴	$[4] 4 \times 10^{-12}$
Q.6	Which one of the follow	ing factors does not affec	t the ionisation of an elec	trolyte ?
	[1] Dilution	[2] Temperature	[3] Nature of electrolyte	[4] Amount of electric current
Q.7	The ratio of hydrogen ic	ons to hydroxide ions in a	500 ml solution of 0.002	M HNO ₃ is :
	[1] 4 × 10 ⁸ : 1	[2] 1 : 4 × 10 ⁸	[3] 4 × 10⁻ଃ : 1	[4] 1 : 4 × 10 ⁻⁸
Q.8	At 298 K, if the ionic pro	oduct of water is K _w and i	onisation constant is K th	ien :
	[1] K = K _w	[2] 55.55 K = K	[3] K = 55.5 K _w	[4] K = 1.8 K _w
Q.9	AB is a strong electrolyt are mixed together :	e and AC a weak electrol	yte. Both are dissolved in	water separately and their solutions
	[1] The degree of ionisa [3] AB will be precipitate	tion of AC will decreases ed	[2] The degree of ionisa [4] AC will be precipitate	tion of AB will decrease ed
Q.10	The dissociation consta degree of hydrolysis of	nt of acetic acid and hydr potassium cyanide and p	ogen cyanide are 1.8 × 10 otassium acetate are h_1 a	D^{-5} and 3.2×10^{-10} respectively. If the and h_2 respectively then :
	$[1] h_1 > h_2$	$[2] h_1 < h_2$	$[3] h_1 = h_2$	[4] None of these
Q.11	How many times a solu	tion of pH = 2 has higher	acidity then the solution	of pH = 6 ?
	[1] 10000	[2] 12	[3] 400	[4] 4
Q.12	The pH of a soft drink is	3.82. The concentration	of hydrogen ions in it is :	
	[1] 1.96 × 10 ⁻² moles L ⁻	1	[2] 1.96 × 10 ⁻³ moles L ⁻	1
	[3] 1.5 × 10 ⁻⁴ moles L ⁻¹		[4] 1.96 × 10 ⁻¹ moles L ⁻	1
Q.13	1.0 M solution of a mon	oprotic acid is 0.001 perc	cent ionised. The dissocia	ation constant of the acid is :
	[1] 1.0 × 10 ⁻³	[2] 1.0 × 10 ^{−6}	[3] 1.0 × 10⁻ ⁸	[4] 1.0 × 10 ⁻¹⁰
Q.14	pH can be defined as :			
	. 1		K	
	[1] pH = log $\frac{1}{[H^+]}$	[2] pH = log [H ⁺]	$[3] pH = \frac{K_w}{[H^+]}$	[4] $pH = - \log^{[H^+]}$
Q.15	Ag ₂ CrO ₄ is :			
	[1] Mono-bivalent salt	[2] Mono-trivalent salt	[3] Mono-monovalent sal	t [4] Di-trivalent salt
Q.16	The aqueous solution o	f H ₂ S has the equilibrium	: H₂S ==== H⁺ + HS⁻	
	If HCI is added to this so	plution without changing t	emperature then :	
	[1] Concentration of HS	- increases	[2] Concentration of HS	decreases
	[3] Concentration of H ₂ S	decreases	[4] Equilibrium constant	changes

Q.17	0.5 mole of BaCl ₂ is mix	xed with 0.2 mole of $Na_{_3}P$	O ₄ . The maximum numbe	er of moles of $Ba_3(PO_4)_2$ obtained are
	[1] 0.10	[2] 0.20	[3] 0.50	[4] 0.70
Q.18	Which of the following	is a false statement ?		
	[1] At normal temperat	ure pH + pOH = 14		
	[2] For the standardisa	tion of acids, the general	primary standard is Na ₂ C	O ₃ of borax
	[3] At 22º C, [H⁺] [OH⁻]	= 10 ⁻¹⁴		
	[4] Generally the bases	s are standardised by ace	etic acid or borax	
Q.19	At 298 K, the solubility	product of $PbCl_2$ is 1.0 ×	10^{-6} . Solubility of PbCl ₂ i	n moles L⁻¹ is :
	[1] 6.3 × 10 ^{−3}	[2] 1.0 × 10 ⁻³	[3] 3 × 10 ^{−3}	[4] 4.6 × 10 ⁻⁴
Q.20	The salt which shows	cationic hydrolysis is :		
	[1] NH ₄ CN	$[2] (NH_4)_2 SO_4$	[3] KCI	[4] CH ₃ COOK
	- N KOLL			
Q.21	The pH of $\frac{1000}{1000}$ KOH	solution is :		
	[1] 10 ⁻¹¹	[2] 3.0	[3] 11	[4] 2.0
Q.22	Which of the following	is a false statement for a	weak acid ?	Ö
	[1] It dissociates partia	lly	[2] The value of its diss	ociation constant is very low
	[3] The value of its p^{K_a}	is very low	[4] The aqueous solution	on of its sodium salt is basic
Q.23	At 373 K, the ionisatior	n constants of formic acid	and lactic acid are 4×10^{10}	0^{-4} and 2 × 10 ⁻⁴ respectively. What is
	the isohydric concentra	ation of formic acid with 0	.02 N lactic acid ?	
	[1] 0.02 N	[2] 0.04 N	[3] 0.01 N	[4] None of these
Q.24	The dissociation consta	ants of acetic acid and pro	pionic acid are 1.0 × 10⁻⁵ a	and 1.0×10^{-6} respectively. The value
	of p^{K_a} (propionic acid) $- p^{K_a}$ ((Acetic acid) is –	0	
	[1] 10.0	[2] 10-1	[3] 1.0	[4] – 1.0
Q.25	The hydrolysis constar	nts of two salts $M_1 X$ and M_2	M ₂ X formed from strong a	cid and weak base are 10^{-6} and 10^{-3}
	respectively. If $K_{b} = 10^{-1}$	3 for M_3OH then base stre	ength :	
	$[1] M_1 OH < M_2 OH < M_3$	OH	[2] M1OH > M2OH > M3	OH
	$[3] M_3 OH > M_1 OH > M_2$	<u>,</u> OH	[4] None of these	
Q.26	The ionic product of dis	stilled water may be giver		
0.07	[1] [H ₃ O ⁺] ²	[2] [H⁺]² [UH⁻]	[3] [H⁺] [OH⁻]²	$[4] [H_3O^+] + [OH^-]$
Q.27	Flow many grams of Caproduct of CaC_2O_4 is 2	10^{-9} mole ² L ⁻² and m	olecular mass is 128 :	le litre saturated solution ? Solubility
	[1] 0.0064 g	[2] 0.0128 g	[3] 0.0032 g	[4] 0.0640 g
Q.28	The pH of a solution is	6.0. In this solution :		· .
	[1] [H⁺] = 100 [OH⁻]	[2] [H⁺] = 10 [OH⁻]	[3] [H⁺] = [OH⁻]	$[4] [H^+] = \frac{1}{10} [OH^-]$
Q.29	20 ml of 0.1 N hydroc	hloric acid is mixed with	20 ml of 0.1 N potassiur	n hydroxide solution. The pH of the
	resulting solution is :			
	[1] 0.00	[2] 7.00	[3] 2.00	[4] 9.00
Q.30	At 298 K, how many m	illigrams of silver bromide	e can be dissolved in 20 li	tres of water ? $[K_{sp (AgBr)} = 5.0 \times 10^{-13}]$
	(Atomic wt. $Ag = 108$,	Br = 80)		
	[1] 2.66	[2] 3.66	[3] 4.66	[4] None of these
Q.31	The dissociation const ammonium acetate ?	ants of both NH ₄ OH and	CH ₃ COOH are 2.0 × 10 ⁻⁵	. What is the degree of hydrolysis of
	[1] 5 × 10 ^{−6}	[2] 2.0 × 10 ^{−5}	[3] 5 × 10⁻³	[4] None of these

Q.32	The pH of an aqueo	ous solution is zero. This so	lution will be :	
	[1] Basic	[2] Acidic	[3] Neutral	[4] Amphoteric
Q.33	At 25°C what will be carbonate is 4 × 10	• the solubility of silver carbo	onate in 0.1 M Na_2CO_3	solution. At this temperature K_{sp} of silver
	[1] 2 × 10 ⁻⁷	[2] 2 × 10 ⁻⁶	[3] 10 ⁻⁶	[4] 10 ⁻⁷
Q.34	0.5 moles of HCl an pH of the resulting s	d 0.5 moles of CH_3COONa a solution will be : (K _a (CH ₃ CC	are dissolved in water a DOH) = 1.6 × 10⁻⁵)	and the solution is made upto 500 ml. The
	[1] 1.6 × 10⁻⁵	[2] 1.6 × 10 ⁻⁴	[3] 4 × 10 ⁻³	[4] 4 × 10 ⁻²
Q.35	4.0 g of NaOH and solution is :	4.9 g of H_2SO_4 are dissolve	ed in water and the volu	ume is made upto 250 ml. The pH of this
	[1] 7.0	[2] 1.0	[3] 2.0	[4] 12.0
Q.36	[H⁺]/[OH⁻] in 0.25 N	I H ₂ SO ₄ is :		
	[1] 6.25 × 10 ¹²	[2] 5 × 10 ¹³	[3] 6.25 × 10 ⁻¹²	[4] 5 × 10 ^{−13}
Q.37	Select the incorrect	t statement :		
	[1] pH of 500 ml 0.0)01 N HNO, is 3.0	[2] pH of 500 ml of	0.001 N HNO, is 4 – log 5
	[3] pH of 20 ml deci	normal HCl solution is 1.0	[4] pH of 100 ml 0.0	0.1 N NaCl solution is = 7.0
Q.38	1.0 M HCN solution	is 1.0 percent ionised. The	e number of CN⁻ ions in	250 ml of the solution is :
	$[1] 1.5 \times 10^{21}$	[2] 6 × 10 ²³	$[3] 5 \times 10^{-3}$	$[4] 3 01 \times 10^{21}$
0.39	$AT 25^{\circ}C$ the nK v	alues of four acids are giver	helow Which one is f	or the strongest acid ?
4.00	[1] 2 0	[2] 2 5		
0.40	Which of the follow	ing compounds is almost in	nisod in water 2	ייד [ד] איני
Q.40			[2] Sodium chlorido	[4] Ammonium acotato
0.44	The first and seen			e [4] Animonium acetate
Q.41	then :		$_2$ S are R_1 and R_2 respe	scuvely. If ionisation constant of $\Pi_2 S$ is K
	[1] $pK = pK_1 + pK_2$	[2] $pK = pK_1 - pK_2$	[3] pK + pK ₂ = pK ₁	$[4] pK + pK_1 - pK_2 = 0$
Q.42	X ⁻ and HX concent	ration in a buffer solution are	e equal. If K _b of X⁻ is 10 ⁻	⁻¹⁰ then pH of the buffer solution is :
	[1] 4.0	[2] 7.0	[3] 10.0	[4] 14.0
Q.43	The weakest Brons	ited base is :		
	[1] Br	[2] NO ₃ -	[3] SO ₄ ²⁻	[4] CIO ₄ ⁻
Q.44	50 ml of 0.05 M so resulting solution if	dium hydroxide is mixed w K _a (CH ₃ COOH) = 2×10^{-5} :	ith 50 ml of 0.1 M ace	tic acid solution. What will be the pH of
	[1] 4.5	[2] 2.5	[3] 4.7	[4] 4.0
Q.45	For which of the fol	lowing pairs, the expressior	$n pK_{a} + pK_{b} - 14 = 0$ is	true?
	(a) KOH, HNO_3	(b) CH ₃ COOH, CH ₃ CC	$OO^{-}(c) RNH_2, RNH_3^+$	(d) RNH₄OH, HCI
	Correct answer is :			
	[1] a, b	[2] c, d	[3] b, c	[4] a, d
Q.46	The conjugate acid	of HPO ²⁻ is :		
	[1] PO ³⁻	[2] H₂PO₁⁻	[3] H ₂ PO ₄	[4] H ₄ PO ₄ +
Q.47	The Hunderson equ	uation for the pOH of a basic	c buffer is :	
	•			[A cid]
	[1] pOH = 14 - log	[Acid]	[2] pOH = 14 – log	[Salt]
	[3] pOH = pK _b + log	(Base) [Salt]	[4] pOH = pK _b + log	[Salt] [Base]
Q.48	In the reaction : HN	$HO_3 + H_2O \longrightarrow H_3O^+ + NO$) ₃ -	
	the conjugate base	of HNO ₃ is :		
	[1] H ₂ O	[2] H ₃ O ⁺	[3] NO ₃ -	[4] $H_{3}O^{+}$ and NO_{3}^{-}

Q.49	BF_3 is a :			
	[1] Lewis acid	[2] Lewis base	[3] Arrhenious acid	[4] None of these
Q.50	The concentration of C	$H_{3}COOH$ and HCN is equ	al. Their pH is 3.0 and 2.0	respectively. If K_a of CH_3COOH is
	1.8×10^{-5} then K _a value	e of HCN is :		
	[1] 1.8 × 10 ⁻⁷	[2] 1.8 × 10 ^{−3}	[3] 1.8 × 10⁻⁵	[4] None of these
Q.51	In HCI and NH ₄ OH titra	tion if phenolphthalein is	used as indicator, the cold	our change will be :
	[1] on complete neutral	isation of HCI	[2] on half neutralisatior	n of HCI
	[3] on one third neutrali	sation of HCI	[4] None of these	
Q.52	In a buffer solution X^- a	nd HX concentration are s	same. If K_{b} value for X ⁻ is 1	10^{-8} then pH of the buffer solution is :
	[1] 8.0	[2] 6.0	[3] 4.0	[4] 10.0
Q.53	The pH of sodium aceta	ate buffer may be given by	r the following expression	1:
	$pH = pK + log \frac{[Salt]}{[Salt]}$	K for acetic acid $= 1.8$	(10 ⁻⁵ If [Salt] - [Acid] - (1 M then pH of the solution will be
	[Acid]			5.1 Withen pir of the solution will be
	approximately :			
	[1] 7.0	[2] 4.7	[3] 5.3	[4] 1.4
Q.54	The pH of two equimola	ar weak acids are 3.0 and	5.0 respectively. Their re	lative strength is :
	[1] 3 : 5	[2] 5 : 3	[3] 100 : 1	[4] 1 : 100
Q.55	The correct sequence	of the colours obtained by	the dissociation of methy	yl orange is :
	[1] MeOH (Red)	Me ⁺ (Colourless) + OH ⁻ (`	Yellow)	
	[2] MeOH (Red)	Me ⁺ (Yellow) + OH ⁻ (Colo	urless)	
	[3] MeOH (Yellow)	Me⁺(Colourless) + OH⁻	(Red)	
	[4] MeOH (Yellow)	\ge Me ⁺ (Red) + OH ⁻ (Color	urless)	
Q.56	The change in pH of a b	uffer solution is 0.05 on add	dition of 0.02 mole of NaOH	I. The buffer capacity of the solution is
	[1] 0.05	[2] 0.25	[3] 2.5	[4] 0.4
Q.57	The dissociation const Second acid is how mu	ants of two weak acids wi uch times stronger than fii	th same concentration ar st ?	The 2 \times 10 ⁻⁷ and 2 \times 10 ⁻⁵ respectively.
	[1] 100 times	[2] 10 times	[3] 1.0 × 10 ⁻² times	[4] 1.0 times
Q.58	An indicator is neutral v	when:		
	[1] Concentration of un	ionised indicator > Conc.	of ionised indicator	
	[2] Concentration of ior	nised indicator > Conc. of	unionised indicator	
	[3] Concentration of ior	nised indicator = Conc. of	unionised indicator	
	[4] None of these			
Q.59	For the maximum buffe	r action of alkaline buffer	:	
	[1] [Base] > [Conjugate	e acid]	[2] [Base] < [Conjugate	acid]
	[3] [Base] = [Conjugate	e acid]	[4] None of the above	
Q.60	0.05 M ammonium hydrion concentration of thi	roxide solution is dissolved s solution ?	d in 0.001 M ammonium cl	hloride solution. What will be the OH^-
	-	K _⊾ (NH₄OH) =1.	8 × 10⁻⁵	
	[1] 3.0 × 10 ⁻³	[2] 9.0 × 10 ⁻⁴	[3] 9.0 × 10 ^{−3}	[4] 3.0 × 10 ⁻⁴

												J								
Qus.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Ans.	2	1	4	4	1	4	1	2	1	1	1	3	4	1	1	2	1	4	1	2
Qus.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
Ans.	3	3	3	3	3	1	1	1	2	1	3	2	3	3	1	1	2	1	1	3
Qus.	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
Ans.	1	1	4	3	3	2	4	3	1	2	4	2	2	3	4	4	2	3	3	2

Answer Key

Q.1	Pure water is kept in a v	vessel and it remains expo	bsed to atmospheric CO_2	which is absorbed then its pH will be
	[1] Greater than 7	[2] Less than 7	[3] 7	[4] Depends on ionic product of water
Q.2	Lewis acid are those su	ubstances :		
	[1] Which accept electr	on pair	[2] which provide H ⁺ ior	n in the solution
	[3] Which give electron	pair	[4] Which accept OH ⁻ i	on
Q.3	The pH of a soft drink is	s 3.82. It hydrogen ion cor	ncentration will be :	
	[1] 1.96 × 10 ⁻² mol/l	[2] 1.96 × 10 ⁻³ mol/l	[3] 1.5 × 10 ⁻⁴ mol/l	[4] 1.96 × 10 ^{−1} mol/l
Q.4	The solubility product o when the concentration	f a salt AB is 1 × 10 ^{−8} . In a n of B will be :	a solution concentration of	of A is 10^{-3} M. The AB will precipitate
	[1] 10 ⁻⁷ M	[2] 10 ⁻⁴ M	[3] 10 ^{−5} M	[4] 10 ⁻⁶ M
Q.5	A monoprotic acid in a	0.1 M solution ionizes to	0.0001%. Its ionization of	constant is :
	[1] I1.0 × 10 ⁻³	[2] 1.0 × 10 ⁻⁶	[3] 1.0 × 10 ⁻⁸	$[4] 1.0 \times 10^{-10}$
Q.6	In a solution of pH =5, me is:	ore acid is added in order to	p reduce the $pH = 2$. The in	ncrease in hydrogen ion concentration
	[1] 100 times	[2] 1000 times	[3] 3 times	[4] 5 times
Q.7	At 298 K, the solubility	product of $PbCl_2$ is 1.0 ×	10^{-6} . What will be the so	blubility of PbCl ₂ in moles/litre :
	[1] 6.3 × 10 ^{−3}	[2] 1.0 × 10 ⁻³	[3] 3.0 × 10 ⁻³	[4] 4.6 × 10 ⁻¹⁴
Q.8	At 90°C pure water has	s [H ₃ O⁺] = 10 ^{–6} M, the valu	e of K_w at this temperatu	re will be :
	[1] 10 ⁻⁶	[2] 10 ⁻¹²	[3] 10 ⁻¹⁴	[4] 10 ⁻⁸
Q.9	When equal volumes of with :	the following solutions are	e mixed, precipitation of A	AgCI ($K_{sp} = 1.8 \times 10^{-10}$) will occur only
	[1] 10 ⁻⁴ M Ag ⁺ and 10 ⁻⁴	⁴ M CI [−]	[2] 10 ⁻⁵ M Ag ⁺ and 10 ⁻⁴	⁵ M CI ⁻
0.40	[3] 10 ⁻⁶ M Ag ⁺ and 10 ⁻⁶	° M CI ⁻	[4] 10 ⁻¹⁰ M Ag ⁺ and 10 ⁻¹⁰	
Q.10	[1] Impurities dissolves	pitated when HOI gas is p	bassed in a saturated sol	ution of NaCI:
	[2] The value of [Na ⁺] a	and [CI-1 becomes smaller	than K of NaCl	
	[3] The value of [Na ⁺] a	nd [Cl ⁻] becomes greater	than K _{sp} of NaCl	
	[4] HCI dissolves in the	water	эр	
Q.11	In the reaction $NH_3 + B$	$F_3^{\bullet} \rightleftarrows NH_3 \to BF_3, BF_3$ is	8	
	[1] Lewis acid		[2] Lewis based	
	[3] Neither Lewis acid n	or Lewis base	[4] Lewis acid and Lew	is base both
Q.12	Ksp value of Al(OH) $_3$ an Al ³⁺ and Zn ²⁺ , which wil	ld Zn(OH) ₂ are 8.5 x 10 ^{−23} Il precipitate earlier	and 1.8 x 10 ⁻¹⁴ respective	ely. If $\rm NH_4OH$ is added in a solution of
	[1] AI (OH) ₃	[2] Zn(OH) ₂	[3] Both together	[4] None
Q.13	In a saturated solution o and this constant for ele	f electrolyte, the ionic prod ectrolyte is known as	luct of their concentration	are constant at constant temperature
	[1] Ionic product	[2] Solubility product	[3] Ionization costant	[4] Dissociation constant
Q.14	One litre of water conta	ins 10 ⁻⁷ mole hydrogen ic	ons. The degree of ioniza	tion in water will be
	[1] 1.8 x 10 ⁻⁷ %	[2] 0.8 x 10 ⁻⁹ %	[3] 3.6 x 10 ⁻⁷ %	[4] 3.6 x 10 ⁻⁹ %
Q.15	The following reaction i	is known to occur in the b	$\operatorname{ody} \operatorname{CO}_2 + \operatorname{H}_2 \operatorname{O} \rightleftharpoons \operatorname{H}_2 \operatorname{C}$	$O_3 \rightleftharpoons H^+ + HCO_3^-$. If CO_2 escapes
	from the system			
	[1] pH will decrease		[2] Hydrogen ion conce	ntration will decrease
	[3] H ₂ CO ₂ concentration	n will be unaltered	[4] The forward reactior	n will be promoted

IONIC EQUILIBRIUM HCIO is a weak acid. The concentration of H⁺ ions in 0.1 M solution of HCIO ($K_a = 5 \times 10^{-8}$) will be equal to Q.16 [2] 5 x 10⁻⁹ m [3] 5 x 10⁻⁷ m [4] 7 x 10⁻⁴ m [1] 7.07 x 10^{−5} m Q.17 Acids are substances which can release hydrogen ions. In neutral solution [1] There is complete absence of hydroxyl ions [2] Hydrogen and hydroxyl ions are both in small amount but present in equivalent amounts [3] There is a complete absence of hydrogen ions [4] Hydrogen and hydroxyl ions are both completely absent Q.18 The addition of solid sodium carbonate to pure water causes [1] An increase in hydronium ion concentration [2] An increase in alkalinity [3] No change in acidity [4] A decrease in hydroxide ion concentration Q.19 Which of the following cannot be considered to be considered to be an acid (Lewis concept) [1] H⁺ [2] PH₂ [3] NH₄+ [4] BF₃ H₂O can act either as an acid or a base. Which of the following reaction bast illustrates the behaviour of water Q.20 as a base [2] HCl + NaOH \rightarrow NaCl + H₂O $[1] \text{ HCl} + \text{H}_2\text{O} \rightarrow \text{H}_3\text{O}^+ + \text{Cl}^ [4] H_2O + NH_3 \rightarrow NH_4^+ + OH_3$ $[3] H_2O + NH_2^- \rightarrow NH_3 + OH^-$ Q.21 A solution of sodium acetate in water will [1] True red litmus blue [2] Turn blue litmus red [3] No effect litmus [4] Decolourises litmus Q.22 Which of the following oxides will not give OH⁻ in aqueous solution [2] MgO [3] Li₂O [4] K₂O [1] Fe₂O₃ Solubility product of a sulphide MS is 3 x 10⁻²⁵ and that of another sulphide NS is 4 x 10⁻⁴⁰. In ammonical Q.23 solution [2] Only MS gets precipitated [1] Only NS gets precipitated [4] Both sulphide precipitate [3] Neither sulphide precipitates In the reaction HCl + H_2O Q.24 $H_{3}O^{+} + CI^{-}$ [1] H₂O is the conjugate base of HCl acid [2] Cl⁻ is the conjugate base of HCl acid [3] Cl⁻ is the conjugate acid of H_2O base [4] H₃O⁺ is the conjugate base of HCI Q.25 Which of the anhydrous salts when come in contact with water turns blue [1] Ferrous sulphate [2] Copper sulphate [3] Zinc sulphate [4] Cobalt sulphate Q.26 In the reaction 2H₂O $H_3O^+ + OH^-$, water is [1] A weak base [2] A weak acid [3] Both a weak acid and a weak base [4] Neither an acid nor a base If the concentration of CrO_4^- ions in a saturated solution of silver chromate is 2×10^{-4} . Solubility product of silver Q.27 chromat will be [1] 4 x 10⁻⁸ [3] 16 x 10⁻¹² [2] 8 x 10⁻¹² [4] 32 x 10⁻¹² The pH value of 1.0 x 10⁻⁸ M HCl solution is less than 8 because Q.28 [1] HCl is completely ionised at this concentration [2] The ionization of water is negligible [3] The ionization of water cannot be assumed to be negligible in comparison with this low concentration of HCI [4] The pH cannot be calculated at such a low concentration of HCI Q.29 In its 0.2 M solution, an acid ionises to an extent of 60%. Its hydrogen ion concentration is [1] 0.6 M [3] 0.12 M [2] 0.2 M [4] None of these

Q.30	The colour of CuCr ₂ O ₇	solution in water is green	because	
	[1] Cu ⁺⁺ ion is blue and	$I Cr_2 O_7^{-}$ ion is yellow	[2] Both the ions are gr	een
	[3] $\operatorname{Cr}_2 \operatorname{O}_7^-$ ion is green		[4] Cu ⁺⁺ ion is green	
Q.31	Which of the following	does not make any chang	e in pH when added to 1	0 ml dilute HCl
	[1] 5ml pure water	[2] 20 ml pure water	[3] 10 ml HCl	[4] Same 20 ml dilute HCl
Q.32	Which is incorrect for b	uffer solution		
	[1] It contains weak ac	id and its conjugate base		
	[2] It contains weak ba	se and its conjugate acid		
	[3] In this there is very	less change is pH value w	hen very less amount of	facid and base is mixed
	[4] None of the above			
Q.33	One weak acid (like Ch which pair this type of	H_3COO_4) and its stronge background by a strong of the	ase together with salt (lik	$e CH_3 COONa$) is a buffer solution. In
	[1] HCI and NaCI	[2] NaOH and NaNO $_3$	[3] KOH and KCI	[4] NH_4OH and NH_4CI
Q.34	Any precipitate is form	ed when		0
	[1] Solution becomes s	aturated		0
	[2] The value of ionic p	roduct is less that than the	e value of solubility produ	JCt 🔷
	[3] The value of ionic p	roduct is equal than the va	lue of solubility product	~
	[4] The value of ionic p	roduct is greater than the	value of solubility produc	t
Q.35	A solution of sodium bi	carbonate in water turns		
	[1] Phenolphthalein pir	k [2] Methyl orange yellov	w [3] Methyl orange red	[4] Blue litmus red
Q.36	Electrolytes when diss	solved in water dissociate	into their constituent ion	ns. The degree of dissociation of an
	electolyte increases w	ith		
	[1] Increasing concent	ration of the electrolyte	[2] Decreasing concen	tration of the electrolyte
Q.37	Some salts although c	ontaining two different me	tallic elements give test f	for only one of them in solution. Such
	salts are			
	[1] Double salts	[2] Normal salts	[3] Complex salts	[4] Basic salts
Q.38	Correct statement is	022		
	[1] NH ₄ CI gives alkalin	e solution in water	[2] CH ₃ COONa gives a	cidic solution in water
	[3] CH ₃ COOH is a wea	ık acid	[4] NH ₄ OH is a strong l	base
Q.39	The solubility product	of BaSO ₄ is 1.5 x 10 ⁻⁹ . Th	ne precipitation in a 0.01	M Ba^{2+} solution will start, on adding
	H_2SO_4 of concentration) [0] 40- ⁸ M	[0] 40- ⁷ M	[4] 40-6 M
0.40	[1] 10 ° M The colubility product	[2] 10 ° M	[3] 10 ' M	$[4] 10^{\circ} M$
Q.40	$111 + 21 \times 10^{-6}$	$121 + 21 \times 10^{-3}$	AB at 10011 temperature [3] 1 1 x 10 ⁻⁴	$[A] 1 1 \times 10^{-3}$
Q 41	In the following reaction		[0] 1.1 × 10	
	$HC_{-}O_{-}^{-} + PO_{-}^{}$	$HPO_{1}^{} + C_{2}O_{2}^{}$		
	Which are the two Bro	nsted bases		
	$[1] HC_0 Q_{\tau}^- and PO_{\tau}^{}$	- [2] HPO, $$ and C ₂ O, $$	[3] HC ₂ O ₂ ⁻ and HPO ₂ ⁻	$^{-}$ [4] PO, $^{}$ and C ₂ O, $^{}$
Q.42	Under the same condi	tions, which mixture by vo	lume of one molar potas	ssium hydroxide and one molar nitric
	acid solution produces	the highest temperature	·	
	[1] 20 - 80	[2] 25 – 75	[3] 50 – 50	[4] 75 – 25
Q.43	In the equilibrium HCIC	$D_4 + H_2 O \rightleftharpoons H_3 O^+ + CIC$	0 ₄ -:	
	[1] $HClO_4$ is the conjug	ate acid of H_2O	[2] H ₂ O is the conjugat	e acid of H ₃ O ⁺
	[3] H ₃ O ⁺ is the conjuga	ite base of H ₂ O	[4] CIO_4^- is the conjuga	ate base of HCIO ₄

Q.44	Addition of which chem	ical will decrease the hyd	Irogen ion concentration	of an acetic acid solution :
	[1] NH ₄ Cl	$[2] Al_2(SO_4)_3$	[3] AgNO ₃	[4] NaCN
Q.45	The pH of a solution is	5.0. If its hydrogen ion co	ncentration is decreased	hundred times, then the solution will
	be :			
	[1] More acid	[2] Neutral	[3] Basic	[4] Of the same acidity
Q.46	When a buffer solution	of sodium acetate and ac	cetic acid is diluted with w	vater :
	[1] Acetate ion concent	ration increases	[2] H ⁺ ion concentratior	nincreases
	[3] OH ⁻ ion concentrtion	n increases	[4] H ⁺ ion concentration	remain unaltered
Q.47	The pH of a buffer solut affected by 5ml of :	tion containing 25 ml of 1	MCH_3COONa and 25 ml	of 1M CH_3COOH will be appreciably
	[1] 1M CH ₃ COOH	[2] 5M CH ₃ COOH	[3] 5M HCI	[4] 1M NH ₄ OH
Q.48	0.2 molar solution of fo	rmic acid is ionized 3.2%	. Its ionization constant i	s:
	[1] 9.6 × 10 ⁻³	[2] 2.1 × 10 ⁻⁴	[3] 1.25 × 10 ⁻⁶	[4] 4.8 × 10 ⁻⁵
Q.49	The pH of a simple sod	lium acetate buffer is give	en by pH = pK _a + log $\frac{13a}{14c}$	di +
		10 F		S
	K_a of acetaic acid = 1.8	3 × 10 ⁻⁵		
	If $[Salt] = [Acid] = 0.1M$, the pH of the solution w	ould be about :	
0.50		[2] 4.7	[3] 5.3	[4] 1.4
Q.50	with reference to proto	nic acids, which of the fol	lowing statements is cor	
	[1] PH_3 is more basic tr	nan NH ₃	[2] PH_3 is less basic th	an NH ₃
	[3] PH ₃ is equally basic	cas NH ₃	[4] PH ₃ is amphoteric w	/hile NH ₃ is basic
Q.51	Solubility of a slat M_2X_3	$_3$ is y mol dm ⁻³ . The solut	wility product of the salt w	
0.50	[1] 6y*	[2] 64y ⁺	[3] 36 y ⁵	[4] 108 y ³
Q.52	If the solubility product of these	of AgBrO ₃ and Ag ₂ SO ₄ are	$e 5.5 \times 10^{-5}$ and 2×10^{-5} for the second	espectively, the relationship between
			[3] S – S	[4] S ~ S
0.53	The following equilibriu	$[2] O_{AgBrO_3} = O_{Ag_2SO_4}$	$C_{AgBrO_3} = O_{Ag_2SO_4}$	$[-] \circ_{AgBrO_3} \circ \circ_{Ag_2SO_4}$
4.00	The felle thing equilibria		in a log of the angle of the an	
				4
			² 2 ³ without any change in	remperature
	[1] The equilibrium cons			
	[2] The concentration of	fundiageniated LL Cwill d		
	[3] The concentration o	f UNCESSOCIATED H25 WILLD	ecrease	
	[4] The concentration o	I II S WIII decrease		
Q.54	The hydrogen ion conc	entration of a 0.006 M be	nzoic acid solution is (K _a	= 6 x 10 ⁻⁵)
	[1] 0.6 x 10 ⁻⁴	[2] 6 x 10 ⁻⁴	[3] 6 x 10 ⁻⁵	[4] 3.6 x 10 ⁻⁴
Q.55	If the solubility products the solubilities (denoted	s of Agcl and AgBr are 1.2 d by the symbol 'S') of the	x 10 ^{–10} and 3.5 x 10 ^{–13} re ese salts can correctly be	spectively, then the relation between represented as
	[1] S of AgBr is less that	an that of AgCI	[2] S of AgBr is greater	than that of AgCI
	[3] S of AgBr is equal to	o that of AgCl	[4] S of AgBr is 10 ⁶ tim	es greater than that of AgCl

Q.56 The sulphide ion concentration [S^{2–}] in saturated H_2S solution is 1 x 10⁻²². Which of the following sulphides should be quantitativel precipitated by H_2S in the presence of dil. HCl

		Sulphide	Solubility product	
		(I)	1.4 x 10 ⁻¹⁶	
		(II)	1.2 x 10 ⁻²²	
		(III)	8.2 x 10 ⁻⁴⁶	
		(IV)	5.0 x 10 ⁻³⁴	
	[1] I, II	[2] III, IV	[3] II, III, IV	[4] Only I
Q.57	The solubility product c what is the maximum h Mg(OH) ₂	onstant K _{sp} of Mg(OH) ₂ is ydroxide ion concentratio	39.0×10^{-12} . If a solution n which could be presen	is 0.010 M with respect to Mg ²⁺ ion, t without causing the precipitation of
	[1] 1.5 x 10 ⁻⁷ M	[2] 3.0 x 10 ⁻⁷ M	[3] 1.5 x 10 ^{−5} m	[4] 3.0 x 10 ⁻⁵ M
Q.58	A physician wishes to p only small concentration would be best to use	orepare a buffer solution a n of the buffering agents. \	t pH = 3.85 that efficientl Which of the following we	y resists changes in pH yet contains ak acids together with its sodium salt
	[1] m-chlorobenzoic aci	id (pK _a = 3.98)	[2] p-chlorocinnamic ac	id ($pK_a = 4.41$)
	[3] 2,5-dihydroxy benzo	bic acid (pK _a = 2.97)	[4] Acetoacetic acid (pl	$x_{a} = 3.58$)
Q.59	The hydride ion H [–] is s sodium hydride (NaH) is	tronger base than its hyd s dissolved in water	droxide ion OH⁻. Which o	of the following reaction will occur if
	$[1] H^{-}(aq) + H_2O \rightarrow H_2$	0	[2] H ⁻ (aq) + H ₂ O (I) \rightarrow	$OH^- + H_2$
	[3] H^- + $H_2O \rightarrow No read$	ction	[4] None of these	
Q.60	The solubility product of are in the order	f CuS, Ag ₂ S,HgS are 10 ⁻³	¹ , 10 ⁻⁴⁴ , 10 ⁻⁵⁴ respective	ly. The solubilities of these sulphides
	$[1] Ag_2 S > CuS > HgS$	L.C.	$[2] Ag_2 S > HgS > CuS$	
	$[3] HgS > Ag_2S > CuS$		$[4] CuS > Ag_2S > HgS$	
Q.61	For two acids A and B,	$pK_a = 1.2 pK_b = 2.8 respectively$	ectively in value, then wh	ich is true
	[1] A and B both are eq	ually acidic	[2] A is stronger than B	
	[3] B is stronger than A	O2.	[4] Neither A nor B is st	rong
Q.62	pK_a of a weak acid is de	efined as		
	[1] log ₁₀ K _a	$\begin{bmatrix} 2 \end{bmatrix} \frac{1}{\log K}$	[3] $\log_{10} \frac{1}{\kappa}$	$[4] -\log_{10} \frac{1}{k}$
Q.63	The dissociation consta	ant of an acid HA is $1 \times 10^{\circ}$	-5 The pH of 0.1 molars	solution of the acid will be
4.00	[1] Five	[2] Four	[3] Three	[4] One
Q.64	If the pH of a solution of	f an alkali metal hydroxide	e is 13.6, the concentration	on of hydroxide is
	[1] Between 0.1 M and	1 M	[2] More than 1 M	
	[3] Less than 0.001 M		[4] Between 0.01 M and	1 M
Q.65	If 50 ml of 0.2 M KOH is	s added to 40 ml of 0.5 M	HCOOH, the pH of the r	esulting solution is ($K_a = 1.8 \times 10^{-4}$)
	[1] 3.4	[2] 7.5	[3] 5.6	[4] 3.75
Q.66	A solution of weak acion degree of ionisation of t	d HA containing 0.01 mol he acid and the ionisatior	es of acid per litre of sol constant of acid are res	utions has pH = 4. The percentage pectively
	[1] 1% , 10 ^{–6}	[2] 0.01%, 10 ⁻⁴	[3] 1%, 10 ⁻⁴	[4] 0.01% , 10 ⁻⁶

Q.67	According to Bronstee	d-Lowry concept, the corr	ect order of relative stren	gth of bases follows the order				
	[1] CH ₃ COO ⁻ > CI ⁻ >	OH-	[2] CH ₃ COO ⁻ > OH ⁻ >	> CI⁻				
	[3] OH ⁻ > CH ₃ COO ⁻ >	> CI⁻	[4] OH ⁻ > CI ⁻ > CH ₃ C	$[4] OH^- > CI^- > CH_3 COO^-$				
Q.68	How many grams of solution [K _{sp} (CaC ₂ O ₂	CaC_2O_4 (molecular weig) = 2.5 x 10 ⁻⁹ mol ² l ⁻²]	ht = 128) on dissolving	in distilled water will give a saturated				
	[1] 0.0064 g	[2] 0.1280g	[3] 0.0128 g	[4] 1.2800g				
Q.69	The dissociation cons 0.15 moles of KCN in	tant of HCN is 5 x 10 ⁻¹⁰ . T water and making up the	The pH of the solution pre- total volume to 0.5 dm ³	epared by mixing 1.5 mole of HCN and is				
	[1] 7.302	[2] 9.302	[4] 8.302	[4] 10.302				
Q.70	What is the value of (Molecular weight of N	carbonate hardness of v la ₂ CO ₃ = 106)	water sample if 100 ml	of its took 5ml of 0.09N HCl solution				
	[1] 4.50 mg-eq/litr	[2] 1.80 mg-eq/litr	[3] 0.042 mg-eq/litr	[4] 477.00 mg-eq/litr.				
	MM		oachin					

Answer Key

Qus.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Ans.	2	1	3	2	4	2	1	2	1	3	1	1	2	1	2	1	2	2	2	1
Qus.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
Ans.	1	1	4	2	2	3	4	3	3	1	4	3	4	4	3	2	3	3	3	4
									10		- 4	5	2	= 4				-	2	
Qus.	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
Qus. Ans.	41 4	42 3	43 4	44 4	45 2	46 4	47 3	48 2	49 2	50 2	51 4	52 2	53 4	54 2	55	56 1	57 4	58 3	59 2	60 4
Qus. Ans. Qus.	41 4 61	42 3 62	43 4 63	44 4 64	45 2 65	46 4 66	47 3 67	48 2 68	49 2 69	50 2 70	51 4	52 2	53 4	54 2	55 1	56 1	57 4	58 3	59 2	<u>60</u> 4

Q.1	Which of the following is le	ewis acid	[MP PET-1994 ; NCERT-1	978; EAMCET-1987]
• •	$\begin{bmatrix} 1 \end{bmatrix} BF_3$	[2] Cl	[3] H ₂ O	[4] NH ₃
Q.2	The pOH of beer is 10.0 .	ron ton concentration	- 10-8	[MP PMI - 1994]
0.2	[1] IU -	[2] 10 10		[4] 10 ·
Q.3				- 1902, CPINII- 1994]
	$[1] CH_3 COOH + CH_3 COOH$	Nd	$[2] CH_3 COOH + CH_3 COOH$	NП ₄
0.4	$[3] CH_3 COOLT + NH_4 CH_C$	OOH) and its strong base tog	[4] NaON + NaON	Na) is a huffer solution. In
4. 7	which pair this type of cha	racteristic is found -	[MP PET-1994; AIIM	IS-1982; CPMT-1994]
	[1] HCI and NaCI	[2] NaOH and NaNO ₃	[3] KOH and KCI	[4] NH_4OH and NH_4CI
Q.5	The pH of a solution is 2. I	f its pH is to be raised to 4, th	nen the [H ⁺] of the original so	olution has to be -
	[1] Doubled		[2] Halved	
	[3] Increased hundred time	es	[4] Decreased hundred tim	es
Q.6	The hydrogen ion concent	ration of a 0.006 M benzoic a	acid solution is $(K_a = 6 \times 10^{-5})$	P) [MP PET-1994]
	[1] 0.6 × 10 ⁻⁴	[2] 6 × 10 ⁻⁴	[3] 6 × 10 ^{−5}	[4] 3.6 × 10 ⁻⁴
Q.7	pH of a solution is 4. The h	ydroxide ion concentration o	f the solution would be-	[MP PMT-1994]
	[1] 10 ⁻⁴	[2] 10 ⁻¹⁰	[3] 10 ⁻²	[4] 10 ⁻¹²
Q.8	At 80°C, distilled water h temperature will be -	nas [H ₃ O ⁺] concentration ec	qual to 1 x 10^{-6} mole/litre.	The value of K _W at this [CBSE-1994]
	[1] 1 x 10 ^{–6}	[2] 1 x 10 ⁻⁹	[3] 1 x 10 ⁻¹²	[4] 1 x 10 ^{–5}
Q.9	Which one of the following	is most soluble -		[CBSE-1994]
	[1] CuS (K _{SP} = 8 x 10 ⁻³⁷)	[2] MnS (K _{SP} = 7 x 10 ⁻¹⁶)	[3] $Bi_2S_3 (K_{SP} = 1 \times 10^{-70})$) [4] $Ag_2S(K_{SP} = 6 \times 10^{-51})$
Q.10	Which of the following is a	buffer -		[BHU-1995]
	[1] NaOH + CH ₃ COONa		[2] NaOH + Na ₂ SO ₄	
	$[3] K_2 SO_4 + H_2 SO_4$		$[4] NH_4 OH + CH_3 COONH_4$	Ļ
Q.11	If pH of A, B, C and D are	9.5, 2.5, 3.5, and 5.5 respect	ively, then strongest acid is -	[AFMC-1995]
	[1] A	[2] C	[3] D	[4] B
Q.12	The dissociation of water a of water is-	at 25°C is 1.9 × 10 ^{−7} % and the	e density of water is 1.0 g/cm	³ . The ionisation constant [IIT-1995]
	[1] 3.42 × 10 ⁻⁶	[2] 3.42 × 10 ⁻⁸	[3] 1.00 × 10 ⁻¹⁴	[4] 2.00 × 10 ⁻¹⁶
Q.13	If acetic acid mixed with so	odium acetate, then H ⁺ ion co	ncentration will be-	[Roorkee-1995]
		· · · · · · · · · · · · · · · · · · ·		
Q.14	[1] Increased	[2] Decreased	[3] Remains unchanged	[4] pH decreased
	[1] Increased Which one has pH 12	[2] Decreased	[3] Remains unchanged	[4] pH decreased [Roorkee-1995]
	[1] Increased Which one has pH 12 [1] 0.01 M KOH	[2] Decreased [2] 1 N KOH	[3] Remains unchanged [3] 1N NaOH	[4] pH decreased [Roorkee-1995] [4] 1N Ca(OH) ₂
Q.15	[1] IncreasedWhich one has pH 12[1] 0.01 M KOHpH of 0.001 M NaOH is -	[2] Decreased [2] 1 N KOH	[3] Remains unchanged [3] 1N NaOH	[4] pH decreased [Roorkee-1995] [4] 1N Ca(OH) ₂ [MP PMT-1995]
Q.15	[1] Increased Which one has pH 12 [1] 0.01 M KOH pH of 0.001 M NaOH is - [1] 10 ⁻³	[2] Decreased [2] 1 N KOH [2] 3	[3] Remains unchanged [3] 1N NaOH [3] 10 ⁻¹¹	[4] pH decreased [Roorkee-1995] [4] 1N Ca(OH) ₂ [MP PMT-1995] [4] 11
Q.15 Q.16	[1] Increased Which one has pH 12 [1] 0.01 M KOH pH of 0.001 M NaOH is - [1] 10^{-3} Conjugate base of HPO ₄ ²⁻	[2] Decreased [2] 1 N KOH [2] 3 ⁻ is	[3] Remains unchanged [3] 1N NaOH [3] 10 ⁻¹¹	[4] pH decreased [Roorkee-1995] [4] 1N Ca(OH) ₂ [MP PMT-1995] [4] 11 [MP PMT-1995]
Q.15 Q.16	[1] Increased Which one has pH 12 [1] 0.01 M KOH pH of 0.001 M NaOH is - [1] 10^{-3} Conjugate base of HPO ₄ ²⁻ [1] PO ₄ ³⁻	 [2] Decreased [2] 1 N KOH [2] 3 is [2] H₂PO₄ 	 [3] Remains unchanged [3] 1N NaOH [3] 10⁻¹¹ [3] H₃PO₄ 	[4] pH decreased [Roorkee-1995] [4] 1N Ca(OH) ₂ [MP PMT-1995] [4] 11 [MP PMT-1995] [4] H ₄ PO ₃
Q.15 Q.16 Q.17	[1] Increased Which one has pH 12 [1] 0.01 M KOH pH of 0.001 M NaOH is - [1] 10^{-3} Conjugate base of HPO ₄ ²⁻ [1] PO ₄ ³⁻ A precipitate of CaF ₂ (K _{SP}	[2] Decreased [2] 1 N KOH [2] 3 - is [2] $H_2PO_4^-$ = 1.7 x 10 ⁻¹⁰) will be obtained	 [3] Remains unchanged [3] 1N NaOH [3] 10⁻¹¹ [3] H₃PO₄ Id when equal volume of the fille 	[4] pH decreased [Roorkee-1995] [4] 1N Ca(OH) ₂ [MP PMT-1995] [4] 11 [MP PMT-1995] [4] H ₄ PO ₃ following are mixed -
Q.15 Q.16 Q.17	[1] Increased Which one has pH 12 [1] 0.01 M KOH pH of 0.001 M NaOH is - [1] 10^{-3} Conjugate base of HPO ₄ ² [1] PO ₄ ³⁻ A precipitate of CaF ₂ (K _{SP}	[2] Decreased [2] 1 N KOH [2] 3 is [2] $H_2PO_4^-$ = 1.7 x 10 ⁻¹⁰) will be obtained	 [3] Remains unchanged [3] 1N NaOH [3] 10⁻¹¹ [3] H₃PO₄ Id when equal volume of the formula of the formula	[4] pH decreased [Roorkee-1995] [4] 1N Ca(OH) ₂ [MP PMT-1995] [4] 11 [MP PMT-1995] [4] H ₄ PO ₃ following are mixed - [990, 95; MNR-1992]
Q.15 Q.16 Q.17	[1] Increased Which one has pH 12 [1] 0.01 M KOH pH of 0.001 M NaOH is - [1] 10^{-3} Conjugate base of HPO ₄ ² [1] PO ₄ ³⁻ A precipitate of CaF ₂ (K _{SP} [1] 10^{-4} M Ca ²⁺ and 10^{-4}	[2] Decreased [2] 1 N KOH [2] 3 is [2] $H_2PO_4^-$ = 1.7 x 10 ⁻¹⁰) will be obtained M F ⁻	[3] Remains unchanged [3] 1N NaOH [3] 10^{-11} [3] H ₃ PO ₄ Id when equal volume of the f [MP PMT 1 [2] 10^{-2} M Ca ²⁺ and 10^{-3} M	[4] pH decreased [Roorkee-1995] [4] 1N Ca(OH) ₂ [MP PMT-1995] [4] 11 [MP PMT-1995] [4] H ₄ PO ₃ following are mixed - 1990, 95; MNR-1992] ΛF^-
Q.15 Q.16 Q.17	[1] Increased Which one has pH 12 [1] 0.01 M KOH pH of 0.001 M NaOH is - [1] 10^{-3} Conjugate base of HPO ₄ ² [1] PO ₄ ³⁻ A precipitate of CaF ₂ (K _{SP} [1] 10^{-4} M Ca ²⁺ and 10^{-4} [3] 10^{-5} M Ca ²⁺ and 10^{-3}	[2] Decreased [2] 1 N KOH [2] 3 is [2] $H_2PO_4^-$ = 1.7 x 10 ⁻¹⁰) will be obtained M F ⁻ M F ⁻	[3] Remains unchanged [3] 1N NaOH [3] 10^{-11} [3] H ₃ PO ₄ Id when equal volume of the f [MP PMT 1 [2] 10^{-2} M Ca ²⁺ and 10^{-3} N [4] 10^{-3} M Ca ²⁺ and 10^{-5} I	[4] pH decreased [Roorkee-1995] [4] 1N Ca(OH) ₂ [MP PMT-1995] [4] 11 [MP PMT-1995] [4] H ₄ PO ₃ following are mixed - 1990, 95; MNR-1992] $M F^-$
Q.15 Q.16 Q.17 Q.18	[1] Increased Which one has pH 12 [1] 0.01 M KOH pH of 0.001 M NaOH is - [1] 10^{-3} Conjugate base of HPO ₄ ²⁻ [1] PO ₄ ³⁻ A precipitate of CaF ₂ (K _{SP} [1] 10^{-4} M Ca ²⁺ and 10^{-4} [3] 10^{-5} M Ca ²⁺ and 10^{-3} Solubility of AgCl will be m	[2] Decreased [2] 1 N KOH [2] 3 is [2] $H_2PO_4^-$ = 1.7 x 10 ⁻¹⁰) will be obtained M F ⁻ M F ⁻ ninimum in -	[3] Remains unchanged [3] 1N NaOH [3] 10^{-11} [3] H ₃ PO ₄ Id when equal volume of the f [MP PMT 1 [2] 10^{-2} M Ca ²⁺ and 10^{-3} N [4] 10^{-3} M Ca ²⁺ and 10^{-5} I	[4] pH decreased [Roorkee-1995] [4] 1N Ca(OH) ₂ [MP PMT-1995] [4] 11 [MP PMT-1995] [4] H ₄ PO ₃ following are mixed - 1990, 95; MNR-1992] A F ⁻ M F ⁻ [CBSE-1995]

Q.19	If the solubility product of BaSO ₄ is 1.5 x 10^{-9} in water, its solubility in moles per litre is -								
			[BHU ?	J 1995; MP PET -1995]					
	[1] 1.5 x 10 ^{–9}	[2] 3.9 x 10 ⁻⁵	[3] 7.5 x 10 ⁻⁵	[4] 1.5 x 10 ⁻⁵					
Q.20	The solubility of PbCl ₂ is -			[MP PMT -1995]					
	[1] $\sqrt{K_{SP}}$	[2] 3 $\sqrt{K_{SP}}$	[3] 3 $\sqrt{\frac{K_{SP}}{4}}$	[4] \sqrt{8K_{SP}}					
Q.21	At 298 K, the solubility pro	oduct of PbCl ₂ is 1.0 x 10^{-6} .	What will be the solubility of	PbCl ₂ in moles/litre -					
			[MP PMT -1990; CPMT 1985, 96]						
	[1] 6.3 x 10 ⁻³	[2] 1.0 x 10 ⁻³	[3] 3.0 x 10 ⁻³	[4] 4.6 x 10 ⁻¹⁴					
Q.22	Sodium chloride is purifie based on	d by passing hydrogen chlori	ide gas in an impure solutio	n of sodium chloride. It is [MP PMT-1996]					
	[1] Buffer action	[2] Common ion effect	[3] Association of salt	[4] Hydrolysis of salt					
Q.23	Which of the following can	not be hydrolysed	([MP PMT 1996]					
	[1] A salt of weak acid and	strong base	[2] A salt of strong acid ar	nd weak base					
	[3] A salt of weak acid and	weak base	[4] A salt of strong acid an	d strong base					
Q.24	100 ml of 0.2 M H_2SO_4 is	added to 100ml of 0.2 M NaC	H. The resulting solution wil	l be - [BHU 1996]					
	[1] Acidic	[2] Basic	[3] Neutral	[4] Slightly basic					
Q.25	The pH of solution having	[OH ⁻] = 10 ⁻⁷ is -		[AIIMS 1996]					
	[1] 7	[2] 14	[3] Zero	[4] -7					
Q.26	An example of zwitter ion	is -	<u>U</u>						
	[1] Alanine	[2] Glycine hydrochloride	[3] Urea	[4] Ammonium acetate					
Q.27	What is the pH of Ba(OH)	P_2 if normality is 10^{-4}		[CPMT 1996]					
	[1] 4	[2] 10	[3] 7	[4] 9					
Q.28	pH value of N/10 NaOH s	olution is +	[CBSE 1996]						
	[1] 10	[2] 11	[3] 12	[4] 13					
Q.29	The ionic product of wate	r at 25°C is 10^{-14} . The ionic	product at 90°C will be -	[CBSE 1996]					
	[1] 1 x 10 ⁻²⁰	[2] 1 x 10 ⁻¹²	[3] 1 x 10 ⁻¹⁴	[4] 1 x 10 ⁻¹⁶					
Q.30	By adding a strong acid to	the buffer solution, the pH of	the buffer solution -	[Delhi PMT-1996]					
	[1] Remains constant	[2] Increases	[3] Decreases	[4] Becomes zero					
Q.31	Boron compounds behave	e as lewis acids becase of thei	r	[CBSE-1996]					
	[1] Acidic nature	[2] covalent nature	[3] Electron deficiency	[4] Ionisaton property					
Q.32	The strength of an acid de	pends on its tendency		[MP PET- 1996]					
	[1] Accept protons	[2] Donate protons	[3] Accept electrons	[4] Donate electrons					
Q.33	The pH of 10 ⁻⁵ M aqueous	solution of NaOH is -		[MP PET-1996]					
	[1] 5	[2] 7	[3] 9	[4] 11					
Q.34	The conjugate base of NH	₃ is -	<u>,</u>	[MP PET-1996]					
	[1] NH ₄ OH	[2] NH ₂ ⁻	[3] NH ²⁻	[4] N ₂ H ₂					
Q.35	100 ml of 0.2 M H ₂ SO ₄ is	added to 100 ml of 0.2 M NaC	OH. The resulting solution wi	ll be [BHU-1996]					
	[1] Acidic	[2] Basic	[3] Neutral	[4] Slightly basic					
Q.36	The pH of solution having	[OH ⁻] = 10 ⁻⁷ is –		[AIIMS-1996]					
	[1] 7	[2] 14	[3] zero	[4] -7					
Q.37	An example of zwitter ion	is -		[AIIMS-1996]					
	[1] Alanine	[2] Glycine hydrochloride	[3] Urea	[4] Ammonium acetate					

Q.38 Which of the following is not a Lewis acid [CBSE-1996] [3] SiF₄ [1] BF₃ [2] FeCl₃ $[4] C_2 H_4$ Q.39 pH value of N/10 NaOH solution is [CBSE-1996] [1] 10 [3] 12 [4] 13 [2] 11 Q.40 A compound whose aqueous solution will have the highest pH [MP PET-1996; MP PAT-1993; CPMT-1974, 75, 78; Delhi PMT-1982, 83] [1] NaCl [2] Na₂CO₃ [3] NH₄CI [4] NaHCO₃ Q.41 [RPMT-1997] Which hydroxide will have lowest value of solubility product at normal temperature (25°C) [1] Mg(OH)₂ [2] Ca(OH)₂ [3] Ba(OH)₂ [4] Be(OH)₂ Solubility of AgCl at 20°C is 1.435 x 10⁻³ gm per litre. The solubility product of AgCl is -Q.42 [CPMT- 1989; BHU 1997] [1] 1 x 10⁻⁵ [2] 1 x 10⁻¹⁰ [3] 1.435 x 10⁻⁵ [4] 108 x 10⁻³ Solubility of a salt M₂X₃ is y mol dm⁻³. The solubility product of the salt will be -Q.43 **[IIT 90.97]** [3] 36y⁵ [4] 108y⁵ [1] 6y⁴ $[2] 64y^4$ The solubility of CaCO₃ in water is 3.05 x 10⁻⁴ moles/litre. Its solubility product will be -Q.44 [MP PMT 1997] [1] 3.05 x 10⁻⁴ [3] 6.1 x 10⁻⁴ [4] 9.3 x 10⁻⁸ [2] 9.3 Q.45 If pK_b for fluoride ion at 25°C is 10.83, the ionisation constant of hydrofluoric acid in water at this temperature is [IIT 1997] [2] 3.52 x 10⁻³ [1] 1.74 x 10⁻³ [3] 6.75 x 10⁻⁴ $[4] 5.38 \times 10^{-2}$ A sample of Na₂CO₃. H₂O weighing 0.62g is added to 100 ml of 0.1N H₂SO₄ solution. What will be the Q.46 [BHU 1997] resulting solution-[2] Neutral [1] Acidic [3] Basic [4] None of these The solubility product of Ag₂CrO₄ is 32 x 10^{-12} . What is the concentration of CrO₄⁻ ions in that solution Q.47 [BHU 1997] [1] 2 x 10⁻⁴ m/s [2] 16 x 10⁻⁴ m/s [3] 8 x 10⁻⁴ m/s [4] 8 x 10⁻⁸ m/s Q.48 When 100 ml of M/10 NaOH solution and 50 ml of M/5 HCl solution are mixed, the pH of resulting solution would be -[RPMT 1997] [2] Less than 7 [3] 7 [4] More than 7 [1] 0 Which oxychloride has maximum pH -[CPMT 1997] Q.49 [1] NaCIO [2] NaClO₂ [3] NaClO₃ [4] NaClO₄ What is the solubility of calcium fluoride in a saturated solution, if its solubility product is 3.2 x 10⁻¹¹ Q.50 [CPMT 1997] [2] 12.0 x 10⁻³ mole/litre [3] 0.2 x 10⁻⁴ mole/litre [1] 2.0 x 10⁻⁴ mole/litre [4] 2 x 10⁻³ mole/litre The hydride ion H⁻ is stronger base than its hydroxide ion OH⁻. Which of the following reaction will occur if Q.51 sodium hydride is dissolved in water -[CBSE 1997] $[1] H^{-} (aq) + H_2O \rightarrow H_2O$ [2] H^- (aq) + H_2O (I) $\rightarrow OH^-$ + H_2 [3] $H^- + H_2O \rightarrow No$ reaction [4] None of these The solubility product of CuS, Ag_2S HgS are 10^{-31} , 10^{-44} , 10^{-54} respectively. The solubilities of these Q.52 sulphides are in the order -[CBSE 1997] [1] $Ag_2S > CuS > HgS$ $[2] Ag_2S > HgS > CuS$ $[3] HgS > Ag_2S > CuS$ $[4] CuS > Ag_2S > HgS$ A certain buffer solution contains equal concentration of X⁻ and HX. The K_b for X⁻ is 10⁻¹⁰. The pH of the buffer is Q.53 [1] 4 [2] 7 [3] 10 [4] 14 [RPMT-1997] Q.54 For preparing a buffer solution of pH 6 by mixing sodium acetate and acetic acid, the ratio of the concentration of salt and acid should be $(K_a = 10^{-5})$ [MP PET-1997]

EQUILIBRIUM

IONIC

[1] 1 : 10 [2] 10 : 1 [3] 100 : 1 [4] 1 : 100

Q.55	pH of water is 7. When a s	substance Y is dissolved in wa	ater, the pH becomes 13. Th	e substance Y is a salt of								
	[1] Strong acid and strong	base	[2] Weak acid and weak base [MP PMT-1997]									
	[3] Strong acid and weak b	base	[4] Weak acid and strong base									
Q.56	If pK _b for fluoride ion at 25°	C is 10.83, the ionisation cons	stant of hydrofluoric acid in w	ater at this temperature is								
	-			[IIT-1997]								
	[1] 1.74 × 10 ^{−3}	[2] 3.52 × 10 ⁻³	[3] 6.75 × 10 ⁻⁴	[4] 5.38 × 10 ⁻²								
Q.57	Which of the following is n	ot a bronsted acid		[BHU-1997]								
	[1] CH ₃ NH ₄ +	[2] CH ₃ COO ⁻	[3] H ₂ O	[4] None								
Q.58	Which of the following is n	ot Lewis acid		[BHU-1997]								
	[1] BF ₃	[2] AICI ₃	[3] FeCl ₃	[4] PH ₃								
Q.59	Which one of the following	is Lewis acid		[RPMT-1997]								
	[1] AICI ₃	[2] NH ₃	[3] RNH ₂	[4] H ₂ O								
Q.60	Lewis base is			[RPMT-1997]								
	[1] CO ₂	[2] SO ₃	[3] SO ₂	[4] ROH								
Q.61	According to Bronsted, ac	ids are	()	[RPMT-1997]								
	[1] Proton donor	[2] Proton acceptor	[3] Amphoteric	[4] Protophillic								
Q.62	The suitable indicator for s	strong acid and weak base is		[RPMT-1997]								
	[1] Methyl orange	[2] Methyl red	[3] Phenol red	[4] Phenolphthalein								
Q.63	The concentration of which	h ion is to be decreased, wher	NH ₃ solutions is added-	[RPMT-1997]								
	[1] OH [_]	[2] NH ₄ +	[3] H ₃ O ⁺	[4] O ₂ ⁻								
Q.64	Which one is T–Lewis acid	k	G	[RPMT-1997]								
	[1] CIF ₃	[2] H ₂ O	[3] NH ₃	[4] None								
Q.65	In the reaction $I_2 + I^-$	\rightarrow I ₃ ⁻ , the Lewis base is		[CPMT-1997]								
	[1] I ₂	[2] I	[3] I ₃ ⁻	[4] None								
Q.66	pH of HCI (10 ⁻¹² M) is			[CPMT-1997]								
	[1] 12	[2] – 12	[3] ≈ 7	[4] 14								
Q.67	Which oxychloride has ma	aximum pH		[CPMT-1997]								
	[1] NaClO	[2] NaClO ₂	[3] NaClO ₃	[4] NaClO ₄								
Q.68	When an acid or alkali is m	nixed with buffer solution, then	pH of buffer solution	[CPMT-1997]								
	[1] Not changes	[2] Changes slightly	[3] Increases	[4] Decreases								
Q.69	Which one is Lewis acid	•		[CPMT-1997]								
	[1] CI [−]	[2] Ag ⁺	[3] C ₂ H ₅ OH	[4] S ^{2–}								
Q.70	A physician whishes to pre	pare of buffer solution at pH =	3.85 that efficiently resists cl	hanges in pH yet contains								
	only small concentration of the buffering agents. Which of the following weak acids together with its sodium sa											
	Would be best to use											
	[1] m-chlorobenzoic acid ($pK_a = 3.98$	[2] p-chiorochinnamic acid	$1(pK_a = 4.41)$								
0.74	[3] 2,5-dinydroxy benzoic	aciu ($pR_a = 2.97$)	[4] Aceloacelic acid ($pR_a =$	· J.JO)								
Q.71	sodium hydride (NaH) is di	ssolved in water	[CBSE-1997]									
	$[1] H^{-}(aq) + H_2O \rightarrow H_2O$		$[2] H^{-}(aq) + H_2O(\ell) \rightarrow OH^{-} + H_2$									
	$[3] H^- + H_2O \rightarrow \text{ No react}$	ion	[4] None									
Q.72	BF ₃ is an acid according t	0 -		[AFMC-1997]								
	[1] arrhenius	[2] Lewis	[3] bronsted and lowry	[4] All								
Q.73	What will be the pH of a 10	0 ^{–8} M HCI solution		[MP PET/PMT-1997]								
	[1] 8.0	[2] 7.0	[3] 6.98	[4] 14.0								
Q.74	A monoprotic acid in a 0.1	M solution ionizes to 0.001%	b. Its ionisation constant is	[MP PET-1997]								
	[1] 1.0 × 10 ^{–3}	[2] 1.0 × 10 ⁻⁶	[3] 1.0 × 10 ^{–8}	[4] 1.0 × 10 ^{–11}								

Q.75	If the K _b value in the hyd	rolysis reaction B ⁺ + H ₂ O	BOH + H ⁺ is 1.0 x 10^{-6} , then the hydrolysis						
	constant of the salt would	l be -	[ROORKEE QUA	ALIFYING 1998]					
	[1] 1.0 x 10 ⁻⁶	[2] 1.0 x 10 ⁻⁷	[3] 1.0 x 10 ⁻⁸	[4] 1.0 x 10 ⁻⁹					
Q.76	240 g of urea is present i	n 10 litre solution, the active	mass of urea will be -	[BHU 1998]					
	[1] 0.2 mol/litre	[2] 0.06 mol/litre	[3] 0.4 mol/litre	[4] 0.08 mol/litre					
Q.77	The solubility of $BaSO_4$ i $BaSO_4 = 233) -$	n water is 2.33 x 10 ⁻³ gm/lit	re. Its solubility product will	be (molecular weight of [AIIMS 1998]					
	[1] 1 x 10 ⁻⁵	[2] 1 x 10 ⁻¹⁰	[3] 1 x 10 ⁻¹⁵	[4] 1 x 10 ⁻²⁰					
Q.78	pH values of HCl and NaC	DH solution each of strength ;	$\frac{N}{100}$ will be respectively	[MP PMT-1999]					
	[1] 2 and 2	[2] 2 and 12	[3] 12 and 2	[4] 2 and 10					
Q.79	50 ml water is added to a 5 be -	0 ml solution of Ba (OH) ₂ of st	rength 0.01M. The pH value c	of the resulting solution will [MP PMT-1999]					
	[1] 8	[2] 10	[3] 12	[4] 6					
Q.80	Amongst the following sol	utions, the buffer solution is -	G	[MP PMT-1999]					
	[1] NH ₄ CI + NH ₄ OH solution	on	[2] NH ₄ CI + NaOH solution						
	[3] NH ₄ OH + HCl solution		[4] NaOH + HCI solution						
Q.81	Amongst the following, the	e one having characteristics o	of Lewis acid is -	[MP PMT-1999]					
	[1] CIF ₃	[2] BF ₃	[3] NCI ₃	[4] BrF ₃					
Q.82	A buffer solution can be pr	epared from a mixture of -		[IIT-1999]					
	[1] Sodium acetate and ac	cetic acid in water.	[2] Sodium acetate and hy	drochloric acid in water					
	[3] Ammonia and ammoni	um chloride in water	[4] Both 1 & 3						
Q.83	pH of a solution can be ex	pressed as -		[CPMT-1999]					
	[1] – log _e [H+]	[2] – log ₁₀ [H ⁺]	[3] log _e [H ⁺]	[4] log ₁₀ [H ⁺]					
Q.84	The pH of 10 ⁻⁸ molar aque	eous solution of HCl is -							
	[CPMT-1988; MLNR-1	983, 90; MP PMT-1987; IIT-1	1981; BHU-1995; AFMC-199	98; MP PET-1989, 99]					
	[1] –8		[2] 8						
	[3] 6 > 7 (Between 6 and 7		[4] 7 > 8 (Between 7 and 8)					
Q.85	The solubility of CaF ₂ is 2	2 x 10 ⁻⁴ moles/litre. Its solub	ubility product (K _{SP}) is -						
		[NCERT 1981; BH	HU 1983, 86; MP PET 1992	; CBSE 1999]					
	[1] 2.0 x 10 ⁻⁴	[2] 4.0 x 10 ⁻³	[3] 8.0 x 10 ⁻¹²	[4] 3.2 x 10 ⁻¹¹					
Q.86	If S and K _{SP} are respective	vely solubility and solubility p	product of a sparingly soluble binary electrolyte then [CPMT 1988; MP PMT 1999]						
		$(0) \circ (k^2)$		1					
	$[1] S = K_{SP}$	$[2] S = K^{2}_{SP}$	$[3] S = \sqrt{K_{SP}}$	$[4] S = \frac{-1}{2} K_{SP}$					
Q.87	The concentration of [H ⁺] [Ionic product of water = 7	and concentration of [OH ⁻] → 1 x 10 ⁻¹⁴] –	of a 0.1 aqueous solution of	2% ionised weak acid is [CBSE 1999]					
	[1] 0.02 x 10 ⁻³ M and 5 x	10 ⁻¹¹ M	[2] 1 x 10 ⁻³ M and 3 x 10 ⁻¹¹ M						
	[3] 2 x 10 ⁻³ M and 5 x 10	⁻¹² M	[4] 3 x 10 ⁻² M and 4 x 10 ⁻	⁻¹³ M					
Q.88	At infinite dilution, the per	centage ionisation for both s	strong and weak electrolytes	s is [CPMT 1999]					
	[1] 1%	[2] 20%	[3] 50%	[4] 100%					
Q.89	Which of the following is n	ot Lewis acid -		[RPET-2000]					
	[1] FeCl ₃	[2] AICI ₃	[3] BCI ₃	[4] NH ₃					
Q.90	Concentration CN ⁻ in 0.1	M HCN is - [K _a = 4 x 10 ⁻¹⁰]		[RPET-2000]					
	[1] 2.5 x 10 ⁻⁶ M	[2] 4.5 x 10 ⁻⁶ M	[3] 6.3 x 10 ^{−6} M	[4] 9.2 x 10 ⁻⁶ M					

Q.91	In the process : BCl ₃ + P	$PH_3 \longrightarrow Cl_3B : PH_3.$ The	Lewis acid is	[RPET-2000]
	[1] PH ₃	[2] BCl ₃	[3] Both 1 & 2	[4] None
		[salt]		
Q.92	Henderson's equation is	$: pH = pK_a + \log \frac{[sait]}{[acid]}$. If the	e acid gets half neutralized the	e value of pH will be :
	[pKa = 4.03]			[RPET-2000]
	[1] 4.30	[2] 2.15	[3] 8.60	[4] 7
Q.93	The condition for minimu	m change in pH for a buffer so	olution is -	[RPET-2000]
	[1] Isoelectronic species	are added	[2] Conjugate acid or base	is added
	$[3] pH = pK_a$		[4] None	
Q.94	The pH of 10 ⁻⁷ N HCl is -			[RPET-2000]
	[1] 6.0	[2] 6.97	[3] 8.0	[4] 10.0
Q.95	The dissociation constan strength of the acids will	t of two acids HA ₁ and HA ₂ ar be approximately -	e 3.14 x 10 ^{−4} and 1.96 x 10 ^{−5}	respectively. The relative [RPMT-2000]
	[1] 1 : 4	[2] 4 : 1	[3] 1 : 16	[4] 16 : 1
Q.96	Weakest acid is -		G	[RPMT-2000]
	[1] HI	[2] HBr	[3] HCI	[4] HF
Q.97	Acid strength of oxy acid	s of chlorine following the orde	er -	[RPMT-2000]
	$[1] HCIO < HCIO_2 < HCIO_2 $	D ₃ < HClO ₄	$[2] HCIO_4 < HCIO_3 < HCIO_3$	D ₂ < HClO
	$[3] HCIO_4 < HCIO_3 < HC$	IO < HCIO ₂	[4] None	
Q.98	Review the equilibrium a	nd choose the correct stateme	ent -	[RPMT-2000]
	HCIO ₄ + H ₂ O	$H_{3}O^{+} + CIO_{4}^{-}$	\sim	
	[1] HClO ₄ is the conjugat	e base of H ₂ O	[2] H ₃ O ⁺ is the conjugate b	base of H ₂ O
	[3] H ₂ O is the conjugate	acid of H ₃ O ⁺	[4] CIO_4^- is the conjugate	base of HCIO ₄
Q.99	At 90°C pure water has [H_3O^+] = 10 ⁻⁶ mole litre ⁻¹ . The	e value of K _w at 90ºC is -	[RPMT-2000]
	[1] 10 ⁻⁶	[2] 10 ⁻¹²	[3] 10 ⁻¹⁴	[4] 10 ⁻⁸
Q.100	The hydrogen ion conce evaluate by	entration for a weak acid of o	dissociation constant K_a and	concentration C can be [RPMT-2000]
	[1] √K _a C	[2] $\sqrt{K_a}$ C ^{-1/2}	[3] K _a C	[4] CK _a ⁻¹
Q.101	Which of the following is	s most soluble in water -		[RPMT 2000]
	[1] MnS = (K _{SP} = 8 x 10	⁻³⁷)	[2] ZnS (K _{SP} = 7 x 10 ⁻¹⁶)	
	[3] Bi ₂ S ₃ (K _{SP} = 1 x 10 [−]	70)[4] Ag ₂ S (K _{SP} = 6 x 10 ⁻⁵¹)	
Q.102	If the solubility product k	K _{SP} of a sparingly soluble sta	te MX ₂ at 25°C is 1.0 x 10 ⁻¹	, the solubility of the salt
	11 100e nue - al uns ten	121136×10^{-4}	[3] 2 60 x 10-7	[KFWII 2000]
0 103	$1 2.40 \times 10$	$[2] 1.30 \times 10$ [H O+1 – 10 ⁻⁶ mole litre ⁻¹ TI	$[0] 2.00 \times 10$	
Q.105	[1] 10 ⁻⁶	[1] ₃ 0] = 10 mole mile . 11 [2] 10 ⁻¹²	[3] 10 ⁻¹⁴	[4] 10 ⁻⁸
Q.104	The correct representati	on of solubility product of Sn	Sais	[FPMT 2000]
QIIOI	$[1] [Sn^{4+}] [S^{2-}]^2$	[2] [Sn ⁴⁺] [S ^{2–}]	[3] [Sn ⁴⁺] [2S ^{2–}]	[4] $[Sn^{4+1}] [2S^{2-1^2}]$
Q.105	Which of the following s	tatement about AgCl is wrong	a-	[RPMT 2001]
	[1] AgCl is sparingly solu	uble in water	5	[
	[2] Agl is less soluble in	water as compared to AqCI		
	[3] AgCl precipitation tal	kes place on mixing AgNO ₂ a	and NaCl	
	[4] AgCl is more soluble	in aqueous KI than water		
Q.106	The solubility product of	AgCl at 25⁰C is 5 x 10 ^{−13} th	en its solubility is	[RPMT 2001]
	[1] 5 x 10 ⁻¹³	[2] 7.1 x 10 ⁻⁷	[3] 2.5 x 10 ⁻¹³	[4] 2.5 x 10 ⁻⁶

Q.107	If s is the molar solubility of Fe(OH) $_2$. The value of solubility product K $_{\rm SP}$ would be -									
				[RPMT 2001]						
	[1] s	[2] 4s ³	[3] s ³	[4] None						
Q.108	Solubility product of AgC	at 373 K is 1.44 x 10 ⁻⁴ the	n its solubility is	[RPET 2001]						
	[1] 1.2 x 10 ^{−2}	[2] 1.2 x 10 ⁻⁴	[3] 0.72 x 10 ⁻²	[4] 0.72 x 10 ⁻⁴						
Q.109	K_{SP} for AgCl is 1 x 10 ⁻¹⁰ .	Its solubility in 0.1 M KNO ₃	, is -	[RPET 2001]						
	[1] 10 ^{–10}	[2] 10 ⁻⁵	[3] 1.4 x 10 ⁻⁴	[4] 10 ⁻⁴						
Q.110	Solubility of a M ₂ S salt is	3.5×10^{-6} then find out solution	ubility product -	[CPMT 2001]						
	[1] 1.7 x 10 ^{–6}	[2] 1.7 x 10 ^{–16}	[3] 1.7 x 10 ⁻¹⁸	[4] 1.7 x 10 ⁻¹²						
Q.111	Molarity of liquid HCl is th	ne density of solution is 1.17	gm/cc -	[CPMT 2001]						
	[1] 36.5	36.5 [2] 18.25 [3] 32.05								
Q.112	12 Ionisation constant of CH_3COOH is 1.7×10^{-5} and concentration of H ⁺ ions is 3.4×10^{-4} . Then find out concentration of CH_3COOH molecules -									
	[1] 3.4 x 10 ⁻⁴	[2] 3.4 x 10 ⁻³	[3] 6.8 x 10 ⁻⁴	[4] 6.8 x 10 ^{–3}						
Q113	Solution of 0.1 N NH ₄ OH a	nd 0.1 N NH ₄ Cl has pH 9.25,	Then find out pK_b of NH_4OF	[CPMT-2002]						
	[1] 9.25	[2] 4.75	[3] 3.75	[4] 8.25						
Q.114	Which has highest pH			[CPMT-2002]						
	[1] CH ₃ COOK	[2] Na ₂ CO ₃	[3] NH ₄ Cl	[4] NaNO ₃						
Q.115	Identify the correct order of	or solubility of Na ₂ S, CuS an	d ZnS in aqueous medium -	[MPPMT 2002]						
	[1] CuS > ZnS > Na ₂ S		[2] ZnS > Na ₂ S > CuS							
	[3] Na ₂ S > CuS > ZnS		[4] Na ₂ S > ZnS > CuS							
Q.116	An aqueous solution of a s heating. When hydrogen s The substance is	substance gives a white prec sulphide is passed through the second s	pitate on treatment with dil. The hot acidic solution, a blac	HCI, which dissolves on k precipitate is obtained. [MPPMT 2002]						
	[1] Hg ₂ ²⁺ salt	[2] Cu ²⁺ salt	[3] Ag ⁺ salt	[4] Pb ²⁺ salt						
Q.117	1M NaCl and 1 M HCl are	present in an aqueous solu	tion. The solution is	[AIEEE 2002]						
	[1] Not a buffer solution w	rith pH < 7	[2] Not a buffer solution w	ith pH > 7						
	[3] A buffer solution with p	0H < 7	[4] A buffer solution with p	H > 7						
Q.118	Species acting as both Br	ronsted acid and base is		[AIEEE 2002]						
	[1] (HSO ₄) ⁻¹	[2] Na ₂ CO ₃	[3] NH ₃	[4] OH ⁻¹						
Q.119	Let the solubility of an aqu	ueous solution of Mg(OH) ₂ k	be x then its k _{sp} is	[AIEEE 2002]						
	[1] 4x ³	[2] 108 x ⁵	[3] 27 x ⁴	[4] 9x						
Q.120	Which of the following is r	not lewis base		[RPMT 2002]						
	[1] NH ₃	[2] PH ₃	[3] (CH ₃) ₃ N	[4] HN ₃						
Q.121	At 298 K, the solubility of	$PbCl_2$ is 2 x 10 ⁻² mol/lit, th	en k _{sp}	[RPMT 2002]						
	[1] 1 x 10 ⁻⁷	[2] 3.2 x 10 ⁻⁷	[3] 1 x 10 ^{−5}	[4] 3.2 x 10 ^{−5}						
Q.122	The relationship between	ionisation and change in cor	ncentration of any weak elec	ctrolyte is represented as [RPMT 2002]						
	$[1] \alpha = \frac{K_a}{C}$	$[2] \alpha = \sqrt{\frac{K_a}{C}}$	$[3] \alpha = K_{\alpha}.C$	$[4] \alpha = \frac{\sqrt{K_a}}{C^2}$						
Q.123	An alcoholic drink substa	nce pH = 4.7 then OH ion co	oncentration of this solution	is						
	$(K_w = 10^{-14} \text{ mol}^2/l^2)$			[RPMT 2002]						
	$(K_w = 10^{-14} \text{ mol}^2/\text{I}^2)$ [1] 3 x 10 ⁻¹⁰	[2] 5 x 10 ⁻¹⁰	[3] 1 x 10 ⁻¹⁰	[RPMT 2002] [4] 5 x 10 ⁻⁸						
Q.124	$(K_w = 10^{-14} \text{ mol}^2/l^2)$ [1] 3 x 10 ⁻¹⁰ Conjugate base of NH ₃ is	[2] 5 x 10 ⁻¹⁰	[3] 1 x 10 ⁻¹⁰	[RPMT 2002] [4] 5 x 10 ⁻⁸ [RPMT 2002]						

				IONIC EQUILIBRIUM										
Q.125	Which is nucleophile			[RPMT 2002]										
	[1] BF ₃	[2] NH ₃	[3] BeCl ₂	[4] H ₂ O										
Q.126	Which one of the following	g compound is not a protonic	cacid	[CBSE 2003]										
	[1] SO ₂ (OH) ₂	[2] B(OH) ₃	[3] PO(OH) ₃	[4] SO(OH) ₂										
Q.127	The solubility product of A 25°C is approximately (in	\gI at 25⁰C is 1.0 x 10 ^{−16} mc mol ^{−1})	$I^2 L^{-2}$. The solubility if AgI i	n 10 ⁻⁴ N solution of KI at [CBSE 2003]										
	[1] 1.0 x 10 ⁻⁸	[2] 1.0 x 10 ⁻¹⁶	[3] 1.0 x 10 ⁻¹²	[4] 1.0 x 10 ⁻¹⁰										
Q.128	Which one of the following	g substance has the highest	proton affinity	[AIEEE 2003]										
	[1] H ₂ O	[2] H ₂ S	[3] NH ₃	[4] PH ₃										
Q.129	The solubility in water of a be	a sparingly soluble salt B ₂ is	1.0 x 10 ⁻⁵ mol l ⁻¹ . Its solut	bility product number will [AIEEE 2003]										
	[1] 4 x 10 ⁻¹⁵	[2] 4 x 10 ⁻¹⁰	[3] 1 x 10 ⁻¹⁵	[4] 1 x 10 ⁻¹⁰										
Q.130	Which is not example of E	Bronsted Lowry theory		[AIEEE 2003]										
	[1] AICI ₃	[2] H ₂ SO ₄	[3] SO ₂	[4] HNO ₃										
Q.131	When rain is accompained	by a thunderstorm, the collect	ted rain water will have a pH	value [AIEEE 2003]										
	[1] Slightly lower than that	t of rain water without thunde	erstorm											
	[2] Slightly higher than that when the thunderstorm is not there													
	[3] Uninfluenced by occur	rence of thunderstorm												
	[4] Which depends on the	e amount of dust in air												
Q.132	Which one of the followin	g statements is not true		[AIEEE 2003]										
	[1] The conjugate base of	$H_2PO_4^{-}$ is HPO_4^{2-}												
	[2] $pH + pOH = 14$ for all a	aqueous solutions	O											
	[3] The pH of 1 x 10 ⁻⁸ M	HCl is 8												
	[4] 96,500 coulombs of e copper at the cathode	lectricity when passed throu	gh a CuSO ₄ solution depos	sits 1 gram equivalent of										
Q.133	A solution which is 10^{-3} MnS, FeS, ZnS and HgS	1 each in Mn ²⁺ , Fe ²⁺ , Zn ²⁺ ai are 10 ^{–15} , 10 ^{–23} , 10 ^{–20} and <i>′</i>	nd Hg ²⁺ is treated with 10 ⁻¹ 10 ⁻⁵⁴ respectively, which on	⁶ M sulphide ion. If K _{sp} of he will precipitate first [IIT 2003]										
	[1] FeS	[2] MgS	[3] HgS	[4] ZnS										
Q.134	H ₃ BO ₃ is			[IIT 2003]										
	[1] Monobasic and weak I	_ewis acid	[2] Monobasic and weak Bronsted acid											
	[3] Monobasic and strong	lewis acid	[4] Tribasic and weak Bror	nsted acid										
Q.135	Which one of the following	g is not a buffer solution		[AIIMS 2003]										
	[1] 0.8 M H ₂ S + 0.8 M KH	IS	[2] 2M C ₆ H ₅ NH ₂ + 2M C ₆ H	H ₅ N⁺H ₃ Br										
	$[3] 3M H_2CO_3 + 3M KHC$	O ₃	[4] 0.05 M KClO ₄ + 0.05M	HCIO ₄										
Q.136	Ksp of an electrolyte AB is	s 1 x 10 ⁻¹⁰ . [A ⁺] = 10 ⁻⁵ M, wh	ich concentration of B ⁻ will r	not give precipitate of AB [BHU 2003]										
	[1] 5 x 10 ⁻⁶	[2] 1 x 10 ⁻⁵	[3] 2 x 10 ⁻⁵	[4] 5 x 10 ⁻⁵										
Q.137	The pH of 0.1M NaOH is			[MP PET 2003]										
	[1] 11	[2] 12	[3] 13	[4] 14										
Q.138	pH of completely dissocia	ited 0.005 M H ₂ SO ₄ is		[RPET 2003]										
	[1] 3	[2] 4	[3] 2	[4] 5										
Q.139	A monoprotic acid in 0.1	A solution, ionises to 0.001%	b. Its ionisation constant is	[CPMT 2003]										
	[1] 1 x 10 ^{−3}	[2] 1 x 10 ^{-o}	[3] 1 x 10 [−] °	[4] 1 x 10 ⁻¹¹										
Q.140	The pH is less than 7, of t	he solution of		[MP PMT 2003]										
	[1] FeCl ₃	[2] NaCN	[3] NaOH	[4] NaCl										

				IONIC EQUILIBRIUM				
Q.141	pH of a solution of 10 ml.	1N sodium acetate and 50	ml 2N acetic acid (K _a = 1.8	x 10 ^{–5}), is approximately [MP PMT 2003]				
	[1] 4	[2] 5	[3] 6	[4] 7				
Q.142	The values of K _{sp} for CuS their solubility in water is	5, Ag_2S and HgS are 10 ⁻³¹ , 1	0 ⁴² and 10 ⁻⁵⁴ respectively.	The correct order of [MP PMT 2003]				
	$[1] Ag_2 S > HgS > CuS$	$[2] HgS > CuS > Ag_2S$	[3] HgS > Ag ₂ S > CuS	$[4] Ag_2 S > CuS > HgS$				
Q.143	The pKa of a weak acid is	4.8. What should be the ratio	o of [Acid] / [Salt] of a buffer i	f pH = 5.8 is required				
				[MP PET 2003]				
	[1] 10	[2] 0.1	[3] 1	[4] 2				
Q.144	The molar solubility (in mo K_{sp} . 's' is given in terms of	of L^{-1}) of a sparingly soluble of K_{sp} by the relation :	salt MX ₄ is s'. The correspon	ding solubility product is [AIEEE 2004]				
	[1] s = $(K_{sp}/256)^{1/5}$	[2] s = $(128 \text{ K}_{sp})^{1/4}$	[3] s = $(256 \text{ K}_{\text{sp}})^{1/5}$	$[4] s = (K_{sp} / 128)^{1/4}$				
Q.145	The concentration of KI solution is added to 20 m	and KCI in a certain solutio L of a saturated solution of A	n containing both is 0.001 gI in water. What will happe	M each. If 20 mL of this en ?				
	$K_{sp} AgCI = 10^{-10}$; K_{sp}	$AgI = 10^{-16}$	G	[MPP.E.T. 2004]				
	[1] AgI will be precipitated	t	[2] AgCI will be precipitate	ed				
	[3] There will be no precip	pitate	[4] Both AgCl and AgI will	be precipitated				
Q.146	What is the pH of 0.01 M	glycine solution ? For glycing	ine $K_{a_1} = 4.5 \times 10^{-3}$; $K_{a_2} = 1.7 \times 10^{-10}$ at 298 K ;					
				[AIIMS 2004]				
	[1] 3.02	[2] 6.94	[3] 7.06	[4] 10.02				
Q.147	The rapid change of pH detection. pH of the soluti In ⁻ forms of the indicator	near the stiochiometric poi on is related to the ratio of th by the expression -	nt of an acid base titration e concentrations of the conj	is the basis of indicator jugate acid HIn and base [CBSE PMT 2004]				
	[1] $\log \frac{\left[In^{-}\right]}{\left[HIn\right]} = pK_{In} - pH$		$[2] \log \frac{[HIn]}{[In^{-}]} = pK_{In} - pH$					
	[HIn]							
	$[3] \log \frac{[1 - m]}{[1n^-]} = pH - pK_{In}$	$\langle \circ \rangle$	$[4] \log \frac{[\text{III}]}{[\text{HIn}]} = pH - pK_{\text{In}}$					
Q.148	A weak acid HX has the degree of hydrolysis of 0.	dissociation constant 1 × 10 1 M solution of NaX is -	$^{-5}$ M. It forms a salt NaX on	reaction with alkali. The [IIT (S) 2004]				
	[1] 0.0001 %	[2] 0.01 %	[3] 0.1 %	[4] 0.15 %				
Q.149	The K _{sp} of Mg(OH) ₂ is 1 :	× 10 ^{–12} . 0.01 M Mg(OH) ₂ wi	Il precipitate at the limiting p	OH - [DPMT 2005]				
	[1] 3	[2] 9	[3] 5	[4] 8				
Q.150	The correct expression fo	or the solubility product of Ca	a ₃ (PO ₄) ₂ is -	[JEE Orissa 2005]				
_	[1] 108s ⁵	[2] 27s ⁵	[3] 16s ⁴	[4] 81s ⁴				
Q.151	The solubility product of a M ²⁺ ions in the aqueous s	a salt, having the general form solution of the salt is -	mula MX ₂ . In water is 4 × 10°	⁻¹² . The concentration of [AIEEE 2005]				
	[1] 2 × 10 ^{–6} M	[2] 1 × 10 ⁻⁴ M	[3] 1.6 × 10 ⁻⁴ M	[4] 4 × 10 ⁻¹⁰ M				
Q.152	If 0.1 M of a weak acid i constant	s taken and its precentage	ionization is 1.34%, then the	ne calculate is ionization [AFMC 2005]				
	[1] 0.8 × 10 ⁻⁵	[2] 1.79 × 10 ⁻⁵	[3] 0.182 × 10 ⁻⁵	[4] None of these				
Q.153	The K _a values of formic a acid strength of 0.1 M aci [1] 10	icid and acitic acid are respe d is - [2] 3.178	ectively 1.77 × 10 ⁻⁴ and 1.79	5 × 10 ⁻⁵ . The ratio of the [PMT Kerala 2005] [4] 0.1				

Q.154	Equal volumes of the following Ca ²⁺ and F ⁻ solutions are mixed, In which solution will the precipitation occur									
		K_{sp} of CaF ₂ = 1.7 × 10 ⁻¹⁰								
	1. 10 ⁻² m Ca ²⁺ + 10 ⁻⁵ M	F ⁻	2. 10 ^{−3} M Ca ²⁺ + 10 ^{−3} M F [−]							
	3. 10 ⁻⁴ M Ca ²⁺ + 10 ⁻² M I	F-	4. 10 ⁻² M Ca ²⁺ + 10 ⁻³ M	F-						
	Select the correct answer	r using the codes given below	N -	[PMT Kerela 2005]						
	[1] In 4 only	[2] In 1 and 2	[3] In 3 and 4	[4] In 2,3 and 4						
Q.155	Given pH of a solution A is resultant pH of the solution	s 3 and it is mixed with anoth on will be -	er solution B having pH 2. I	f both are mixed, then the [BHU Pre 2005]						
	[1] 3.2	[2] 1.9	[3] 3.4	[4] 3.5						
Q.156	When 10 mL of 0.1 M ace equivalent point will occur	tic acid (pK _a = 5) is titrated ag r at pH -	gainst 10 mL of 0.1 M ammo	onia solution (pk _b = 5), the [AIIMS 2005]						
	[1] 5	[2] 6	[3] 7	[4] 9						
Q.157	When 0.1 mole of CH ₃ NH is made up to 1 litre. find	l ₂ (ionization constant, K _b = 5 the [H ⁺] of resulting solution	5×10^{-4}) is mixed with 0.08	mole HCl and the volume [IIT 2005]						
	[1] 8 × 10 ⁻²	[2] 2 × 10 ⁻¹¹	[3] 1.23 × 10 ⁻⁴	[4] 8 × 10 ⁻¹¹						
Q.158	At 25°C, the dissociation M aqueous solution of the	constant of a base BOH is 1 base would be -	\times 10 ⁻¹² , The concentratio	n of hydroxyl ions in 0.01 [CBSE PMT Pre 2005]						
	[1] 10 ^{–5} mol L ^{–1}	[2] 10 ^{–6} mol L ^{–1}	[3] 2 × 10 ⁻⁶ mol L ⁻¹	[4] 10 ^{–7} mol L ^{–1}						
Q.159	The pKa of a weak acid (H. ionized is	A) is 4.5. The pOH of an aque	ous buffered solution of HA	in which 50% of the acid is [AIEEE 2007]						
	[1] 9.5	[2] 7.0	[3] 4.5	[4] 2.5						
Q.160	In a saturated solution of the which sets in is	ne sparingly soluble strong ele	ectrolyte AgIO ₃ (Molecular m	ass = 283) the equilibrium						
	$AglO_{3(s)} \qquad \qquad Ag^+_{(aq)}$	+ 10 _{3 (aq)}								
	If the solubility product co contained in 100 ml of its s	nstant K_{sp} of AgIO ₃ at a giver saturated solution ?	n temperature is 1.0 ´ 10 ⁻⁸ , v	what is the mass of AgIO ₃ [AIEEE 2007]						
	[1] 1.0 ´ 10 ⁻⁷ g	[2] 1.0 [*] 10 ⁻⁴ g	[3] 28.3 ´ 10 ⁻² g	[4] 2.83 ´ 10 ⁻³ g						
Q.161	The first and second dissoc dissociation constant of th	ciation constants of an acid $H_{2'}$ e acid will be	A are 1.0 × 10 ⁻⁵ and 5.0 × 10 ⁻⁵	¹⁰ respectively. The overall [AIEEE 2007]						
	[1] 5.0 × 10 ⁻¹⁵	[2] 0.2 × 10⁵	[3] 5.0 × 10⁻⁵	[4] 5.0 × 10 ¹⁵						
	Na	Answer	Key							

Qus.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
Ans.	1	4	3	4	4	2	2	3	2	4	4	3	2	1	4	1	2	3	2	3	1	2	4	1	1
Qus.	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50
Ans.	1	2	4	1	1	3	2	3	2	1	1	1	4	4	2	4	2	4	4	3	2	1	3	1	1
Qus.	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75
Ans.	2	1	1	2	4	3	2	4	1	4	1	1	3	1	2	3	1	1	2	3	2	2	1	4	3
Qus.	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100
Ans.	3	2	2	3	1	2	4	2	3	4	3	3	4	4	3	2	1	3	2	2	4	1	4	2	1
Qus.	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120	121	122	123	124	125
Ans.	2	2	2	1	4	2	2	1	2	2	3	4	2	2	4	4	1	1	1	4	4	2	2	3	2
Qus.	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143	144	145	146	147	148	149	150
Ans.	2	3	1	1	1	1	3	3	3	4	1	3	3	4	1	1	4	2	1	1	3	3	2	2	1
Qus.	151	152	153	154	155	156	157	158	159	160	161														
Ans.	2	2	2	4	2	3	4	4	1	4	1														